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Abstract: Two stochastic sensors were characterized and validated for the molecular identification
and quantification of MLH1, MSH2, MSH6, PMS2 and KRAS in biological samples using two types of
doped-graphene modified with maltodextrin. When a potential of 125 mV vs. Ag/AgCl was applied,
the two stochastic sensors recorded extremely low limits of determination (fg mL−1 magnitude order)
and wide linear concentration ranges, which enabled the molecular identification and quantification
of MLH1, MSH2, MSH6, PMS2 and KRAS in healthy individuals and patients with gastric or colon
cancer. The recoveries of MLH1, MSH2, MSH6, PMS2 and KRAS in whole blood, saliva, urine and
tumoral tissue samples exceeded 98.00% with a relative standard deviation of less than 1.00%.

Keywords: gastric cancer; colon cancer; stochastic sensor; MLH1; MSH2; MSH6; PMS2; KRAS;
doped-graphene

1. Introduction

Microsatellites (MS) are short tandem repeats (one to six nucleotides) dispersed across
the entire genome that are prone to mutation. Thus, microsatellite instability (MSI) is
described as a hyper-mutable condition that develops at genomic MS in the context of
a poor DNA mismatch repair (dMMR) apparatus [1]. MSI occurs in 15 to 20 percent of
colorectal adenocarcinomas due to impairments in mismatch repair complex function [2,3].
MSI-associated carcinomas are characterized by right-sided localization, age less than
50 years, tumor-infiltrating lymphocytes, the absence of “dirty necrosis”, the presence of
a Crohn-like reaction, mucinous differentiation, medullary characteristics and/or well-
differentiated [2].

The mismatch repair mechanism is a highly conserved biological process that iden-
tifies and repairs mismatched bases, most likely as a result of DNA replication, genetic
recombination or chemical/physical damage [4]. The MMR machinery is comprised of
a series of DNA mismatch repair enzymes: MutL homolog 1 (MLH1), MutS homolog
2 (MSH2), MutS homolog 6 (MSH6) and post meiotic segregation increased 2 (PMS2).
During normal DNA replication, the heterodimeric complex MSH2/MSH6 detects and
binds minor DNA mismatch mistakes, whereas the heterodimeric complex MLH1/PMS2
is responsible for the excision and resynthesis of the repaired DNA bases at the mismatch
sites.

The loss of expression or deficiencies in one or more MMR machinery elements define
the inadequacy of the complex and, hence, the failure of DNA repair. A growing body of
evidence indicates that the MSI status in gastric cancer (GC) is positively associated with
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longer survival compared with the MSS counterpart [5]. Furthermore, due to their intrinsic
mutational burden, increased inflammation and the expression of immune checkpoints,
such as the programmed death-ligand 1 (PD-L1), MSI tumors exhibit promising molecular
hallmarks of potential sensitivity to cancer immunotherapy [6].

In spontaneous, nonhereditary adenocarcinomas, hypermethylation of the MLH1
mismatch repair promoter gene causes deficits in MLH1 protein expression, leading to the
loss of nuclear protein expression in the tumor cells. In hereditary adenocarcinomas (Lynch
syndrome), germline mutations most frequently affect the MSH2 gene, although they can
also affect the MLH1, MSH6 and PMS2 genes, resulting in a lack of nuclear staining of
the specific protein [3,7–9]. These screening approaches can identify patients who require
genetic testing and counseling.

The Kirsten rat sarcoma virus (KRAS) gene belongs to the gene category known as
oncogenes. If oncogenes are changed, they have the power to turn normal cells into cancer-
ous cells. It is responsible for the encoding of its homologous protein, which participates in
cell division, cell differentiation and cell death (apoptosis) [10].

The ability of stochastic sensors to provide precise qualitative and quantitative eval-
uations is widely established [11,12]. Since they can be used for screening tests for any
biological fluid, including saliva, urine, whole blood and serum samples, they have pre-
viously been used for biomedical analysis [13–15]. The study’s findings can be used in
screening tests to identify molecular patterns with clinical relevance because they are
unaffected by the matrix’s composition from which the biomarker is derived.

Due to their advantages over conventional methods of analysis, such as their ease of
use (no sample treatment is needed), high sensitivity, low cost, capacity to detect multiple
analytes, excellent selectivity and low detection limits, electrochemical methods were
frequently used in biomedical analysis [16,17].

However, to our knowledge, to date, there are no electrochemical methods/sensors
proposed for either simultaneously or individually assay of MSH1, MLH2, MLH6 and
PMS2, while for KRAS determination, there were previously proposed single-molecule
bioelectronic label-free assay [18] as well as stochastic sensors [19]. Immunohistochemistry
methods [20] as well as ELISA kits (which are available from many pharmaceutical compa-
nies) were the only methods proposed to date for the clinical studied involving the assay of
MLH1, MSH1, MSH6, PMS2 and KRAS, although their assay has an immediate implication
in microsatellite instability [21–26].

In order to determine the five biomarkers from biological samples, including whole
blood, urine, saliva and tumoral tissue, two stochastic sensors based on sulfur-doped
exfoliated graphene and further modified with maltodextrin are designed and validated
in this study. By doping of graphene with sulfur an enhanced conductivity was achieved,
favorizing also an increased sensitivity of the stochastic method used for the simultaneous
assay of MLH1, MSH2, MSH6, PMS2 and KRAS.

2. Materials and Methods
2.1. Chemicals

Analytical grade chemicals were used throughout this work. MLH1, MSH2, MSH6,
PMS2, KRAS and maltodextrin (MD) were purchased from Sigma Aldrich (Milwaukee,
USA). Paraffin oil was purchased from Fluka (Buchs, Switzerland). Ammonium sulphate,
boric acid and sodium chloride were purchased from Reactivul Bucuresti (Bucharest,
Romania).

All solutions were made using distilled water that was given by a Millipore Direct Q-
3 System with different concentrations (for MLH1: 32.00 µg mL−1 to 3.20 × 10−10 µg mL−1,
for MSH2: 10.00 µg mL−1 to 1.00 × 10−9 µg mL−1, for MSH6: 23.00 µg mL−1 to
2.30 × 10−9 µg mL−1, for PMS2: 27.00 µg mL−1 to 2.70 × 10−9 µg mL−1 and for KRAS:
22.00 µg mL−1 to 2.20 × 10−9 µg mL−1). Phosphate buffer saline (pH 7.40) was used for the
preparation of the analyte solutions. When not in use, all solutions were kept in a freezer at
−20 ◦C.
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2.2. Electrochemical Exfoliation of Graphite Rods

The first graphene sample (EGR-1) was obtained by the exfoliation of graphite rods
in solution containing 0.05 M ammonium sulphate + 0.05 M boric acid + 0.05 M sodium
chloride. The second graphene sample (EGR-2) was obtained by the exfoliation of graphite
rods in solution containing 0.05 M ammonium sulphate + 0.1 M boric acid + 0.05 M sodium
chloride. Typically, the exfoliation cell contained two high-purity graphite rods (anode and
cathode) connected to the exfoliation system (a home-made system that generated pulses
of currents).

The cell was filled with 100 mL solution of each electrolyte, and a constant voltage
of 12 V was applied between anode and cathode, for about 4 h. A black powder was
deposited at the bottom of the cell after exfoliation. The powder was collected, washed
with 8 L of distilled water and finally dispersed in 125 mL water by ultrasound (30 min).
In order to remove the larger particles, the black suspension was filtered on white-ribbon
paper and dried by lyophilization. According to XPS analysis, each sample contains doping
heteroatoms: nitrogen, sulfur and boron. Hence, EGR-1 contains 0.7 at% nitrogen, 1 at%
sulfur and 2 at% boron while EGR-2 contains 1.7 at% nitrogen, 2.5 at% sulfur and 3 at%
boron.

2.3. Instruments

GPES software was installed on a personal computer, which was connected to a
potentiostat/galvanostat AUTOLAB/PGSTAT 302 (Methrom, Utrecht, The Netherlands) to
assay the solutions and biological samples. Furthermore, a three-electrode electrochemical
cell was used. The suggested stochastic sensors serve as the working electrodes for the
three-electrode system. The reference electrode, also known as the Ag/AgCl electrode,
and the counter electrode, which is a platinum wire, serve as the reference and counter
electrodes, respectively.

The morphology and structure of the synthesized samples were investigated using
Scanning Electron Microscopy SEM (SU-8230 STEM system, Hitachi, Japan) and X-ray
Powder Diffraction XRD (Bruker D8 Advance Diffractometer). The background-corrected
patterns were plotted and used for the calculation of the graphene structural parameters.

2.4. The Stochastic Sensors’ Design

To construct the two stochastic sensors, two different types of doped-graphene were
employed, EGR-1 and EGR-2, respectively. In order to create a homogeneous paste for the
first sensor, 0.01 g of each graphene was combined with paraffin oil. We used 50 µL of MD
to establish the required channels needed to obtain the specific signals for the stochastic
sensors given the fact that there was no stochastic signal when the doped-graphene powders
were not modified.

A silver wire acted as the contact between the pastes and the external circuit of the
electrochemical cell. Each modified paste was placed into non-conducting plastic tubes
(inner diameter: 150 µm, length: 5 mm). The stochastic microsensors were cleaned with
deionized water and dried after each measurement, whether it be of solutions or biological
samples. When not in use, these sensors were kept in a dry place. No cross-contamination
of the sensors’ surfaces was observed during the measurements of solutions and biological
samples.

2.5. Procedure of Analysis: The Stochastic Method

With a constant potential (125 mV vs. Ag/AgCl) applied, a chronoamperometric
approach was chosen for the stochastic method. This method was utilized to analyze
MLH1, MSH6, MSH2, PMS2 and KRAS from saliva, urine, tumoral tissue and whole blood
samples from confirmed patients with gastric or colon cancer in both a qualitative and
quantitative manner. The stochastic diagrams were used to identify two parameters of
interest, toff and ton, respectively (Figures 1–4).
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toff is regarded as the analytes’ signatures and its values are employed for qualitative
analysis; using its value, KRAS, MLH1, MSH2, MSH6 and PMS2 were found in the diagrams
produced for the examination of biological samples (Figures 1–4). The ton values were then
read; it reflects the quantitative parameter (1/ton = a + b × CPMS2/MSH2/MLH1/MSH6/KRAS)
and is known as the time of equilibrium required for the interaction of the analytes with
the wall channels and the redox processes that take place inside those channels. The linear
regression method was used to obtain the calibration equations.

2.6. Biological Samples

Blood, tumoral tissue, saliva and urine samples that were taken from patients who
had been diagnosed with gastric and colon cancer were examined. Prior to the samples
being collected, none of the patients were receiving therapy for colon or gastric cancer.
These samples were collected from the Hospital of Targu-Mures (Ethics committee approval
number: 75/2015). The biological samples that were being assayed did not require any
processing prior to measurement. The stochastic method mentioned above was used to
determine the unknown MSH2, KRAS, PMS2, MSH6 and MLH1 concentrations in the
biological samples.

3. Results and Discussion
3.1. Morphological and Structural Characterization of Graphene Samples

The morphology of the two samples was investigated by SEM technique. Represen-
tative SEM micrographs are shown in Figure 5a,b. In both cases, one can see large planar
graphene sheets with the size of the order of micrometers (10–30 µm) along with smaller
flakes (<1 µm).
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The planar sheets generally have a wavy appearance with the edges as bright lines.
Overall, the morphology is highly porous due to the random orientation of the graphene
sheets and flakes. The repulsive electrostatic forces between the charges present at the edges
or basal planes of the sheets may prevent the regeneration of graphite crystallites. Such
forces overcome the π–π stacking interaction that normally occurs between the graphene
layers.

Next, the crystallinity of the synthesized materials was investigated by X-ray powder
diffraction. The XRD pattern of EGR-1 sample was recorded in the 2θ range of 5–80◦ and
shows the sharp (002) diffraction peak of graphene, at 2θ~26◦ (multi-layer graphene, MLG)
as well as other two broad peaks at 2θ~9◦ and 2θ~23◦, due to graphene oxide (GO) and
few-layer graphene (FLG), respectively (Figure 6a).
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Figure 6. The XRD pattern of EGR-1 sample and the corresponding structural parameters (a); the
XRD pattern of EGR-2 sample and the corresponding structural parameters (b).

Scherrer’s equation was employed for estimating the average crystallite size, D, within
GO, FLG and MLG (see the inset table). Its value varied from 1.48 nm in FLG to 18.72 nm
in MLG, while in GO its value was 2.34 nm. In addition, using the Bragg’s equation we
determined the distance, d, between two adjacent graphene layers. By knowing D and d
values, the number of graphene layers (n) within the crystallites was easily determined, as
being D/d ratio (see the inset table).

As expected, the largest d value (0.95 nm) was found in GO, due to the abundance
of oxygen-containing groups and/or network defects. Such defects may be induced by
the doping heteroatoms (S, N, and B), which may either replace the carbon atoms in the
network or interact electrostatically with the charges associate with carboxyl/carbonyl
functional groups. In FLG and MLG, the interlayer distance is smaller (0.38 and 0.34 nm,
respectively) indicating that the crystallites have a lower number of oxygen-containing
groups and/or network defects. An interesting fact to report is that FLG is predominant
within the sample (52.86%), followed by MLG (27.60%) and finally GO (19.25%).
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The crystallinity of the second sample, EGR-2, was also investigated and the results
are shown in Figure 6b. The first peak (2θ~9◦) appears due to the reflections of GO
layers, which overlap at an interlayer spacing (d) of about 0.92 nm within the crystallites
(D = 2.84 nm) (see the inset table). The second peak (2θ~21◦) appears due to the reflections
of few-layer graphene, being characterized by an interlayer spacing of 0.41 and 1.18 nm
crystallites size. The third peak at 2θ~26◦ has lower intensity and is characteristic to multi-
layer graphene, with d = 0.34 nm and D = 10.1 nm. According to the above results, the
EGR-2 sample consists of 68.61% few-layer graphene, 16.89% graphene oxide and 14.5%
multi-layer graphene.

3.2. Performance Characteristics

The limits of determination for MSH6, PMS2 and KRAS were lower when the sensor
based on MD/EGR-2 was utilized, with the exception of the assay of MLH1 and MSH2
(Table 1). While the limits of determination for the assay of MSH2 were unaffected by the
kind of matrix utilized in the construction of the two sensors, a lower limit of determi-
nation was obtained for the assay of MLH1 using the sensor based on MD/EGR-1. The
highest sensitivity was reported when the sensor based on MD/EGR-2 was used for all
other biomarkers, with the exception of the MLH1 assay, for which the sensor based on
MD/EGR-1 was employed.

Table 1. Performance characteristics of the stochastic sensors for the assay of MLH1, MSH2, MSH6,
PMS2 and KRAS.

Stochastic
Sensors

Working Concentration
Range (g mL−1) Calibration Equation and r 1 Signature,

toff (s)
Sensitivity

(s−1/µg mL−1)

Limit of
Determination

(g mL−1)

MLH1

MD/EGR-1 3.2 × 10−16−3.2 × 10−8 1/ton = 0.03 + 5.31 × 105 C
r = 0.9999

4.2 5.31 × 105 3.2 × 10−16

MD/EGR-2 3.2 × 10−12−3.2 × 10−9 1/ton = 0.03 + 1.21 × 102 C
r = 0.9994

1.0 1.21 × 102 3.2 × 10−12

MSH2

MD/EGR-1 1.0 × 10−12−1.0 × 10−8 1/ton = 0.03 + 2.11 × 10 C
r = 0.9998 3.3 2.11 × 10 1.0 × 10−12

MD/EGR-2 1.0 × 10−12−1.0 × 10−8 1/ton = 0.04 + 4.57 × 10 C
r = 0.9999 1.2 4.57 × 10 1.0 × 10−12

MSH6

MD/EGR-1 2.3−10−13−2.3 × 10−5 1/ton = 0.01 + 743.16 C
r = 0.9999 2.6 743.16 2.3 × 10−13

MD/EGR-2 2.3−10−15−2.3 × 10−9 1/ton = 0.02 + 2.19 × 105 C
r = 0.9999

4.6 2.19 × 105 2.3 × 10−15

PMS2

MD/EGR-1 2.7−10−10−2.7 × 10−8 1/ton = 0.04 + 8.85 × 10−1 C
r = 0.9999

1.3 8.85 × 10−1 2.7 × 10−10

MD/EGR-2 2.7−10−12−2.7 × 10−5 1/ton = 0.02 + 1.35 × 102 C
r = 0.9991

2.0 1.35 × 102 2.7 × 10−12

KRAS

MD/EGR-1 2.2 × 10−8−2.2 × 10−5 1/ton = 0.03 + 2.46 × 10−3 C
r = 0.9999

2.0 2.46 × 10−3 2.2 × 10−8

MD/EGR-2 2.2 × 10−9−2.2 × 10−6 1/ton = 0.04 + 2.39 × 10−2 C
r = 0.9992

1.4 2.39 × 10−2 2.2 × 10−9

1 <1/ton> = s−1; <C>—concentration = µg mL−1; <r>—correlation coefficient.

The working concentration ranges were broad enough to accommodate both healthy
individuals and people with various stages of colon or stomach cancer. Different values
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for the biomarkers suggest that they can be found in biological samples simultaneously.
The sensors that would be used to measure MSH6, MLH1, MSH2, PMS2 and KRAS in
biological samples (whole blood, saliva, urine and tumoral tissue) were calibrated, and
the results showed no significant differences in the signatures of the biomarkers, working
concentration ranges, limits of determination or the sensitivity of the a and b parameters
from the equation of calibration. This demonstrated once more that the complexity of the
matrix used to identify these analytes has no bearing on the values when stochastic sensors
are calibrated.

Comparing with ELISA commercial kits used for the assay of MLH1 (working concen-
tration range 0.16–10 ng mL−1), MSH2 (working concentration range 78–5000 pg mL−1),
MSH6 (working concentration range 0.16–10 ng mL−1), PMS2 (working concentration
range 0.16–10 ng mL−1) and KRAS (working concentration range 0.31–20 ng mL−1), for
the assay of MLH1, MSH2, MSH6 and PMS2 wider linear concentration ranges as well as
lower limits of determination were achieved when the stochastic sensors were used.

For the assay of KRAS, the stochastic sensors were used in wider linear concentra-
tion ranges placed on higher concentrations but with immediate application for whole
blood samples, because all values determined were in the working concentration range
of the stochastic sensors. Further, the ELISA kits were able to determine only one specific
biomarker, while the stochastic sensors were able to determine simultaneously all five
biomarkers. Lower limits of determination were also reported for the assay of KRAS using
stochastic sensors (of fg mL−1 magnitude order) [19] and for the method developed by
Macchia et al. [18] (1.3 × 10−20 mol L−1).

3.3. Reproducibility and Stability of the Stochastic Sensors

Studies on reproducibility were performed for each sensor. In this regard, 10 of each
type of sensor were produced using the process described in the sensor design paragraph.
Each sensor was assessed in the same way, and the sensitivities were determined and
compared when submerged in solutions of pH 7.40 for KRAS, MLH1, MSH2, PMS2 and
MSH6. The RSD (%) values for the sensitivities were 0.12% for KRAS, 0.20% for MLH1,
0.15% for MSH2, 0.11% for PMS2 and 0.10% for MSH6. The sensitivities’ RSD (%) values
provided evidence of the sensors’ design’s reproducibility.

The stability of each sensor was evaluated as follows: as outlined in the section on
stochastic sensor design, 20 sensors of each type were stored. Every day, a new sensor
was taken from storage and immersed in solutions containing PMS2, MSH2, MSH6, KRAS
and MLH1 at varied concentrations at pH 7.40; the sensitivities of each measurement were
recorded for comparison after 30 days, when the entire lot of sensors has been used. The
end-of-period results indicated a high stability of the electrodes over time, as the change of
the sensitivities over time was as follows: 0.07% for MD/EGR-1 and 0.05% for MD/EGR-2.

3.4. Selectivity

The recorded toff values for various potential interferents provide an indication of the
selectivity of the two proposed stochastic sensors. As potential interferents, CA19-9, p53,
glutamine and CA72-4 were examined. Given that the chosen chemicals’ signatures differ
from those of the relevant biomarkers, Table 2 demonstrates that none of them interfere
with the identification of MLH1, MSH2, MSH6, PMS2 and KRAS.

Table 2. Selectivity of the proposed stochastic sensors used for the assay of MLH1, MSH2, MSH6,
PMS2 and KRAS.

Stochastic Sensors Modified
with MD and Based on

MLH1
Signature

(s)

MSH2
Signature

(s)

MSH6
Signature

(s)

PMS2
Signature

(s)

KRAS
Signature

(s)

CA19-9
Signature

(s)

p53
Signature

(s)

Glutamine
Signature

(s)

CA72-4
Signature

(s)

EGR-1 4.2 3.3 2.6 1.3 2.0 0.5 3.0 1.7 2.8
EGR-2 1.0 1.2 4.6 2.0 1.4 0.7 2.6 0.7 3.3
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3.5. MLH1, MSH2, MSH6, PMS2 and KRAS: Molecular Identification and Quantification

The two stochastic sensors were used for the fast screening of biological samples,
including tumoral tissue, whole blood, saliva and urine from individuals with colon or
gastric cancer. Based on their signatures, KRAS, PMS2, MLH1, MSH2 and MSH6 were first
recognized in the diagrams (Figures 1–4) before the matching ton was read and employed
as stated in the stochastic mode [18] to determine the concentration of KRAS, PMS2, MLH1,
MSH2 and MSH6. The results obtained for the assay of the biological samples (over
150 biological samples: whole blood, urine, saliva and tumoral tissue) can be found in
Figures 7 and 8 and in the Supplementary Materials (Tables S1–S4).

A paired Student’s t-test was conducted at a confidence level of 99.90%. The calculated
t-values for each sample type were less than 2.50, indicating that there is no statistically
significant difference between the results obtained using the proposed stochastic sensors
(Tables S1–S4) and that stochastic sensors can be relied upon for the molecular identification
and quantification of KRAS, PMS2, MLH1, MSH2 and MSH6 in the selected biological
samples.

In addition, the validation was performed using the conventional addition procedure,
which entailed the addition of known quantities of KRAS, PMS2, MLH1, MSH2 and MSH6
to each type of biological sample: whole blood, tumoral tissue, urine and saliva. The
recovery tests for the known quantities are shown in Table 3. When KRAS, PMS2, MLH1,
MSH2 and MSH6 were identified from four different types of biological materials, extremely
high recovery values were obtained. These data demonstrated that the suggested stochastic
sensors may be utilized to reliably identify and quantify KRAS, PMS2, MLH1, MSH2 and
MSH6 in biological samples.

The results of the recovery tests (Table 3) shown that the proposed stochastic sensors
can be reliable used for the assay of MLH-1, MSH-2, MSH-6, PMS-2 and KRAS in whole
blood, saliva, urine and tumoral tissue, because all recoveries were higher than 98.00%,
with % RSD values lower than 1.00%.

Table 3. Recovery tests for the assay of MLH1, MSH2, MSH6, PMS2 and KRAS from biological
samples (N = 10).

Stochastic Sensors Modified
with MD and Based on

Recovery %

MLH-1 MSH-2 MSH-6 PMS-2 KRAS

Whole blood

EGR-1 99.21 ± 0.02 99.15 ± 0.03 99.73 ± 0.01 99.77 ± 0.05 98.99 ± 0.02
EGR-2 99.13 ± 0.01 99.98 ± 0.02 99.03 ± 0.02 99.10 ± 0.02 99.87 ± 0.03

Saliva

EGR-1 99.15 ± 0.01 99.24 ± 0.02 99.12 ± 0.01 99.20 ± 0.02 99.03 ± 0.05
EGR-2 99.43 ± 0.03 99.57 ± 0.02 99.70 ± 0.08 98.59 ± 0.07 98.98 ± 0.02

Urine

EGR-1 98.21 ± 0.03 99.01 ± 0.02 98.42 ± 0.03 98.21 ± 0.02 98.32 ± 0.03
EGR-2 98.18 ± 0.05 98.55 ± 0.03 99.00 ± 0.02 98.11 ± 0.02 98.14 ± 0.02

Tumoral tissue

EGR-1 99.99 ± 0.02 99.95 ± 0.03 99.51 ± 0.02 99.87 ± 0.01 99.90 ± 0.02
EGR-2 99.91 ± 0.02 99.00 ± 0.01 99.44 ± 0.03 99.00 ± 0.02 99.69 ± 0.07
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4. Conclusions

Two doped-graphene based sensors were suggested for the fast detection of five
biomarkers, MLH1, MSH2, MSH6, PMS2 and KRAS, in four different types of biological
samples (blood, urine, saliva and tumoral tissue). When the sensor based on MD/EGR-2
was used, low limits of determination were obtained for MSH6, PMS2 and KRAS, while,
for MLH1 and MSH2, low limits of determination were obtained when the sensor based on
MD/EGR-1 was used.

The detection of these analytes in gastric and colon cancers was made achievable by
the linear concentration range and the sensitivity of the stochastic sensors. When utilized
for screening tests on urine, saliva, blood and tumoral tissue, the sensors are excellent
tools and are cost effective, with the analysis at a price of less than two EUR for all five
biomarkers. The primary benefit of these sensors is the simultaneous detection of five
separate biomarkers, which enables the assay of a panel of biomarkers in biological samples.
Their feature is the utilization of a screening test for the fast and early detection of colon
and gastric cancers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10100380/s1, Table S1: Determination of MLH1,
MSH2, MSH6, PMS2 and KRAS in tissue samples (N = 10); Table S2: Determination of MLH1, MSH2,
MSH6, PMS2 and KRAS in saliva samples (N = 10); Table S3: Determination of MLH1, MSH2, MSH6,
PMS2 and KRAS in urine samples (N = 10); Table S4: Determination of MLH1, MSH2, MSH6, PMS2
and KRAS in whole blood samples (N = 10).

Author Contributions: Conceptualization, R.-I.S.-v.S. and S.P.; methodology, R.-I.S.-v.S. and D.-C.G.;
validation, D.-C.G. and R.-I.S.-v.S.; formal analysis, R.-I.S.-v.S.; investigation, D.-C.G.; writing—
original draft preparation, D.-C.G., R.-I.S.-v.S., F.P. and S.P.; writing—review and editing, R.-I.S.-v.S.
and D.-C.G.; supervision, R.-I.S.-v.S.; funding acquisition, R.-I.S.-v.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by a grant of the Ministry of Research, Innovation and Digitization,
CNCS/CCCDI–UEFISCDI, project number PN-III-P4-ID-PCCF-2016–0006 within PNCDI III.

Institutional Review Board Statement: The samples were collected from the Hospital of Targu-Mures
accordingly with the Ethics committee approval number: 75/2015 obtained from the same hospital.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to Alexandra Ciorîţă and Alexandru Turza for the SEM
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