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Abstract: Tungsten sulfide decorated with indium oxide nanoparticles (In2O3/WS2) was studied
for a chemiresistive-type NH3 sensor at room temperature. It was found that the responses of the
developed In2O3/WS2 heterostructure nanocomposite-based sensors are significantly improved to
3.81 from 1.45 for WS2. The response and recovery time of the heterostructure-based sensor was found
to significantly decrease to 88 s/116 s (10 ppm) from 112 s/192 s for the WS2-based one. The sensor
also exhibits excellent selectivity and signal reproducibility. In comparison to WS2 decorated with
both ZnO and SnO2 in similar ways, the In2O3-decorated WS2 has overall better sensing performance
in terms of sensitivity, selectivity and response/recovery speeds for NH3 from 1 ppm to 10 ppm at
room temperature. The improved sensing properties of WS2 incorporating In2O3 could be attributed
to the joint enhancement mechanisms of the “electronic and catalytic” sensitizations.
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1. Introduction

Ammonia is a natural, colorless and corrosive gas that is potentially toxic to human
health and the environment [1]. It comes from the decomposition of feces and dead animals
and plants and exists in the atmosphere at low concentrations [2]. Ammonia is mainly used
as a fertilizer to increase crop yields. It is also widely used in refrigeration, fuel, textile
production and other industrial fields [3]. As a carbon-free hydrogen carrier, ammonia
contains 17.6 wt.% hydrogen. It can be used as a green fuel for internal combustion engines
and gas turbines which play an indispensable role in addressing the chemical fuel depletion
crisis [4,5]. However, a high level of ammonia exposure can cause damage to human health;
therefore, the upper exposure concentration of ammonia within 8 h is limited to 25 ppm [6].
Excessive ammonia emissions can subsequently lead to environmental acidification which
needs to be monitored in real time [7,8].

To fulfill the demand for monitoring ammonia, sensors working at room temperature
with low cost, low power consumption, high sensitivity, fast response, and good selec-
tivity need to be developed [9]. Metal oxides such as SnO2, ZnO, TiO2, WO3 and In2O3
are widely explored as the sensing materials for detecting ammonia. However, they are
usually operated at high temperatures between 100 ◦C and 550 ◦C, which requires high
power consumption [10–16]. To fabricate low-temperature chemiresistive-type gas sensors,
graphene with a two-dimensional (2D) network of carbon has become a promising can-
didate material due to its advantages of high specific surface area and excellent electrical
conductivity [17]. However, its application is limited by the zero band gap feature, and
graphene is not very responsive to ammonia at room temperature. Therefore, graphene
was usually functionalized with metal nanoparticles, metal oxides, organic molecules and
conductive polymers to enhance its functionality [18].

As analogs to graphene, metal dichalcogenides such as MoS2, SnS2 and WSe2 have also
become potential candidate materials for fabricating nanoelectronic devices [19]. Singh et al.
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synthesized a p-MnS2/n-WO3 heterostructure for a chemical ammonia sensor and found it
displayed an improved response to ammonia at 200 ◦C compared to the pure p-MnS2-based
one [20]. Xia et al. reported a WS2/SnO2-based sensor with 2D/0D heterostructure and
noticed the response to NO2 could be further improved under UV at room temperature [21].
Wang et al. found that the (2D/2D) rGO/WS2 heterostructure-based ammonia sensor
showed improved response/recovery at room temperature. The reasons are attributed to
the extra active sites introduced by the secondary 2D phase [22]. Kim et al. fabricated a
Au-decorated WS2-SnO2 core–shell nanosheet-based gas sensor and demonstrated that it
has enhanced sensing properties for CO at 3.4 V [23].

In previous studies, WS2 has been reported to show promise in detecting harmful
gases at room temperature [24]. Metal oxides such as SnO2 and ZnO and noble metals such
as Pt and Au have been strategically used to improve the sensing properties in terms of
sensitivity, selectivity and response/recovery speeds. In2O3 is also a good semiconducting
material for gas sensing because it has a lower resistance and a good response to HCHO [25],
NO2 [26] and CO [27]. Therefore, in this work, the 2D WS2 heterostructured by indium
oxide nanoparticles was examined. Indium oxide was selected as the secondary phase
to improve the sensing properties of a WS2-based chemiresistive-type sensor at room
temperature for the following two reasons: We found that the synthesized sensors all
displayed higher responses and faster recovery to ammonia than the pure WS2 microflake-
based one at room temperature. Comparing the response rates of the developed sensors
to the pure sensor, In2O3/WS2 heterostructure nanocomposite-based sensors exhibited a
much faster response, The improved performance of the In2O3/WS2-based sensors could
be mainly attributed to the electronic sensitization between In2O3 and WS2. Sensors based
on WS2 heterostructured with ZnO/SnO2 were also characterized and compared.

2. Experimental Method
2.1. Synthesis of In2O3/WS2 Nanocomposites

The WS2 powders used in this study were purchased from Aladdin Co., Shanghai,
China. In2O3 powders were purchased from Macklin Biochemical Co., Ltd., Shanghai,
China. ZnO and SnO2 powders were obtained from Aladdin Co., Shanghai, China. All
chemicals were of analytical grade and used as received. First, 50.0 mg WS2 powders and
55.5 mg In2O3 powders were added to 15 mL and 20 mL deionized (DI) water, respectively,
followed by the sonication in an ultrasound water bath for 15 min. Different amounts
of In2O3 solutions (0.1 mL, 0.2 mL, 0.6 mL and 1 mL) were added drop-wise to the WS2
dispersion solution with vigorous stirring for half an hour to obtain the WS2 suspensions
with different concentrations of In2O3 (0.5%, 1%, 3% and 5%). WS2 suspensions with
different ZnO contents and SnO2 contents (0.5%, 1%, 3% and 5%) for comparisons were
obtained by the same method. Then the obtained mixtures were washed with absolute
alcohol and DI water three times in sequence and dried at 60 ◦C overnight in a drying oven.

2.2. Characterization

X-ray diffraction (XRD, D8 Advance, Bruker Corporation, Billerica, MA, USA) was
used to investigate the chemical information and crystal structure of indium oxide deco-
rated tungsten sulfide (IO/WS2) heterostructure nanocomposite-based samples. A field
emission scanning electron microscope (FESEM, Gemini 300, ZEISS Corporation, Jena,
Germany) and a transmission electron microscope (TEM, Tecnai G2 F20, FEI Corporation,
Hillsboro, OR, USA) were used to study the surface morphologies of the prepared IO/WS2
samples. X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher Scientific
Corporation, Waltham, MA, USA) was performed to explore the elemental compositions
and chemical oxidation states of the IO/WS2 samples.

2.3. Fabrication and Measurement of the Gas Sensors

A printable paste was formed by grinding a small amount of the obtained IO/WS2
materials and DW in an agate mortar. Then the paste was spread on the gold interdigital
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electrodes pre-printed on the ceramic substrate, which were dried at 60 ◦C for 12 h in a
drying oven to develop the IO/WS2-based chemiresistive-type sensor. To measure the
sensing properties of the fabricated sensor, the sensor was placed in a testing chamber
with a volume of 50 L, and the resistance of the sensor was recorded using a digital
multimeter (Keysight 34465A). A corresponding amount of liquid solutions including
ammonia, formaldehyde, toluene, methanol, ethanol and acetone, which were purchased
from Kermel Co., Tianjin, China, was vaporized to achieve different gas vapors by heating
after being injected into the small crucible at the corner of the testing chamber. The gas
vapor concentrations were calculated by the following formula [28]:

C = (22.4 × ρ × d × V1/(M × V2) (1)

where C (ppm) represents the targeted gas concentration, ρ (g/mL) represents the liquid
density, d represents the liquid purity, M (g/mol) represents the liquid molecular weight,
V1 (L) represents the liquid volume and V2 (L) represents the volume of the testing chamber
(50 L). The sensor response (S) was defined by the resistance ratio of Rg/Ra, where Rg
is the resistance of the sensor in target ammonia and Ra is the resistance of the sensor in
air. The response time and recovery time were measured by the time course of 90% of the
maximum response amplitude.

3. Results and Discussion
3.1. Microstructure Characterizations

Figure 1 shows the XRD patterns of the pure WS2 and IO/WS2 with 1% In2O3
(IO/WS2-1) heterostructure nanocomposite-based samples. The main peaks in the XRD
pattern of WS2 (red) correspond to 2H-WS2 (PDF # 87-2417). The peaks in the XRD pattern
of the IO/WS2-1 heterostructure nanocomposite-based sample contain the diffraction peaks
of both WS2 and In2O3 (PDF # 71-2194) without other impurities. The size of In2O3 particles
can be calculated by the Scherrer equation as follows [29]:

D = Kλ/(βcosθ) (2)

where D is the size of the particle, λ is the X-ray wavelength (1.54178 Å), β is full width
at half maximum (FWHM) of the diffraction peak, θ is the angle of diffraction and K is
Scherrer’s constant (K = 0.943). The size of the In2O3 particles estimated from XRD by the
Scherrer equation is 61 nm. However, the size of WS2 microflakes cannot be calculated by
the Scherrer equation because it does not meet the required condition (D < 100 nm).

As shown in Figure 2a,b, the morphology of WS2 microflakes did not exhibit much
change after being incorporated with In2O3. The WS2 microflakes are 0.4–4.3 µm in
diameter. The In2O3 nanoparticles show a cube shape with particle size around 30 nm
distributed on WS2 microflakes as shown in Figure 2c. Compared to the size calculated by
the Scherrer equation, the size of In2O3 particles observed in the TEM was smaller. This
may be caused by the strained lattice in the crystals of In2O3. The In2O3 particles and
WS2 microflakes were physically mixed without further heating; as a result, the size and
morphology of In2O3 particles remained unchanged. Figure 2d shows the high-resolution
TEM (HRTEM) image of the IO/WS2-1 heterostructure nanocomposite-based sensor. The
lattice spacing of 0.273 nm corresponds to the (100) plane of WS2, and the lattice spacing
of 0.292 nm corresponds to the (222) plane of In2O3 nanoparticles, which confirmed the
heterostructure formed between In2O3 and WS2. The SEM elemental mapping images of
IO/WS2-1 heterostructure nanocomposites are shown in Figure S1 in the Supplementary
Materials. The synthesized sample contains four elements: W, S, In and O. The relative
concentrations of each element are summarized in Table S1.
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of IO/WS2-1.

Figure 3a shows the survey of the XPS spectra of WS2 microflakes, In2O3 nanopar-
ticles and IO/WS2-1 heterostructure nanocomposites. As shown in Figure 3b, the peaks
centered at 531.3 eV and 532.4 eV correspond to the adsorbed oxygen and SO4

2− of WS2,
respectively [30]. The peaks at 531.3 eV, 532.4 eV, 530.1 eV and 533.32 eV shown in Figure 3c
correspond to the adsorbed oxygen, SO4

2−, lattice oxygen and hydroxyl in the IO/WS2-1
heterostructure nanocomposites, respectively [28,31]. The concentrations of the adsorbed
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oxygen contents estimated from the integrated areas under each peak for the adsorbed
O2

- on both WS2 and IO/WS2-1 samples were found to increase from 25.57 at.% in the
WS2 sample to 54.65 at.% in the IO/WS2-1 sample. However, the amount of SO4

2− in
the IO/WS2-1 sample was reduced, which may be due to the reduction reaction with the
hydroxyl groups. The refined core spectra of W 4f and S 2p of both WS2 and IO/WS2-1
samples are shown in Figure S2. The binding energies of both W and S shift to the lower
binding energy direction by 0.05 eV after the incorporation of In2O3 nanoparticles. This
could be attributed to the electronic equilibrium effect between WS2 and In2O3, in which
WS2 obtained the electrons transferred from In2O3. In a comparison of Figure S3 (shown in
the Supplementary Materials) and Figure 3d, the refined core spectra of In 3d of In2O3 and
IO/WS2-1 samples demonstrate that the binding energy of In 3d shifts to a higher energy
by 1.1 eV after the incorporation with WS2 microflakes, indicating the loss of electrons.
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Figure 3. (a) XPS spectra of WS2, In2O3 nanoparticles and IO/WS2-1 heterostructure nanocomposites;
(b) O 1s refined core spectra of WS2 microflakes; (c) O 1s refined core spectra of IO/WS2-1 heterostruc-
ture nanocomposites; (d) In 3d refined core spectra of IO/WS2-1 heterostructure nanocomposites.

3.2. Electrical and Sensing Performance

Figure 4 shows the I–V curves with applied voltages between−5 V and +5 V of the WS2
microflake-based sensor and the IO/WS2 heterostructure nanocomposite-based sensors. It
is found that the resistances of the fabricated IO/WS2 heterostructure nanocomposite-based
sensors increased with the increase in the In2O3 nanoparticle content. The resistance values
of WS2, IO/WS2-0.5, IO/WS2-1, IO/WS2-3 and IO/WS2-5 sensors estimated from Figure 4
are 2.7 M, 3.6 M, 6.6 M, 10.4 M and 31.3 M, respectively. The I–V curves are linear in an
ohmic connection between the sensing materials and gold electrodes.

The responses of sensors based on WS2 and IO/WS2 heterostructure nanocomposites
with different In2O3 concentrations to 10 ppm ammonia at room temperature are shown
in Figure 5a. The IO/WS2 heterostructure nanocomposite-based sensor exhibited higher
responses than the pure WS2 microflake-based one. With an increase in the In2O3 content,
the response of IO/WS2 heterostructure nanocomposite-based sensors firstly increases as
the In2O3 percentage increases from 0.5% to 1% and then decreases above 3% In2O3. It
achieves the maximum response of 3.81 with 1% In2O3 content. However, as shown in
Figure 5b, the response and recovery time of IO/WS2 heterostructure nanocomposite-based
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sensors continue to decrease as the concentration of In2O3 increases from 0.5% to 5% with
In2O3 introduction.
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Figure 4. I–V curves of samples based on WS2 microflakes and IO/WS2 heterostructure nanocomposites.
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Figure 5. (a) Responses of WS2 and IO/WS2 heterostructure nanocomposite-based sensors to 10 ppm
ammonia at room temperature; (b) corresponding response time and recovery time.

The gas-sensing mechanism of the IO/WS2 heterostructure nanocomposite-based
sensor is illustrated in Figure 6. As shown in Figure 6a, as the WS2 is in contact with In2O3,
the electrons will move from the conducting band of In2O3 to the conducting band of WS2
while the holes will move from the valence band of WS2 to the valence band of In2O3 due
to the work function of In2O3 (4.28 ev) being lower than that of WS2 (4.9 ev). The transfer
of the electrons and holes creates a hole depletion layer (HDL) on the WS2 side and a hole
accumulation layer (HAL) on the In2O3 side, which leads to an increase in the resistance
on the WS2 and a decrease in the resistance on the In2O3 side. As a p-type semiconductor,
the total resistance of the fabricated IO/WS2 heterostructure nanocomposite-based sensor
increased for the WS2 determination. When the Fermi levels reach equilibrium, the IO/WS2
heterostructure is formed, as shown in Figure 6b. Figure 6c explains the reason for the
improved gas-sensing performance of the IO/WS2 heterostructure nanocomposite-based
sensor. As the IO/WS2 heterostructure formed, WS2 obtained the electrons transferring
from In2O3, leading to more oxygen molecules adsorbed on WS2 (reaction 4) with more
oxygen ions produced. The result is consistent with the XPS result. Reaction 5 is thus
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promoted. When exposed to ammonia, the generated oxygen ions would react with the
ammonia to produce more nitric oxide, water and electrons [32].

Chemosensors 2022, 10, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 6. (a) Band diagram of the IO/WS2 heterostructure before contact; (b) band diagram of the 

IO/WS2 heterostructure after contact; (c) illustration of redox reaction occurring at the interface of 

WS2 and In2O3. 

The released electrons would return to WS2, leading to the improved sensing re-

sponse of the IO/WS2 heterostructure nanocomposite-based sensor. However, beyond the 

optimum concentrations of 1%, the concentration of IO/WS2 heterostructures decreased 

because the formed IO/WS2 heterostructures were fully covered by the introduced In2O3 

particles, leading to a lower sensor response [33]. The involved chemical reaction equa-

tions are as follows [30]: 

O2 (air) → O2 (ads), (3) 

O2 (ads) + e- → O2- (ads) (below 100 °C) (4) 

4NH3 + 5O2- → 4NO + 6H2O + 5e- (5) 

The sensing properties of the WS2 microflake-based sensor and the IO/WS2 hetero-

structure nanocomposite-based sensors in response to different concentrations of ammo-

nia from 1 ppm to 10 ppm at room temperature are displayed in Figure 7a. It can be seen 

that all the IO/WS2 heterostructure nanocomposite-based sensors have much higher re-

sponses than the pure WS2 microflake-based sensor. The IO/WS2-1 sample with 1% In2O3 

content exhibited the maximum response to different concentrations of ammonia. The cal-

ibration plots of the sensors are shown in Figure 7b. The response of the sensors to NH3 

from 1 ppm to 10 ppm indicates a typical tendency as reported in most studies. Figure 7c 

demonstrates that the fabricated IO/WS2-1 sensor exhibits good repeatability at room tem-

perature. The good long-term stability of the IO/WS2-1 sample is evidenced in Figure 7d. 

This sample has small baseline fluctuation under the same conditions. 
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WS2 and In2O3.

The released electrons would return to WS2, leading to the improved sensing response
of the IO/WS2 heterostructure nanocomposite-based sensor. However, beyond the op-
timum concentrations of 1%, the concentration of IO/WS2 heterostructures decreased
because the formed IO/WS2 heterostructures were fully covered by the introduced In2O3
particles, leading to a lower sensor response [33]. The involved chemical reaction equations
are as follows [30]:

O2 (air)→ O2 (ads), (3)

O2 (ads) + e− → O2
− (ads) (below 100 ◦C) (4)

4NH3 + 5O2
− → 4NO + 6H2O + 5e− (5)

The sensing properties of the WS2 microflake-based sensor and the IO/WS2 het-
erostructure nanocomposite-based sensors in response to different concentrations of am-
monia from 1 ppm to 10 ppm at room temperature are displayed in Figure 7a. It can be
seen that all the IO/WS2 heterostructure nanocomposite-based sensors have much higher
responses than the pure WS2 microflake-based sensor. The IO/WS2-1 sample with 1%
In2O3 content exhibited the maximum response to different concentrations of ammonia.
The calibration plots of the sensors are shown in Figure 7b. The response of the sensors
to NH3 from 1 ppm to 10 ppm indicates a typical tendency as reported in most studies.
Figure 7c demonstrates that the fabricated IO/WS2-1 sensor exhibits good repeatability at
room temperature. The good long-term stability of the IO/WS2-1 sample is evidenced in
Figure 7d. This sample has small baseline fluctuation under the same conditions.
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Figure 7. (a,b) Response curves and values of WS2 microflake-based sensor and IO/WS2 heterostruc-
ture nanocomposite-based sensors upon exposure to different concentrations of ammonia at room tem-
perature; (c) repeatability of IO/WS2-1 heterostructure nanocomposite-based sensor at room temper-
ature; (d) long-term stability and baseline of IO/WS2-1 heterostructure nanocomposite-based sensor.

Figure 8a exhibits the selectivity of the WS2 microflake-based sensor and the IO/WS2-1
heterostructure nanocomposite-based sensor for ammonia, formaldehyde, toluene, methanol,
ethanol and acetone at room temperature. It indicates that the synthesized IO/WS2-1 het-
erostructure nanocomposite-based sensor has an obvious response to ammonia. However,
this sensor has no obvious response to other test gases, showing good selectivity at room
temperature. Based on a previous report for WS2, the WS2 matrix phase has good response
to ammonia [24]. However, it does not have responses to other gases such as formaldehyde,
toluene, methanol, ethanol and acetone at room temperature. With the introduction of
In2O3, the formed IO/WS2 heterostructure improved the performance of WS2 in response
to ammonia while not changing the non-responsive function of WS2 for other gases.

Figure 8b shows the influence of the relative humidity on the response/baseline of the
IO/WS2-1 sensor for 10 ppm NH3 at room temperature. The IO/WS2-1 sensor attained its
maximum response when the humidity was about 50%. When the humidity was lower
or higher than 50%, the response of the sensor decreased. The corresponding baseline
resistance also had the minimum value at 50% RH, which became larger when the humidity
was above or below 50% RH.

In comparison, the ZnO/WS2 and SnO2/WS2 heterostructure nanocomposites were also
examined in this work. The detailed sensing characterizations are provided in Figures S4–S8
in the Supplementary Materials. The preparation and testing methods for the two materials
are basically the same as those for the In2O3/WS2 heterostructure nanocomposites. The
major merits of each type of WS2-based sensor are summarized in Table 1 together with
the comparisons to more results reported in the literature. The In2O3-incorporated WS2
nanocomposites show more advantages in detecting NH3 at room temperature in terms
of the sensitivity and response/recovery speeds. This indicates that the special “chemical
catalytic” properties of the In2O3 in response to ammonia may play a role in this difference
in performance. It is reported that In2O3 nanoparticles could provide more hydroxide
species, resulting in the promotion of ammonia electro-oxidation [34].
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Figure 8. (a) Gas-sensing selectivity of WS2 microflake-based sensor and IO/WS2-1 heterostructure
nanocomposite-based sensor for different gases (10 ppm); (b) response and baseline resistance of
IO/WS2-1 heterostructure nanocomposite-based sensor to 10 ppm ammonia under different humidities.

Table 1. A comparison of the performance of NH3 sensors based on WS2 materials.

Sensitive
Material

NH3
Concentration Temperature (◦C) Response (%) Response/

Recovery (s/s) Ref.

WS2 nanoflakes 5 ppm RT 217 a 120/150 [24]
rGO/WS2 10 ppm RT 71 240/600 [35]

2:1 CuO/WS2
nanohybrids 60 ppm RT (30 ◦C) 59.5 35/213 [36]

WS2/WO3
Au/WS2
IO/WS2

ZnO/WS2
SnO2/WS2

10 ppm
1 ppm
1 ppm
1 ppm
1 ppm

150 ◦C
RT
RT
RT
RT

400
191.54
129.84
133.63

117

~150/~100
968/788
160/44
288/44
224/24

[37]
[30]

This work
This work
This work

a: data obtained by conversion of data in the literature.

4. Conclusions

Compared to the pure WS2 microflake-based sensor, the sensors based on In2O3-
incorporated WS2 heterostructure nanocomposites exhibited a significantly improved
response to ammonia at room temperature. In comparison to the ZnO/WS2 and SnO2/WS2
nanocomposites, In2O3-decorated WS2 has better sensing features overall, including a
better response with a faster response speed. The WS2 with 1 wt.% In2O3 nanocompos-
ites achieve the highest response and the fastest response/recovery speeds. The sensor
exhibited excellent signal repeatability and good long-term stability. It also possesses a
good selectivity for formaldehyde, toluene, methanol, ethanol and acetone and is thus a
promising candidate for detecting low-concentration NH3 at room temperature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10100402/s1, Figure S1. Elemental distribution of
IO/WS2-1 heterostructure nanocomposites based sensor; Figure S2. (a,b) W 4f and S 2p refined core
spectra of WS2, (c,d) W 4f and S 2p refined core spectra of IO/WS2-1 heterostructures nanocomposites
based sensor; Figure S3. In 3d refined core spectra of In2O3; Figure S4. Elemental distribution of
SnO2/WS2-1 heterostructure nanocomposites based sensor; Figure S5. (a,b) Response curves and
response values of WS2 and ZnO/WS2 heterostructure nanocomposites based sensors to different
concentrations of ammonia at room temperature, (c) response/recovery time of WS2 and ZnO/WS2
heterostructure nanocomposites based sensors to 10 ppm ammonia at room temperature, (d) rela-
tionship between ZnO/WS2-1 heterostructure nanocomposites based sensor’s response/baseline
resistance and humidity; Figure S6. (a). The response curve of the prepared ZnO/WS2 heterostruc-
ture nanocomposites based sensors to 0.47 ppm ammonia at room temperature, (b) the selectivity

https://www.mdpi.com/article/10.3390/chemosensors10100402/s1
https://www.mdpi.com/article/10.3390/chemosensors10100402/s1
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of the WS2 and ZnO/WS2 heterostructure nanocomposites based sensors to different gases at room
temperature; Figure S7. (a,b) Response curves and values of WS2 microflakes based sensor and
SnO2/WS2 heterostructure nanocomposites based sensors to different concentrations of ammonia at
room temperature, (c) response/recovery time of the SnO2/WS2 heterostructure nanocomposites
based sensors to 10 ppm ammonia at room temperature, (d) repeatability of SnO2/WS2-1 heterostruc-
ture nanocomposites based sensor; Figure S8. (a) The relationship between the response/baseline
resistance and humidity of SnO2/WS2-1 heterostructure nanocomposites based sensor, (b) selectivity
of the WS2 microflakes based sensor and SnO2/WS2 heterostructure nanocomposites based sensors
to different gases; Table S1. The relative concentrations of each element in IO/WS2-1 heterostructure
nanocomposites based sensor.
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