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Abstract: The negative effects of environmental estrogens on wildlife and human beings are gaining
increasing attention. Research on the highly sensitive detection method for Vitellogenin (Vtg), one of
the biomarkers of environmental estrogens (EEs), is expected to detect weak estrogens in complex
environments. This study aimed to develop a label-free immunosensor with high specificity and
sensitivity for testing Vtg. Carbon quantum dots (CQDs) with high fluorescence and excellent stability
were synthesized, and antilipovitellin monoclonal antibody (Anti-Lv-mAb) was prepared. Based
on the fluorescence resonance energy transfer (FRET) between CQDs-conjugated Anti-Lv-mAb and
reduced graphene oxide (RGO), an ultrasensitive fluorescent “ON-OFF” label-free immunosensor
for detection of Vtg of marine medaka was established. By modification of RGO with poly dimethyl
diallyl ammonium chloride (PDDA), the Zeta potential of RGO was changed and the FRET efficiency
was improved. The immunosensor displayed a wide linear response to Vtg of marine medaka
from 0.1 to 3000 ng/mL, a low limit of detection (LOD) of 0.04 ng/mL, and excellent sensitivity
(28,833.63 CPS/(ng/mL)), selectivity, and reproducibility. The results demonstrated that the fluores-
cent “ON-OFF” immunosensor is an easy-to-use, relatively fast, ultrasensitive, and accurate detection
method for weak estrogenic activity.

Keywords: carbon quantum dots; modification of reduced graphene oxide; fluorescence resonance
energy transfer; vitellogenin; label-free immunosensor

1. Introduction

Environmental estrogens (EEs), including synthetic and natural estrogens, refers to
a class of compounds that can interfere with the synthesis, release, transportation, com-
bination, and metabolic process of the normal body endocrine, activate or inhibit the
function of the endocrine system, and, finally, damage the maintenance of body stability
and regulation [1]. Because EEs possess the characteristics of weak solubility, chemical
stability, difficult degradation, easy enrichment through the food chain, long biologi-
cal half-life, and so on, they can cause serious and lasting harm to the environment [2].
By disrupting the normal functions of endocrine, immune, nervous, and other systems, EEs
indicate a cumulative effect in the body, resulting in a variety of diseases, such as endocrine
disorder, metabolic imbalance, reproductive system damage, and inestimable harm to
animals and humans [3]. The toxicological effects of EEs exposure to aquatic animals have
become a global environmental problem and aroused widespread concern [4]. Therefore, it
is urgent to establish an accurate, efficient, and convenient method for EEs detection.

So far, the detection techniques for EEs mainly rely on chemical analysis instruments,
including high-performance liquid chromatography (HPLC), gas chromatography (HPGC),
and gas chromatography-mass spectrometry (GC-MS) [5–7]. Although these techniques
can accurately quantify the concentrations of estrogen pollutants, they have many problems,
such as time-consuming pretreatment, complicated operation, high cost, and high LOD. In
contrast, biomonitoring tools can remedy the shortcomings of traditional methods. There have
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been cases of using biological monitoring tools to detect multiple substances. Tuteja et al. [8]
developed a label-free immunosensor based on electrochemical impedance spectroscopy for
the detection of cardiac biomarker myoglobin (cMyo). Yang et al. [9] assumed a label-free
electrochemical immunosensor for the quantitative detection of carcino-embryonic antigen
(CEA) using nitrogen-doped graphene quantum dots (N-GQDs) supported by PtPd bimetal-
lic nanoparticles (PtPd/N-GQDs). Wu et al. [10] constructed an ultrasensitive label-free
electrochemiluminescence immunosensor based on GQDs using prostate-specific antigen
(PSA) as a model. Ganganboina et al. [11] established a label-free impedance immunosen-
sor based on N and S-graphene quantum dots@Au-polyaniline (N, S-GQDs@Au-PANI)
nanowires for the quantitative detection of carcinoembryonic antigen (CEA).

Vitellogenin (Vtg) is a female-specific protein that was often used as a biomarker
of EEs [12,13]. Among fish from which Vtg was derived, the Japanese medaka was rec-
ommended as a model organism [14]. Vtg is usually synthesized in the liver of mature
female fish under the control of 17β-estradiol (E2), released by liver cells into the blood-
stream, transported to the ovaries, and eventually deposited in egg cells and cleaved into
lipovitellin (Lv), lecithin (Pv), and other components [15]. Since males and juveniles do not
normally produce Vtg unless they are exposed to exogenous estrogens, induction of Vtg in
males and juveniles can indicate exposure levels of EEs [16]. The reaction between antigen
and antibody is highly specific, and antibodies can recognize antigens in many substances
specifically [17,18]. Therefore, highly specific immunosensors can be well-used to detect
Vtg content in complex environments.

In recent years, some immunoassay techniques, such as enzyme-linked immunosorbent
assay (ELISA) [19–21], electrochemical sensors [22,23], and optical sensors [24–26], were used
to test Vtg. Yi et al. [19] used an ELISA method for the determination of Vtg in Marine medli-
fish with a detection limit of 3.1 ng/mL and a working range of 15.6–500 ng/mL. This method
has high specificity and sensitivity, but the whole process is complicated, and one cannot
obtain results quickly. Darain et al. [22] investigated a disposable current immunosensor
for rapid detection of Vtg in Carassius Auratus. The sensor has a low detection limit
(0.09 ng/ mL) but a narrow detection range (0.25–7.8 ng/mL). Wang et al. [24] developed
an optical immune sensor for detection of Vtg based on Octet System. The sensor has a
wide linear range (78–5000 ng/mL) but is slightly less sensitive.

Recently, fluorescence resonance energy transfer (FRET) technology has emerged as one of
the most sensitive and reliable biomolecular detection technologies available [27]. Immunosen-
sors based on FRET between amine functionalized graphene quantum dots (afGQDs) and
graphene have been developed to detect cardiac marker antigen Troponin I [28]. A similar strat-
egy was used to establish an ultrasensitive fluorescent “ON-OFF” label-free immunosensor
for the detection of Lv, a main cleavage product of Vtg [29]. The immunosensor has a wide
linear test range (0.001–1500 ng/mL) and a lower limit of detection (LOD, 0.9 pg/mL) [29].
The FRET-based sensors require excellent donor–acceptor pairs to improve their efficiencies
and performances. For realizing the conjugation between GQDs and antibodies, GQDs
had to be amine-modified [29], which is time-consuming. Carbon quantum dots (CQDs)
are quasi-zero nanomaterials with a size of less than 10 nm [30], high surface-to-volume
ratio, and special physical, chemical, electronic, and biological properties [31]. CQDs have
important applications in biological imaging, photo-electronics, sensing, photocatalysis,
biomedicine, and other fields [32–34]. Compared with traditional organic dyes, metal
nanoparticles, and semiconductor quantum dots, CQDs have better fluorescence stability,
excellent biocompatibility, and extreme low toxicity. Importantly, CQDs containing amine
groups can be synthesized in one step by simple methods, without the need for time-
consuming amination [35]. As far as we know, CQDs have not been used in Vtg detection.
Based on CQDs with the amino group and reduced graphene (RGO), we developed a
simple, rapid, and sensitive FRET immunosensor for Vtg detection. Our strategy is shown
in Scheme 1. Firstly, by amidation reaction, monoclonal antibody against Lv (Anti-Lv-mAb)
of marine medaka that can specifically recognize Vtg was covalently coupled with CQDs
to form Anti-Lv-mAb/CQDs conjugate nanoprobes. The fluorescence of the conjugate



Chemosensors 2022, 10, 510 3 of 13

nanoprobes was quenched via FRET between the nanoprobes and RGO, and the FRET
efficiency was greatly enhanced by modifying RGO with poly dimethyl diallyl ammonium
chloride (PDDA). Finally, by adding Vtg into Anti-Lv-mAb/CQDs/RGO_PDDA solution,
the stacked RGO_PDDA was forced away from the nanoprobes for the strong immune
interaction between the Anti-Lv-mAb (antibody) and Vtg (antigen), the quenched fluo-
rescence was partially recovered, and the recovered fluorescent intensity had a positive
correlation to the concentrations of the Vtg; thus, Vtg could be quantitatively determined.
In addition to the inherent high specificity, the strategy also has the advantages of a wide
linear detection range (0.1–3000 ng/mL), lower LOD (0.04 ng/mL), excellent sensitivity
(28,833.63 CPS/(ng/mL)), good selectivity and reproducibility, and being nontoxic, safe to
operators and the environment, easy-to-use, and time-saving.
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Scheme 1. Schematic diagram of the immunosensor for detection of Vtg.

2. Materials and Methods
2.1. Materials

GO was purchased from Turing Evolution Technology Co., Ltd. (Shenzhen, China).
Polyvinyl pyrrolidone (PVP), ascorbic acid (AA), and 2-(N-Morpholino) ethanesulfonic
acid (MES) were bought from Aladdin Reagents Co., Ltd. (Shanghai, China). PDDA
was purchased from HEOWNS Biochemical Technology Co., Ltd. (Tianjin, China). 1-(3-
Dimethylaminopropyl)-3-ethylcarbodiimide hydro (EDC) was purchased from Solarbio
Technology Co., Ltd. (Beijing, China). L-glutamic acid and N-hydroxy succinimide (NHS)
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was bought from Alfa Aesar Chemical Co., Ltd. (Shanghai, China). Ultrapure water of
resistivity 18.2 MΩ prepared on a FLOM-FDY system was used throughout all experiments.

2.2. Production of Vtg and Anti-Lv-mAbs

Based on our previous studies [20,36,37], Vtg of marine medaka were isolated and
purified by a two-step chromatographic procedure (Gel filtration chromatography and
Anion exchange chromatography) and stored at −80 ◦C. According to the method of
Li et al. [38], Anti-Lv-mAbs were prepared by the cell fusion technique and then purified
by affinity chromatography.

2.3. Fabrication of RGO

RGO was obtained via reduction of GO, using AA as a reducer and PVP as a surfactant
to prevent aggregation. At room temperature, 0.01 g GO was fully dispersed in 40 mL
deionized water (stirred and subjected to ultrasound for 15 min, respectively). The aqueous
solution of GO is dark brown in color with a pH value of 3.4. A total of 25% ammonia was
added into the GO solution to adjust the pH of 9.5, then 40 mL 5 mg/mL PVP solution was
mixed with the GO solution. After full stirring (about 1 h), 0.02 M AA solution was added
into the mixed solution. Then, the reaction solution was heated up to 70 ◦C and maintained
for a certain amount of time. During the reduction process, the reaction color gradually
darkened to a dark black, and the oxidation peak in UV-Vis absorption spectra (Figure S1)
decreased gradually, indicating that GO was gradually reduced to RGO. The samples were
centrifuged three times at 14,000 rpm, then dried at 45 ◦C for later use.

2.4. The Modification of RGO

An equal volume of 1 mg/mL PDDA was added into the 1 mg/mL RGO aqueous
solution. Then, the mixed solution was subjected to thermostatic ultrasound for 4 h. After
being centrifugated at 14,000 rpm three times, the final RGO_PDDA was dried to a solid at
45 ◦C and stored at room temperature.

2.5. Preparation of CQDs

In our previous work, CQDs with amino groups were synthesized, which resulted in
a quantum yield of 13.2% and was stable at neutral pH [35]. Briefly, 60 mL L-glutamic acid
aqueous (0.45 M) was added into the reaction kettle connected to the ultrasonic transducer.
After the ultrasonic hydrothermal reaction at 250 ◦C for 4 h, the yellow CQDs solution was
obtained. The solution was purified by filtration (220 nm hole size) and dialysis (1 KD).
Finally, solid CQDs were obtained after freeze-drying.

2.6. Characterization

A UV-Vis absorption spectrophotometer (UH5300, HITACHI, Tokyo, Japan) was
employed to measure the absorption spectrum. The PL spectroscopy was performed
by a type of FluoroMax-4 fluorescent spectrometer (Horiba, Kyoto, Japan. The size and
morphology of RGO and CQDs were characterized by a field emission transmission electron
microscope (Tecnai G2 F20, FEI, Hillsboro, OR, USA). Fourier transform infrared (FTIR)
spectra were obtained with a Nicolet NI10 FTIR spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). A Zetasizer Nano (Malvern, Malvern, UK) was used to analyze the
Zeta potentials.

2.7. Conjugation of CQDs and Anti-Lv-mAbs

A total of 0.4 mg EDC and 1.1 mg NHS were added into 100 µL 0.1 M MES solution
with a vigorous stirring. To active the Anti-Lv-mAbs, 0.99 mL 8 µg/mL of Anti-Lv mAbs
was mixed with 0.01 mL of the above solution and stirred for 15 min at 27 ◦C. For the
conjugation of Anti-Lv-mAbs and CQDs, the activated Anti-Lv-mAbs was mixed with
equal volume of CQDs (8 µg/mL) and incubated at 37 ◦C for 1 h. Then, the unconjugated



Chemosensors 2022, 10, 510 5 of 13

molecules were removed by five ultracentrifugation washes with PBS buffer solution.
Finally, the conjugate of Anti-Lv-mAbs/CQDs was obtained as fluorescent nanoprobes.

2.8. The Optimized Amount of RGO_PDDA

For the electrostatic interaction, Van der Waals force, and π–π stacking interaction
between RGO_PDDA and CQDs, the Anti-Lv-mAbs/CQDs will be attracted to the surfaces
of RGO_PDDA. When the distance between the donor (Anti-Lv-mAbs/CQDs) and the
acceptor (RGO_PDDA) is less than the Förster radius (<10 nm), effective FRET will occur,
for RGO_PDDA is a broad-spectrum absorbing material. Because RGO_PDDA is also a
nonfluorescent matter, the fluorescence of CQDs will be quenched via FRET. For a certain
concentration of Anti-Lv-mAbs/CQDs, there is a best amount of RGO_PDDA for highest
PL quenching. A total of 0.5 mL of Anti-Lv-mAbs/CQDs suspension was, respectively,
mixed with 0.1 mL of RGO-PDDA PBS solutions with concentrations of 1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, and 8.0 µg/mL, and the final volume was kept at 1 mL by addition of PBS;
after slight shaking and incubation for 30 min at room temperature, the PL spectra were
measured. The optimized amount of RGO-PDDA was determined by the highest PL
quenching ratio.

The quenching efficiency was calculated using the following formula:

QR =
I0 − IR

I0
, (1)

where QR is the PL quenching ratio, I0 the fluorescence intensity of Anti-Lv-mAbs/CQDs,
and IR the fluorescence intensity after adding RGO_PDDA.

2.9. The Immunosensing for Vtg and Interferences

The optimized amount of RGO was added into the Anti-Lv-mAb/CQDs solution and
fully dispersed. A total of 0.1 mL specific (Vtg) or nonspecific antigens (interferences) were
added into the Anti-Lv-mAb/CQDs/RGO solution (0.6 mL), and the final volume was
kept at 1 mL with PBS. After incubation for 15 min at room temperature, the PL spectra of
the mixture was measured. To establish the standard testing curve, different concentrations
of standard Vtg solutions (0–15,000 ng/mL) were tested separately, and each experiment
was repeated three times.

The PL regaining ratio was calculated using the following formula:

RR =
IV − IR0

I0 − IR0
, (2)

where RR is the PL regaining ratio, IR0 is the fluorescence intensity of Anti-Lv-mAb/CQDs/
RGO (Anti-Lv-mAb/CQDs with the optimized amount of RGO_PDDA), and IV is the
fluorescence intensity of Anti-Lv-mAb/CQDs/RGO after addition of Vtg.

3. Results and Discussion
3.1. Morphology and Structure of the GO, RGO, RGO_PDDA, and CQDs

From Figure 1A, it can be clearly seen that GO nanosheets were dispersed in an
aqueous solution in a lamellar structure after the reduction reaction of GO. RGO shows a
transparent thin sheet in Figure 1B, indicating that its thickness is very small and electron
beam could easily penetrate the RGO sheets. The size of RGO is within 0.5–8 µm and the
RGO nanosheets disperse well in aqueous solution. The PDDA-modified RGO was also
a thin sheet with the same size, indicating that modification of PDDA did not change its
structure. The high-resolution transmission electron microscopy (HRTEM) result indicated
that the CQDs (Figure 1D) are nanosheets, exhibiting clear lattice fringe with 0.21 nm lattice
spacing, similar to the report prepared by different methods. This may reflect the (100) facet
of graphite [35]. The size distribution of the CQDs is in the range of 1–7 nm; the average
size is 3.5 nm [35].
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Figure 1. The morphologies and structures of GO, RGO, RGO_PDDA, and CQDs. TEM images of
(A) GO, (B) RGO, (C) RGO_PDDA, and (D) HRTEM image of CQDs.

3.2. FTIR Spectra of the RGO and RGO_PDDA

FTIR spectroscopy was used to identify the functional groups before and after modifi-
cation of RGO. Figure 2 presented the FTIR spectra for RGO, PDDA, and RGO_PDDA. The
FTIR spectrum of PDDA exhibited typical bands at 3447, 2932, 2867, 1640, 1471, 1100, 965,
and 610 cm−1. The band at 3447 cm−1 is due to –NR3+ stretching vibration or the hydroxyl
group [39,40]. The bands at 2932, 2867, 1471, 965, and 610 cm−1 are attributed to the C–H
group [40,41]. The bands at 1640 cm−1 and 1100 cm−1 correspond to the deformation
vibration of –NR3+ and C–N stretching vibration, respectively [40,42,43]. The FTIR spectra
of RGO and RGO_PDDA showed peaks at 3400, 1650, 1471, 1430, 1280, and 1120 cm−1,
corresponding to the OH group, the stretching of C=C, C–H, C–OH, C–O–C, and C–O
groups, respectively [44–48]. Compared to the FTIR spectrum of pristine RGO, the FTIR
spectrum of RGO_PDDA displayed the intensification of bands at 1650, 1120, and 610 cm−1.
These bands are related to the –NR3+, C–N, and C–H groups of the PDDA. Therefore, the
PDDA has been successfully incorporated with RGO.
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Figure 2. FTIR spectra of the RGO_PDDA, RGO, and PDDA.

3.3. Zeta Potentials of RGO, RGO_PDDA, and CQDs

After being modified with PDDA, the surface charge of RGO changed from negative
(−23 mV, Figure 3, red line) to positive (+13 mV, Figure 3, black line), indicating that the
RGO and RGO_PDDA have negative and positive surface charges, respectively. The zeta
potential of CQDs is−3.5 mV (Figure 3, blue line), implying the presence of negative charge
in the surface CQDs. Therefore, the electrostatic interaction between RGO and CQDs is
repulsion; however, that between RGO_PDDA and CQDs is attraction. The above results
show that modification of RGO with PDDA is a benefit of the attachment of RGO_PDDA
to CQDs, thus enhancing the efficiency of the fluorescence quenching.
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3.4. FRET between RGO, RGO_PDDA, and CQDs

Figure S2 shows the fluorescence quenching of CQDs aqueous solution caused by
RGO and RGO_PDDA. The fluorescence of CQDs solution decreased with the increase in
RGO and RGO_PDDA; at the same concentration, RGO_PDDA could reduce the fluores-
cence intensity of CQDs aqueous solution more than that of RGO; at the concentration of
40 µg/mL RGO, the fluorescence intensity of CQDs aqueous solution decreased only by
30%, while the same concentration of RGO_PDDA caused the fluorescent intensity of CQDs
to decrease by 80%. The main reason is both that RGO and CQDs possess negative Zeta
potentials (−23 mV and −3.5 mV, respectively), indicating negative surface charge; how-
ever, RGO_PDDA shows positive Zeta potential (+13 mV), having positive surface charge;
thus, there is strong electrostatic attraction force between RGO_PDDA and CQDs, which
is a benefit of decreasing the distance between CQDs and RGO_PDDA, thus effectively
improved the FRET efficiency between RGO_PDDA and CQDs.

3.5. Optical Properties of CQDs and Anti-Lv-mAb/CQDs

The UV-Vis absorption spectra of Anti-Lv-mAb, CQDs, and conjugate (Anti-Lv-
mAb/CQDs) were illustrated in Figure 4. CQDs indicates a strong absorption at 230 nm,
corresponding to the π→π* transition of the aromatic group; the Anti-Lv-mAb presents
an absorption peak at 200 nm; the absorption peak of the conjugate is at 210 nm, positioned
between 230 nm and 200 nm, and the intensity of the conjugate is higher than that of Anti-
Lv-mAb and lower than that of the CQDs. We guessed the Anti-Lv-mAb was conjugated
with CQDs successfully. The PL spectra of CQDs, conjugate, RGO, and RGO_PDDA were
shown in Figure 4B. Compared to CQDs, the PL intensity of the conjugate decreased greatly,
and the peak position of the conjugate, which is blue, moved to 436 nm (see Figure 4B) after
CQDs coupled with Anti-Lv-mAb, which attributes to –NH2 in CQDs reacted with –COOH in
Anti-Lv-mAb to form –CONHR; partial defect state emission of CQDs changed into intrinsic
state emission [49]. The above results indicated that Anti-Lv-mAb and CQDs were successfully
conjugated. Under neutral conditions, the PL spectra of the conjugate are excitation-dependent
within 320–420 nm (Figure 4C); the maximum PL was obtained under excitation at 350 nm,
which was determined as the exciting wavelength for the below experiments.
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Figure 4. (A) UV-Vis absorption spectra of CQDs, Anti-Lv-mAb and the conjugate of Anti-Lv-mAb/CQDs,
the absorption spectrum of CQDs was used as reference; (B) PL spectra of CQDs, Anti-Lv-mAb/CQDs,
and RGO and RGO_PDDA under excitation at 350 nm. The PL spectrum of CQDs is used as reference,
and the dashed line is the absorption curve of RGO; (C) PL spectra of Anti-Lv-mAb/CQDs under various
excitation wavelengths.
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3.6. PL Quenching (“OFF”) between RGO, RGO_PDDA, and Anti-Lv-mAb/CQDs

Upon addition of RGO into the conjugate (Anti-Lv-mAb/CQDs), FRET could be ob-
served for energy nonradioactively transferred from the conjugate to RGO. The PL quenching
depends on the concentrations of RGO (Figure 5A). Our experimental results indicate that the
FRET efficiency between conjugate and RGO is not good. Within 5–40 µg/mL concentrations
of RGO, the fluorescent quenching ratios increase with the concentrations of the RGO;
however, the highest quenching efficiency is only 40%; thus, the FRET efficiency between
RGO and CQDs is very low. The main reason is that the electrostatic interaction between
RGO and CQDs is very weak for both with negative surface charges; the static-electronic
repulse force between the two hindered CQDs from attracting RGO. After PDDA modifica-
tion, the Zeta potential of RGO_PDDA became positive, indicating positive surface charge,
which is a benefit of the electrostatic attraction between RGO_PDDA and CQDs; thus,
FRET efficiency can be significantly improved. The experimental result proved this analysis
(Figure 5B). When the concentration of RGO_PDDA is 8.0 µg/mL, the quenching efficiency
is almost 1 (Figure 5C), which means the entire PL from the conjugate was completely
quenched by RGO_PDDA, and the modification of RGO with PDDA is a benefit of the
FRET between CQDs and RGO; thus, 8.0 µg/mL RGO_PDDA was selected as the best
amount for Vtg detection.
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Figure 5. PL quenching of Anti-Lv-mAb/CQDs at different concentrations of (A) RGO and
(B) RGO_PDDA, and (C) quenching efficiencies vary with the concentrations of RGO_PDDA.

3.7. PL Regaining (“ON”) for Detection of Vtg

After Vtg was added into the Anti-Lv-mAb/CQDs/RGO_PDDA (conjugate/RGO_PDDA)
solution, a strong specific binding effect between Vtg (antigen) and Anti-Lv-mAb (antibody)
caused RGO_PDDA to detach from the complex of conjugate/RGO_PDDA, which resulted in
PL recovery of the conjugate (Figure 6A). The PL recovery tends to be 100% with the increase
in Vtg. The relationship between PL intensity (I) and logarithm of Vtg concentration
(log c Vtg) is shown in Figure 6B. The results show that there is a good linear relationship
in the range of 0.1–3000 ng/mL, which can be written as I = 54,324.76 + 28,833.63log(c_Vtg)
with regression coefficient (R2) of 0.9997. The LOD for Vtg was found to be 0.04 ng/mL
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(S/N = 4), and the sensitivity is 28,833.63 CPS/(ng/mL). The linear detection range and
sensitivity of the FRET immunosensor based on CQDs and RGO_PDDA for Vtg test in this
work are all higher than the immunosensor based on the FRET between GQDs and RGO for
Lv sensing [29]. Table 1 shows some recent immunosensing methods for Vtg/Lv detection,
indicating that the PL “ON-OFF” technique in this work has a wide linear detection range,
almost the lowest LOD, and high sensitivity. The PL “ON-OFF” immunosensor of our
work has a very fast detection speed (15 min), which is lower than reported earlier.
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Figure 6. (A) PL “ON” of Anti-Lv-mAb/CQDs/RGO_PDDA after addition of different concentrations
of Vtg (0.1, 1.0, 10, 100, 1000, 3000, 6000, 10,000, and 15,000 ng/mL); (B) the PL regaining intensities
with the logarithm concentrations of Vtg; the linear range is from 0.1 ng/mL to 3000 ng/mL.

Table 1. Comparison the LODs and test ranges for various immunosensing methods for Vtg/Lv detection.

No Sensor Type Antibody Type LOD
(ng/mL)

Linear Range
(ng/mL) Reference

1 Optical biosensor polyAb Data not shown 78–5000 [24]
2 Optical biosensor polyAb 31 70–739 [25]
3 Optical biosensor polyAb 0.005 Data not shown [26]
5 Electrochemical sensor mAb 0.09 0.25–7.8 [22]
6 Electrochemical sensor mAb 0.03 0.1–1000 [23]
7 ELISA polyAb 3.1 15.6–500 [19]
8 ELISA polyAb 4.6 7.8–2000 [21]
9 ELISA mAb 0.75 1.95–250 [20]

10 FRET sensor mAb 0.0009 0.001–1500 [29]
11 FRET sensor mAb 0.04 0.1–3000 This study

3.8. Reproducibility, Selectivity, and Stability of the Immunosensor

Reproducibility, selectivity, and stability of the immunosensor were shown in Figure 7.
After adding the same amount of Vtg (10 ng/mL) into six parallel samples of conju-
gate/RGO and incubating for 15 min at room temperature, the PL spectra of the mixture
were measured, and the results were presented in Figure 7A. Six duplicate groups showed
the relative standard error of 1.63%, indicating the immunosensor has good repeatability.
The selectivity of the immunosensor was tested by using bovine serum albumin (BSA)
and ovalbumin (OVA, derived from egg white) as interferences. As shown in Figure 7B,
for 10 ng/mL Vtg, 1000 ng/mL BSA, and 1000 ng/mL OVA, the PL regaining ratios are
41.75%, 4.23%, and 2.86%, respectively. The PL regaining ratio for Vtg is much higher than
that for BSA and OVA, implying that the “ON-OFF” immunosensor has good selectivity
for Vtg. Compared to the Ref. [29], the CQDs-based immunosensor has better selectivity.
After one week of storage at 4 ◦C, the PL strength of the Anti-Lv-mAb/CQDs conjugate
only lost 5%, indicating stable operation of the Anti-Lv-mAb/CQDs conjugate in a short
period of time. CQDs is very stable even at room temperature for several months [35].
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Anti-Lv-mAb/CQDs/RGO_PDDA/Vtg can be kept constant for 8 h at room temperature
or 3 days at 4 ◦C. The Anti-Lv-mAb and CQDs can also be stored separately and mixed at
the time of the experiment.
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Figure 7. (A) Reproducibility and (B) immunosensing behavior against specific (Vtg) and nonspecific
antigen (BSA and OVA). (A) shows the addition of the same amount of Vtg (10 ng/mL) into six parallel
samples of Anti-Lv-mAb/CQDs/RGO_PDDA; and in (B), the concentration of Vtg is 10 ng/mL, and
the concentrations of OVA and BSA is 100 times that of Vtg.

4. Conclusions

The fluorescent “ON-OFF” label-free immunosensing based on the FRET between
CQDs conjugated Anti-Lv-mAb and modified RGO with PDDA has a wide linear test range
(0.1–3000 ng/mL); lower LOD (0.04 ng/mL); excellent sensitivity (28,833.63 CPS/(ng/mL)),
selectivity, and reproducibility; and quick speed for Vtg quantification. CQDs with amino
group was prepared by one-step method, which saved time without amination. Compared
with our previous work [29], this work has a wider linear detection range, implying the
sensor is expected to be used for rapid and accurate detection of environmental weak
estrogen. There is considerable scope for application of FRET immunosensors.
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//www.mdpi.com/article/10.3390/chemosensors10120510/s1, Figure S1: UV-Vis absorption spectra
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after modifying with PDDA.
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