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Abstract: The global burden of chronic kidney disease (CKD) is rising. A superior strategy to
advance global kidney health is required to prevent and treat CKD early. Kidney development can
be impacted during the first 1000 days of life by numerous factors, including malnutrition, maternal
illness, exposure to chemicals, substance abuse, medication use, infection, and exogenous stress.
In the current review, we summarize environmental risk factors reported thus far in clinical and
experimental studies relating to the programming of kidney disease, and systematize the knowledge
on common mechanisms underlying renal programming. The aim of this review is to discuss the
primary and secondary prevention actions for enhancing kidney health from pregnancy to age 2. The
final task is to address the potential interventions to target renal programming through updating
animal studies. Together, we can enhance the future of global kidney health in the first 1000 days
of life.

Keywords: Developmental Origin of Health and Disease (DOHaD) theory; congenital anomalies
of the kidney and urinary tract (CAKUT); kidney disease; nitric oxide; infant; pregnancy; children;
oxidative stress; renin–angiotensin system

1. Introduction

The first 1000 days of life, the period from conception to two years of age, is crucial
for the individual’s later development. Our body can adapt in response to stimuli from
the environment through alterations of structure or function, namely, developmental
plasticity [1]. Suboptimal environmental conditions in this unique period can cause adverse
long-term health outcomes. This theory has now evolved into the Developmental Origin
of Health and Disease (DOHaD) theory [2]. These environmental factors include, but
are not limited to, nutrition, maternal illness, environmental chemicals, substance abuse,
medication use, infection, and exogenous stress [3]. Recent advances in epidemiological
and experimental studies have offered considerable insight into how various environmental
influences during early development increase the risk for developing chronic, especially
non-communicable, disease (NCD), in later life [4].

Chronic kidney disease (CKD) is one of the most prevalent NCDs [5]. More impor-
tantly, CKD is a key determinant of poor health outcomes for major NCD [6]. The global
burden of CKD is rising and now affects 10% of the world’s adult population [7]. CKD can
originate in early life. A variety of adverse environmental conditions are associated with
the programming of kidney disease [8–10]. We now know that programming processes
before disease becomes apparent are modifiable by shifting the therapeutic approach from
adulthood to early life, namely, reprogramming [11,12]. Accordingly, this vision proposes
that greater attention is needed on global kidney health policy, particularly focus on the
prevention of kidney disease in the earliest stage, not just the treatment of established
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CKD [13]. Thus, this review places specific emphasis on gaining a greater understanding
of the pathophysiological phenomenon behind the programming of kidney disease and
current evidence relating to preventing CKD in the first 1000 days of life by developing a
potential reprogramming strategy. Our search strategy was designed to retrieve literature
relating to DOHaD and kidney disease from PubMed/MEDLINE databases. Specific
emphasis was placed on environmental insult exposure during pregnancy, lactation, and in-
fant stages. Additional studies targeting the pathogenesis of developmental programming
of kidney disease were also considered.

2. Biological Processes Shaping Kidney Development

Figure 1 illustrates the biological processes of kidney development during the first
1000 days of life. In humans, kidney development begins at week three and ends at around
36 weeks of gestation [14]. The metanephric kidney is initiated when the ureteric bud
(UB) forms and elongates to invade the adjacent metanephric mesenchyme (MM) [15]. The
MM forms nephrons, while the UB tip branches serially to form the collecting duct. The
renal vesicles form by a mesenchyme to epithelium conversion and are the precursors of
the nephrons. Branching morphogenesis establishes an extensive ureteric bud arboriza-
tion [15], which eventually differentiates into the collecting duct system and leads to the
formation of the nephrons. A nephron is the basic functional unit of the kidney. The human
kidneys are composed of approximately 1 million nephrons, with a 10-fold interindividual
variability [14]. An exponential increase in nephrons occurs between 18 and 32 weeks
of gestation. By the end of gestation, nephron development is complete [16]. In general,
nephrogenesis is complete by term birth.
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After birth, the kidney continues to grow in size. For infants younger than 1 year, the
equation is as follows: renal length (cm) = 4.98 + 0.155 X age (months) [17]. For babies
older than 1 year, the regression equation is as follows: renal length (cm) = 6.79 + 0.22 X
age (years) [17]. Regarding renal function, the glomerular filtration rate (GFR) doubles in
the first 2 weeks of life from a value of 20 mL/min/1.73 m2 at birth in full-term neonates.
The GFR continues to increase after birth and reaches adult values by two years of age [18].

3. Risk Factors Influencing Kidney Health and Development

Branching morphogenesis is critical for a normal nephron number [15]. Impaired
branching morphogenesis and nephrogenesis could cause a reduced nephron number and
a broad spectrum of malformed kidneys, namely, congenital anomalies of the kidney and
urinary tract (CAKUT) [19]. Developing kidneys are vulnerable to environmental risk
factors that impair development during pregnancy: a severe renal maldevelopment occurs
during early pregnancy, while kidney defects that occur later are generally less severe [19].
A case-control study recruiting more than 1.6 million infants demonstrated that risk factors
for CAKUT consist of prematurity, low birth weight (LBW), male sex, maternal gestational
diabetes, maternal thalassemia, oligohydramnios or polyhydramnios, and first parity [20].

Human and experimental studies suggest genetic factors, including chromosomal
anomalies, copy number variants, and monogenic mutations/deletions, likely contribute
to approximately 45% of CAKUT. Environmental factors and not yet identified genetic
factors contribute to the remainder [19,21,22]. Although hundreds of candidate genes have
been identified, CAKUT cannot be attributed to a monogenic cause in more than 80% of
cases [19]. Considering the phenotypes from genetic defects vary considerably, this suggests
that many cases of CAKUT are polygenic. Notably, gene–gene and gene–environment
interactions have also contributed to CAKUT [23]. One example is apolipoprotein L1
(APOL1) variants [24,25]. Prior research suggests that environmental stressors and APOL1
may contribute to the CKD phenotype variance associated with APOL1 risk alleles. Under
basal conditions, genotypes carrying risk alleles appear to have a subtle phenotype that is
not disease causing. However, high-risk genotypes cannot adapt to the stresses and lose
renal function, resulting in CKD throughout the entire lifespan [25]. Additionally, genes
are vulnerable to epigenetic modification in response to adverse conditions during the first
1000 days of life. Likewise, epigenetic changes may provide a mechanistic link whereby
early life exposures lead to long-term increased risk of kidney disease in adulthood.

As nephrogenesis is completed by full-term birth, premature infants tend to develop
low nephron endowment. Additionally, a low nephron number is related to compromised
pregnancy, low birth weight, intrauterine growth retardation, inadequacy of postnatal
nutrition, and treatment with nephrotoxic drugs after birth, etc. [9,16,26]. The role of low
nephron number in renal programming is gaining attention as it can cause glomerular
hyperfiltration and compensatory glomerular hypertrophy, and can initiate a vicious
cycle of further reductions in nephrons [16]. As kidney disease is possibly the result of
interactions among multiple hits [27], a low nephron number may create a first hit to the
kidney, which increases the vulnerability of remaining nephrons to develop CKD when
facing other environmental insults as a second hit in later life.

Thus far, several environmental risk factors have been linked to the programming of
kidney disease, including nutritional imbalance, maternal illness, environmental chemicals,
substance abuse, medication use, infection, and exogenous stress (Figure 2). These are
discussed in turn.
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Figure 2. Various environmental factors during the first 1000 days of life are associated with renal
programming, resulting in kidney disease in later life. These risk factors include nutritional imbal-
ance, maternal illness, environmental chemicals, infection and inflammation, medication use, and
chronodisruption.

3.1. Nutritional Imbalance

The insufficient or excessive consumption of certain nutrients has been linked to the
developmental programming of kidney disease [28–30]. Important support was first pro-
vided by the Dutch famine birth cohort study for renal programming, which demonstrated
that undernutrition during pregnancy has long-lasting consequences for adult health,
including kidney disease [31]. Several epidemiological studies have associated maternal
nutrition during pregnancy with offspring kidney structure and function in humans, as
reviewed elsewhere [29]. Deficiencies in maternal folate [32], vitamin A [33], and total en-
ergy [31] during pregnancy were associated with negative impacts on kidney structure and
function, measured by kidney volume, proteinuria, and renal function in the offspring [29].

There is convincing evidence from animal studies of nutritional imbalance during
pregnancy and lactation affecting renal programming, resulting in kidney disease in adult
offspring. Various nutritional factors have been related to renal programming, including
calorie restriction [34], protein restriction [35], low-salt intake [36], magnesium-deficient
diet [37], high sucrose consumption [38], high-fructose diet [39], high-fat diet [40], and
high-salt diet [41].

Additionally, nutritional imbalance during pregnancy and lactation is also associated
with a reduced nephron number, a key determinant of adulthood kidney disease. In rat
models, nutritional insults last only for a brief period, as little as 1–2 days, but can impair
kidney development, resulting a permanent low nephron endowment [9]. Currently,
a variety of animal models of early-life suboptimal nutrition, such as maternal caloric
restriction [42], low protein diet [43], vitamin A deficiency [44], multi-deficient diet [45],
iron restriction diet [46], low-salt diet [47], and high-salt diet [47], have been reported to
impair nephrogenesis, resulting in a reduced nephron number.

3.2. Maternal Illness

Maternal illnesses and complications during pregnancy can drive renal program-
ming and increase the risk for developing kidney disease later in life. Several animal
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models resembling human illnesses and pregnancy complications have been established
to study renal programming-related offspring outcomes, such as hypertensive disorders
of pregnancy [48], preeclampsia [49], CKD [50], diabetes [51], and sleep disorder [52].
Hypertension affects up to 10% of pregnancies [53]. In spontaneously hypertensive rats,
maternal hypertension is related to renal programming and hypertension in the adult off-
spring [48]. Another study showed pregnant rats treated with NG-nitro-L-arginine-methyl
ester (L-NAME, a nitric oxide synthase inhibitor) to mimic maternal preeclampsia caused
elevated blood pressure (BP) and renal programming in their adult offspring [49]. To study
the influence of maternal CKD on offspring’s renal outcome, we used an adenine-induced
maternal CKD model. Our findings indicated that uremia-related adverse outcomes in
adult offspring included renal hypertrophy and hypertension [54].

Diabetes in pregnancy is also thought to impair nephrogenesis. Human studies have
demonstrated that adults born to mothers with gestational diabetes have an increased
risk of CAKUT [20,55] and kidney disease [56]. Another observational study showed that
diabetes during pregnancy influences fetal kidney growth, indicating a negative effect
on nephrogenesis [56]. In a streptozotocin-induced diabetes rat model, offspring born
to diabetic dams developed a reduced nephron number, renal hypertension, and kidney
injury [51]. Moreover, sleep disorder in pregnancy also affects kidney development. In a
maternal sleep restriction model, adult offspring displayed an enlarged glomeruli diameter
and a reduced number of glomeruli coinciding with hypertension at 2 months of age [52].
These findings suggest that sleep restriction during pregnancy impairs nephrogenesis,
resulting in renal programming-related disorders in offspring.

From human and animal studies, maternal obesity is another risk factor for CKD in
offspring [57]. An observational study recruiting 3093 CAKUT cases showed a positive
association between maternal obesity and CAKUT in offspring [58]. Another meta-analysis
study supports the notion that maternal obesity adversely impacts renal programming in
offspring, with an increased risk of kidney disease in adulthood [59]. In various animal
models of maternal obesity, offspring from obese mothers had higher serum creatinine
levels, a 24 h urinary albumin to creatinine ratio, and worse renal tubular injury and
glomerulosclerosis scores [40,60,61]. In view of the alarming increase in global obesity, more
attention should be paid to studying how maternal obesity influences CKD development
in offspring.

3.3. Environmental Chemicals

Numerous environmental chemicals pose a wide range of adverse effects on the kid-
ney [62]. During kidney development, some chemicals can impair nephrogenesis, leading
to low nephron endowment and CAKUT [63]. Accordingly, developmental nephrotoxic
effects can be expected during the environmental chemical exposure of pregnant women.
After birth, infants can still be at an increased risk of nephrotoxicity to elemental (e.g.,
mercury) or organic contaminants (e.g., melamine) [64,65].

There are several observational studies addressing the implication of maternal envi-
ronmental chemical exposure in offspring’s renal outcome. Two studies investigated the
associations between maternal lead levels and renal outcomes in offspring [66,67]. One
study found there were no associations between maternal lead levels and estimated GFR
(eGFR) at 8–12 years of age. However, they observed that the maternal lead level was
negatively associated with kidney volume in children [66]. Another study reported there
was an inverse association between maternal blood lead levels and eGFR in overweight
children at 8–12 years of age [67]. Epidemiological studies revealed that maternal expo-
sure to polycyclic aromatic hydrocarbon, per- and polyfluoroalkyl substances, phthalates,
polycyclic aromatic hydrocarbon, and PM2.5/PM10 associated with preterm birth and
LBW [68–72], are both risk factors related to a low nephron number.

Evidence from experimental studies also support that exposure during pregnancy
can affect kidney development, resulting in renal programming. Maternal exposure to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or bisphenol A causes a rise in BP in adult rat
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offspring [73,74], which is relevant to renal programming. Additionally, hydronephrosis
was described in rat offspring prenatally exposed to TCDD [75]. Animal studies of the
implication of maternal heavy metal exposure in the kidneys of offspring suggested that
cadmium is the main cause of adverse renal outcomes [76].

3.4. Substance Abuse

As with nutrient and chemical effects during kidney development, substance abuse
is also a major maternal insult. In the United States, roughly 6–16% of pregnant women
are cigarette smokers, alcohol abusers, or illicit drug users [77]. An observational study
has shown that maternal alcohol exposure has a dose-dependent adverse effect on renal
function in overweight and obese children [78]. Another cohort study revealed that mater-
nal alcohol exposure is associated with the development of mild CKD in their offspring
at 30 years [79]. Similarly, in a maternal ethanol exposure rat model, reduced nephron
number and renal function were reported in adult offspring, possibly as a result of inhibited
ureteric branching morphogenesis [80].

In humans, maternal smoking during pregnancy is associated with fetal and infant
kidney volume [81]. Likewise, prior research on animal models demonstrated that ma-
ternal nicotine exposure adversely affected fetal kidney development, resulting in CKD
in offspring [82–84]. Though illicit drug use is associated with a higher risk of CKD pro-
gression [85], whether maternal illicit drug use affects offspring’s renal outcomes remains
largely unknown.

3.5. Infection and Inflammation

Intrauterine infection is a crucial and frequent mechanism leading to preterm birth [86].
Microbial endotoxins and proinflammatory cytokines stimulate the production of prostag-
landins, resulting in uterine contractility [87]. Furthermore, emerging evidence indicates
that maternal infections contribute to poor birth outcomes, such as LBW and preterm birth,
by the inflammation-mediated disruption of placental development and function [88].

The influence of infection during gestation on offspring’s renal outcomes has been
studied in animal models. Maternal exposure to lipopolysaccharide (LPS) caused offspring
hypertension coinciding with renal programming [89,90]. Another study revealed that
prenatal LPS exposure augmented neonatal hyperoxia-induced kidney injury [91].

After birth, urinary tract infection (UTI) is one of the major infections contributing
to adverse renal outcomes [92]. Pyelonephritis can lead to renal scarring and result in
hypertension and even kidney failure. Approximately 30 % of children who develop a
UTI are subsequently diagnosed with vesicoureteral reflux [93]. Reflux nephropathy is
reported as the fourth most frequent cause of end-stage kidney disease in the pediatric
population [92].

3.6. Medication Use

The existing literature suggests that a number of drugs administrated to pregnant
women may affect kidney development, leading to CAKUT [84]. These medications
include, but are not limited to, aminoglycosides, cyclosporine A, NSAIDs, ACE inhibitor
(ACEI)/angiotensin receptor blockers (ARBs), dexamethasone, furosemide, anti-epileptic
drugs, Adriamycin, and cyclophosphamide [94]. In various animal models, cyclosporine
A [95], gentamicin [96], and glucocorticoid [97–99] have been associated with a low nephron
number and renal programming [9].

Most nephrotoxic drugs in mature kidneys may also have toxic effects on developing
kidneys. It is worth noting that drugs that are not nephrotoxic in fully developed kidneys
may impair the balance of growth factors that are crucial for kidney development. For
example, ACEI/ARBs are well known to exert renoprotective benefits [100]. However,
these drugs have been avoided in pregnant women due to ACEI/ARB fetopathy and
renal maldevelopment [101]. The reason for this is that the suppression of the intrarenal
RAS contributes to altered structural development of the kidney [102]. Another example
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is glucocorticoid. Currently, antenatal glucocorticoid administration is recommended
in women at risk of preterm birth to accelerate fetal lung maturation [103]. In normal
pregnancy, the fetus is protected by the placental inactivation of active glucocorticoids [104].
Accordingly, excessive glucocorticoid through exogenous administration has been related
to renal programming, resulting in a low nephron number [104]. In addition to exogenous
administration, a developing fetus is likely to be exposed to excessive glucocorticoids
of maternal origin (e.g., due to a stressed pregnancy). In rats, repeated dexamethasone
administration on embryonic days 15 and 16 [97], from gestational days 16 to 22 [98], or
from postnatal days 1 to 3 [99] was associated with reduced nephron numbers and resulted
in hypertension in adult rats’ offspring.

3.7. Chronodisruption

Human studies have shown a link between gestational chronodisruption and adverse
pregnancy outcomes [105,106]. In pregnant women, the disruption of circadian rhythms
can occur through shift work, jet travel across time zones, or exposure to light at night [107].
A meta-analysis study recruiting 196,989 women reported that working rotating shifts is
associated with preterm birth and small for gestational age (SGA), both risk factors for
a low nephron number [106]. In rats, chronic photophase shifts throughout pregnancy
program adult offspring to display renal dysfunction and hypertension [108].

4. Behind the First 1000 Days of Life

As summarized above, a diversity of environmental risk factors is associated with the
programming of kidney disease during the first 1000 days of life. Based on what is now
known about the magnitude of kidney development in the first 1000 days of life, it is not
surprising that more work is needed to understand the underlying mechanisms behind
the pathophysiology of kidney disease programming. A better understanding of these
mechanisms will help in targeted therapy and prevention.

4.1. Mechanisms of Later Kidney Disease of Developmental Origin

Despite various early-life environmental factors related to CKD in later life, current
evidence suggests that there may be common mechanisms behind renal programming.
Although the complete mechanisms remain inconclusive, prior research has provided
important information on certain molecular mechanisms, including oxidative stress [109],
nitric oxide (NO) signaling [110], aberrant renin–angiotensin system (RAS) [111], and gut
microbiota dysbiosis [112]. A summary of the integrated mechanisms of renal program-
ming in response to various maternal insults for kidney disease of developmental origin is
depicted in Figure 3.

Oxidative stress is considered to play a critical role in fetal programming [113]. Several
mechanisms of oxidative stress have been related to renal programming, including the
increased production of reactive oxygen species (ROS), antioxidant system dysfunction,
and increased oxidative damage. As reviewed elsewhere, a number of animal models
demonstrate oxidative stress involved in renal programming [105]. Nutritional imbalance
during pregnancy and lactation is the most common factor to induce the programming of
kidney disease. For example, calorie restriction [42] and increased consumption of a high-
fat diet [40], fructose [114], or methyl donors [115] have been addressed previously. Other
environmental factor associated with renal programming, such as environmental chem-
icals [73], substance abuse [82], maternal illness [50], inflammation [91], and medication
use [97,98], have all been linked to oxidative stress.
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A reduced nephron number induced by oxidative stress has been reported in the
caloric restriction model [42], streptozotocin-induced diabetes [51], and maternal smok-
ing [116]. As we reviewed elsewhere [94], renal programming induced by a variety of
maternal insults is associated with increased F2-isoprostanes [49], malondialdehyde (mark-
ers of lipid peroxidation) [117], and 8-hydroxydeoxyguanosine (8-OHdG, an oxidative
DNA damage marker) [49]. Conversely, the perinatal use of antioxidants has shown bene-
fits against oxidative stress-induced renal programming in various animal models [109].

Renal programming, in addition to from oxidative stress, has been associated with
impaired NO signals [110]. NO, a potent vasodilator, plays a key role in fetal development
during pregnancy [118]. Nitric oxide synthase (NOS) catalyzes L-arginine to generate
NO. However, in certain conditions, such as inhibition by NOS inhibitor asymmetric
dimethylarginine (ADMA) [119], uncoupled NOS produces superoxide, consequently
resulting in peroxynitrite formation. Accordingly, reduced NO bioavailability as a result
of NOS uncoupling has been linked to kidney disease of developmental origin [110].
Moreover, our prior research showed that nephrogenesis was inhibited by ADMA, a ROS
inducer, as well as an endogenous NOS inhibitor, consequently leading to a reduction in
the nephron number [51].

Numerous interventions targeting the NO pathway in pregnancy to protect offspring
against kidney disease have been reported [110]. These interventions include supplementa-
tion with substrates for NOS, NO donors, ADMA-lowering agents, and the enhancement
expression/activity of NOS enzymes.

Similar to oxidative stress and NO, aberrant RAS appears to be involved in the patho-
genesis of renal programming [115]. In the developing kidney, RAS genes are highly
expressed and essential for mediating the proper formation of the renal structure and
function [120]. Mutations in RAS genes are associated with kidney malformation in hu-
mans [121], which is in agreement with studies positing that the RAS is directly blocked by
ACEI/ARBs [101]. Likewise, genetic inactivation of the angiotensinogen, renin, angiotensin
converting enzyme (ACE), angiotensin II type 1 (AT1R) or type 2 receptor in mice leads to
a broad phenotypic spectrum of CAKUT [121].
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Angiotensin II (Ang II), the major player in the RAS, can mediate several key events
of the inflammatory processes via AT1R stimulation [122,123]. These processes include
triggering endothelial dysfunction, stimulating the release of cytokine/chemokines, acti-
vating NAD(P)H oxidase to produce ROS, and promoting pro-fibrotic growth factors, all
contributing to kidney damage.

As reviewed elsewhere [111], most environmental influences that can program the
kidney, resulting in adulthood kidney disease, such as nutritional imbalance, maternal
illness, substance abuse, environmental chemical exposure, and medication use, are asso-
ciated with the aberrant activation of the RAS. On the other hand, early blockade of the
classical RAS axis appears to reprogram the inappropriately activated RAS to prevent the
programming of kidney disease in various animal models.

Gut microbiota and their derived metabolites can affect the function of various target
organs through circulation, including the renal systems [124]. Several adverse environ-
mental factors in early life can shape the offspring’s gut microbial composition, leading to
consequent adverse offspring outcomes [125]. Conversely, maternal microbiota-targeted in-
terventions have shown benefits against renal programming [112,126]. Importantly, several
gut microbiota-derived uremic toxins are associated with cardiovascular disease (CVD)
in CKD via the activation of the aryl hydrocarbon receptor (AHR) [127]. Considering that
several environmental factors (e.g., nutrition, environmental chemicals, and inflammation)
are related to AHR activation, the interplay among gut microbiota, AHR, and the kidney
has attracted the attention of researchers for investigating the mechanisms underlying
the more thorough programming of kidney disease. Gut microbiota dysbiosis has been
linked to hypertension by modulating the gut RAS [128]. On the other hand, ACE2, one
component of the RAS, can mediate antimicrobial peptide secretion in the gut, leading
to altered gut microbiota composition [129]. These findings indicate that there might be
an interconnection between gut microbiota and the RAS behind the pathogenesis of renal
programming.

Notably, environmental factors might display other potential mechanisms correspond-
ing to renal programming, such as epigenetic regulation [130], dysregulated nutrient-
sensing signals [131], and sex differences [132]. Although there are multiple mechanistic
pathways outlined above, they might be interconnected to one another to drive renal
programming, resulting in kidney disease. Better understanding the interaction between
these common mechanisms and identifying new potential pathways to develop prevention
interventions are key in the early prevention of kidney disease.

4.2. Prevention Actions

In 2020, World Kidney Day informed the public about the importance of preventive
interventions—primary, secondary, or tertiary [13]. In view of the complex nature of CKD,
a holistic approach is required to positively impact kidney health. Tertiary prevention
aims to manage advanced CKD and related comorbidities, which are rare during the early
stage of life. Considering the prevention strategy from a DOHaD perspective, primary and
secondary preventions seem to be the best strategy to improve global kidney health during
the first 1000 days of life. Figure 4 illustrates the recommended primary and secondary
prevention strategies from pregnancy to age 2.

First, primary prevention aims to prevent kidney disease before it occurs. The modifi-
able risk factors illustrated in Figure 1 should be avoided during the first 1000 days of life.
During pregnancy through to early childhood, optimal nutrition is essential for supporting
kidney health [133]. Neonates and young infants are particularly vulnerable to infections
as they have naïve immune systems. As vaccination is one of the most cost-effective ways
of preventing infection, enhanced early life immunity via taking necessary vaccines is
essential to protect from infection [134]. Other key points are summarized in Figure 4.
Moreover, additional attention is required to improve socioeconomic factors, e.g., access to
family planning, equity and education for women, and reduction in poverty [7].
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Secondary prevention suggests preventive measures that lead to screening for the
early identification of disease and prompt treatment of kidney disease in the earliest
stages. Although the early detection of CKD has the potential to yield marked public
health benefits, most countries have inadequate CKD detection and surveillance systems
to achieve this goal [135]. Some important services are required to screen for and detect
kidney disease during the first 1000 days of life, such as antenatal screening, prenatal
ultrasound testing, genetic counseling, renal ultrasound testing, urinalysis, creatinine and
eGFR, and BP monitoring.

Considering CAKUT have a genetic basis, key nephrogenesis genes may form the
basis of genetic screening tests for the future development of novel genetic therapies. In
recent years, several potential biomarkers for the early detection of kidney damage have
been introduced, and each of these biomarkers has advantages and disadvantages [136,137].
Nevertheless, currently, there is still no ideal biomarker of acute kidney injury. Furthermore,
the search for an ideal biomarker predicting the progression of CKD in children with
CAKUT is still ongoing. Although neutrophil gelatinase-associated lipocalin, and trefoil
family factors (TFF) 1 and 3 have shown the potential to predict CKD progression in
children with CAKUT [138,139], they still await more thorough validation. As precursor
cell technology has been applied to generate new kidney tissues, more attention will need
to be paid to the use of genetically altered metanephric precursor cells to differentiate into
functioning kidney tissue for regenerative medicine therapies [140].

Given the advances in the DOHaD research field, it has become clear that kidney
disease of developmental origin can be prevented in the earliest stage by reprogram-
ming [11,12]. Prior animal studies have provided essential information in regard to repro-
gramming strategies. Considering that oxidative stress is a crucial mechanism implicated
in renal programming, many natural antioxidants have been used as reprogramming
strategies to prevent kidney disease in various animal models [109]: vitamin E and se-
lenium [141], folate [142], L-taurine [143], L-tryptophan [144], N-acetylcysteine [48,49],
resveratrol [73,74], and melatonin [44,100]. These findings support the notion that maternal
nutrition is a double-edged sword for fetal programming: maternal malnutrition pro-
grams many NCDs, whereas nutritional intervention can also be advantageous to prevent
adulthood NCDs [145].
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Additionally, there are several reprogramming interventions targeting specific sig-
naling pathways giving rise to benefits against renal programming. Targeting of the NO
pathway in early life has been employed in various animal models to prevent the develop-
ment of kidney disease in adult progeny. As reviewed elsewhere [95], these interventions
include the supplementation of NO substrate, agents that lower ADMA, NO donors, and
the enhancement of NOS expression. Likewise, RAS-based interventions have also shown
promising results in protecting against renal programming and related diseases, such as
renin inhibitor, ACE inhibitor, ACE-2 (ACE2) activator, and ARBs [111]. Furthermore,
reprogramming interventions targeting the hydrogen sulfide (H2S) pathway [146] and
nutrient-sensing signals [147] have also shown benefits with regard to kidney disease
of developmental origin. Although significant advances have been made from animal
research, the need for meaningful clinical translation remains a research priority.

5. Conclusions and Perspectives

Healthy people, living healthy lives on a healthy and peaceful planet were the ultimate
goals stated by the United Nations in 2015, to be achieved by 2030 [148]. However,
much remains to be accomplished to tackle the challenges of NCDs, in particular, kidney
disease [5–7]. The concept of the first 1000 days of life allowed us to analyze the literature
to determine the causes that could influence kidney development, identify the underling
mechanisms of renal programming, and develop potential prevention strategies.

Though various modifiable early-life risk factors have been identified to date, pre-
ventive efforts should continue to discover other possible risk factors. Another important
aspect is that current preventive strategies mainly focus on promoting a healthy lifestyle
and avoiding exposure to risk agents. However, the translation of effective reprogramming
interventions from animal studies into clinical practice has been far slower than expected.
On all fronts, holistic and multilateral action is essential. Kidney health should be an
imperative policy, which can be successfully achieved by the collaboration of doctors,
nurses, allied health professionals, researchers, policy makers, and social workers. Only
through collaboration can we implement not only patient but also global perspectives
toward CKD prevention and the commencement of global kidney health futures in the first
1000 days of life.
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