
Citation: Bannov, A.G.; Lapekin, N.I.;

Kurmashov, P.B.; Ukhina, A.V.;

Manakhov, A. Room-Temperature

NO2 Gas Sensors Based on

Granulated Carbon Nanofiber

Material. Chemosensors 2022, 10, 525.

https://doi.org/10.3390/

chemosensors10120525

Academic Editor: Manuel Aleixandre

Received: 20 October 2022

Accepted: 7 December 2022

Published: 10 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

chemosensors

Article

Room-Temperature NO2 Gas Sensors Based on Granulated
Carbon Nanofiber Material
Alexander G. Bannov 1,* , Nikita I. Lapekin 1 , Pavel B. Kurmashov 1, Arina V. Ukhina 2 and
Anton Manakhov 3,4,*

1 Department of Chemistry and Chemical Engineering, Novosibirsk State Technical University,
630073 Novosibirsk, Russia

2 Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, Russia
3 National University of Science and Technology “MISiS”, Leninsky Prospekt 4, 119049 Moscow, Russia
4 Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova St.,

630060 Novosibirsk, Russia
* Correspondence: bannov.alexander@gmail.com (A.G.B.); manakhov@mail.muni.cz (A.M.)

Abstract: Room-temperature gas sensors based on granulated carbon nanofiber material were inves-
tigated for the detection of NO2. The granulated material consisting of intertwined carbon nanofibers
was synthesized by the decomposition of CH4 over the Ni/Al2O3 catalyst in a vibro-fluidized bed re-
actor. Carbon material was investigated using transmission electron microscopy, Raman spectroscopy,
low-temperature nitrogen adsorption, and X-ray photoelectron spectroscopy. Investigation of the gas
sensors towards NO2 at room temperature (25 ± 2 ◦C) was carried out in a dynamic flow-through
setup in the range from 1 to 500 ppm. A comparison of the sensitivity gas sensor to NH3 and CH4

was also given. The sensor based on non-treated carbon nanofiber material showed the response
∆R/R0 of 5.1 % to 10 ppm of NO2. It was found that the sensor response to NO2 decreased when
increasing the relative humidity. The effect of the relative humidity was more pronounced for low
concentrations of nitrogen dioxide and decreases with a further increase in them.

Keywords: carbon nanofibers; carbon nanomaterials; sensors; gas sensors; nitrogen dioxide; response;
humidity; ammonia

1. Introduction

Detection of hazardous gases is an important problem in the fields of environmental
protection, and the chemical and food industry. One of these gases is nitrogen dioxide
(NO2), which is a widely used compound in the manufacturing of explosives, nitric acid,
etc. Determination of low concentrations of NO2 is of interest in order to carry out the
monitoring of the environment. The impact of this gas on human beings can cause various
injuries (depending on concentration) such as edema, irritation effect to nose and throat,
cough, etc. Now, the problem of the creation of room-temperature gas sensors for detection
of hazardous gases is extremely important [1–4]. The application of various nanomaterials
makes it possible to operate the gas sensors at a considerably lower temperature (even at
room temperature) compared to conventional semiconductor-based sensors (i.e., above
300–350 ◦C) [5–7]. The possibility to create the room-temperature sensors will make it
possible to integrate them in mobile devices, since these devices will possess a lower
consumption of energy. The urgent problems of the NO2 gas sensors are high performance,
low-power consumption and low cost [8] which can be solved by the use of proper high-
quality sensing material.

There are many nanomaterials and composites used for the creation of room-temperature
NO2 gas sensors, such as Fe2O3 [9], MoS2/SnO2 [10], MoS2/reduced graphene oxide [11],
C3N4@TiO2 [12], MoS2/Ti3C2Tx MXene [13], α-MoO3 [14] etc. Photoactivated materials are
also used for the detection of NO2 [15]. Much attention has been paid to the application of
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carbon nanomaterials for nitrogen dioxide sensing, such as multi-walled carbon nanotubes
(MWCNTs) [16], single-walled carbon nanotubes (SWCNTs) [17–19], graphene oxide [20],
reduced graphene oxide [21], graphene [22], carbon nanofibers [23,24], and their hybrids or
composites [25]. However, all these materials are hard to produce, especially composites
and hybrids, which is inconvenient for the scale-up of sensors manufacturing. Sensing
materials can be applied either in the form of films [26] or pellets (compacted powder) [27].

Usually, the carbon nanofibers (CNFs) are synthesized in the form of a powder formed
by the growth of carbon on the catalysts with relatively low content of active components
(e.g., Ni, Ni-Cu) [28,29]. The use of a catalyst with high content of active components makes
it possible to obtain not a powder, but granules [30–32]. This material can be used for the
synthesis of refractory compounds [33–35], as a filler for conductive epoxy composites [36],
such as electrode for supercapacitors [37], and catalyst for the selective oxidation of H2S
to sulfur [32,38] etc. Since the synthesis method of CNFs is an attractive COx-free pro-
cess [29,39,40] that may be applied to produce both hydrogen and carbon nanomaterials,
the important task is to find the application of latter. One of the novel applications of the
granulated CNF material for gas sensors was not yet investigated. The low cost and high
yield of the CNFs’ formation over high-percentage nickel-containing catalysts are high
enough compared to MWCNTs and SWCNTs, and determine no significant need in the
purification of a sample creating the advantage of CVD COx-free catalytic decomposition
of methane and C1-C4 hydrocarbons for further scale-up [41,42]. Therefore, it is important
to study the possibility to create the films for detection of NO2 at room temperature, which
are based on the granulated CNF material. This type of active material will make the sensor
cheaper and will be produced using an important COx-free process as a by-product of
turquoise hydrogen production [43,44]. Therefore, this type of material can be considered
as more convenient for sensing applications, and it has not been previously investigated in
this field.

This work was devoted to the creation of a room temperature NO2 gas sensor based on
CNFs that were grown on the Ni/Al2O3 catalyst with high content of the active component.
The composition of the catalyst made it possible to obtain the granulated materials consist-
ing of intertwined carbon nanofibers. The paper is devoted to the application of initial, i.e.,
non-treated CNF material. The response of the CNF-based sensor was investigated in a
range of nitrogen dioxide concentrations 1–500 ppm. The effect of the relative humidity
(RH) on the sensing behavior of the CNFs was also analyzed.

2. Materials and Methods
2.1. Synthesis and Characterization of CNFs

The granulated CNF material was synthesized by the decomposition of methane in
a flow vibrofluidized bed reactor [45] over 90% Ni/10% Al2O3 catalyst. The catalyst was
obtained by the coprecipitation technique. The decomposition of methane was carried out
at 550 ◦C (flow rate was 550 L/h).

The yield of CNFs during synthesis was 100 g/gcat. The carbon material consisted
of granules 1–5 mm in diameter. The granules were formed as a result of the growth of
material on the catalytic nanoparticles with high content of active components (i.e., nickel).
The methods described below were used for the characterization of the carbon material
synthesized.

Transmission electron microscopy (TEM) was carried out using JEM-2010 microscope
(JEOL, Tokyo, Japan) at the accelerating voltage of 80–200 kV. X-ray diffraction of CNFs
was carried out using DRON-3 diffractometer (Cu Kα radiation, 1.54 Å). Defectiveness of
CNFs was studied using the Raman spectroscopy instrument T64000 Horiba Jobin Yvon
(λ = 514 nm). Low-temperature nitrogen adsorption method was used for the determina-
tion of the specific surface area using the Nova Quantachrome 1200 e installation. The
chemical composition of carbon nanomaterial was determined by X-ray photoelectron
spectroscopy (XPS) using the electron spectrometer SPECS (SPECS Surface Nano Analysis
GmbH, Berlin, Germany) (Al Kα, h* = 1486.74 eV).
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2.2. Creation of Sensor and Investigation

The sensors were created by the drop-casting technique. The CNFs were deposited
on the textolite substrate (10 × 10 mm) with copper electrodes (Figure 1a). The area of
deposition of the active layer was 8 × 8 mm. The dispersion of the CNFs (particles were
ground in a mortar and preliminary sieved through a sieve with 100-µm mesh size) was
created by sonication (22 kHz, ultrasonic bath UZV-3/200 RELTEC, Yekaterinburg, Russia).
The sonication was carried out in a volume of ethanol (5 mL of solvent per 0.03 g of CNFs)
for 20 min (power was 85 W). The droplets were deposited on the substrate heated to 80 ◦C
and formed the active layer, covering the copper electrodes.
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Figure 1. Photo of the active material (namely CNFs) on the copper electrodes on the textolite
substrate (a); scheme of the installation for sensor testing (b).

The gas sensor was investigated using the custom-built setup (Figure 1b).
The measurements were carried out with two gas channels: synthetic air (79 vol% N2,

21 vol% O2) and the analyte (NO2, NH3, CH4 diluted in synthetic air with the concentration
of analyte 5000 ppm). Three different gases were used for the testing of the sensors in order
to check the selectivity of the sensors. Additionally, two gases with different natures of
interaction with carbons were used, e.g., NO2 is an electron acceptor, and NH3 is electron
donating compound.

The scheme of the setup is described in [27] in detail. The sensor was placed on the
ceramic plate (heater). The resistance of the layer of the CNF material was measured using
a two-point technique between the copper electrodes by Keithley 2401 Source Meter (Keith-
ley, Cleveland, OH, USA). Data acquisition was made by KickStart software (Tektronix,
Beaverton, OR, USA). The bias voltage was 0.1 V. The sensor response was calculated using
the following equation:

∆R/R0 = ((R − R0)/R0) × 100%, (1)

where R and R0 were the sensor resistances in the mixture of analyte + synthetic air and pure
synthetic air, respectively (Ω). The concentration of NO2 as the main gas investigated for
testing of the sensor was varied from 1 ppm to 500 ppm. The temperature of measurements
was 25± 2 ◦C. The relative humidity (RH denoted asϕ) of air was controlled by the flow of
air passing through a bubbler and can be ranged from 10 to 70%. Temperature and related
humidity inside the chamber were measured by the corresponding sensors.

There are three main characteristics analyzed in this paper, such as sensor response,
response time, and recovery time. An additional characteristic was the sensitivity deter-
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mined as a slope of dependence of response on the concentration calculated on the basis of
the linear fitting of the experimental data.

3. Results and Discussion
3.1. Investigation of Granulated CNF Material

The sample consisted of carbon nanofibers 40–80 nm in diameter (Figure 2). The CNFs
were strongly curved. There are nanoparticles of the catalyst covered by the carbon shell.
The sample was mainly represented by fish-bone structure carbon nanofibers.
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Figure 2. TEM images of carbon nanofibers used as an active material for gas sensors (a–c) and the
photo of as-received granules of CNF material (d).

XRD pattern is shown in Figure 3. It was shown that the sample is fully represented
by carbon material. The phases of Ni or Al2O3 are absent confirming their low content in
the material. The interlayer spacing d002 was 3.42 Å which is far from pure graphite and
typical for disordered carbon materials. Crystallite width Lc calculated using the Sherrer
equation was 84 Å [46].
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The Raman spectrum of the carbon nanomaterial is shown in Figure 4a. There were
three main peaks presented, D (1344 cm−1), G (1569 cm−1), and the small shoulder of
D′(1600 cm−1) peak. The defectiveness of the CNFs is high enough (I(D)/I(G) = 0.98) and
somehow correlates with other carbon nanomaterials. The crystallite width calculated
using the Tuinstra–Koenig Equation (2) showed La = 4.5 nm [47].

La = C × (I(D)/I(G)), (2)

where C = 4.4 nm.
According to low-temperature nitrogen adsorption, the specific surface area of the

sample was 110 m2/g (fully mesoporous material), which is typical for fish bone structure
materials [48].

According to XPS, there is no nickel detected in the material (Figure 4b). This fact
indicates that the nanoparticles were completely covered by a carbon shell and there is no
direct contact between the gas phase (e.g., air) and nickel nanoparticles. The O/C ratio was
0.033, indicating a relatively low concentration of oxygen-containing groups on the surface
of the CNFs, taking into account that the sample was not subjected to any treatment.
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3.2. Testing of Gas Sensor

The contact with NO2 induced a decrease in sensor resistance (Figure 5). The response
of the sensor ranged from 0.86% (1 ppm NO2) to 16% (50 ppm NO2). The drop in resistance
upon contact with nitrogen dioxide is a result of an increase in the concentration of charge
carriers during the adsorption of the compound. Initially, the resistance of the sensor active
layer was 409 Ω, indicating good conducting properties of the CNFs, compared to other
materials, such as graphene oxide, reduced graphene oxide, etc. [27,50]. Taking into account
the sensing curves, it is worth noting that there is an incomplete recovery of the sensor. This
phenomenon can be related to the incomplete desorption of NO2 from the surface of the
CNFs. Although researchers typically related the dominating mechanism of the nitrogen
dioxide interaction with the surface of the carbons to be physical adsorption [51,52], in fact,
for the CNFs studied the chemisorption also takes place, leading to an incomplete recovery.
However, physical adsorption dominates obviously.
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The results of the effect of the RH on the sensor response are presented in Table 1.
It was shown that the increase of the RH induced a decrease in ∆R/R0 and the drop of
response was stronger at lower concentrations (i.e., 100 ppm). Further increase of the RH
to 60% and 70% showed the response of 9.1% and 8.6%, respectively (at 100 ppm), showing
the weakening role of the RH impact.

Table 1. Effect of relative humidity of air on the response of sensors based on granulated CNF
material at room temperature (25 ± 2 ◦C, air) to NO2 and NH3.

Relative
Humidity

ϕ, %

∆R/R0 at Various NO2
Concentration, %

∆R/R0 at Various NH3
Concentration, %

100 ppm 250 ppm 500 ppm 100 ppm 250 ppm 500 ppm

20 41.4 51.6 53.6 6.3 18 24.9
40 12.4 28.7 31.2 n/a 3 6.6
60 9.1 21.9 26.8 0.3 1.29 3.8
70 8.6 14.4 19.9 n/a * n/a n/a

* The noise interfered to obtain the data.

In general, the dependence of the sensor response of NO2 on the RH can be described
by the power law of the type y = a × xb: ∆R/R0 = 3322.95951 × ϕ−1.46687 (R2 = 0.98498)
at 100 ppm; ∆R/R0 = 728.80867 × ϕ−0.88231 (R2 = 0.98318) at 250 ppm; ∆R/R0 = 467.60219
× ϕ−0.72406 (R2 = 0.98223) at 500 ppm. From this, it follows that the effect of humidity is
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more pronounced for low concentrations of nitrogen dioxide and decreases with a further
increase in them. Usually, the increase in RH induced the rise of response, for example,
this effect was reported for the WS2/graphene aerogel sensor [53] and the graphene FET
sensor [54]. The authors supposed that humidity acts as an acceptor [54]. Usually, in these
articles, the increase in the NO2 sensor when increasing the RH is related to the donation of
protons H+ of H3O+ (from H2O) to the material. But the data obtained for the granulated
CNF material at room temperature showed the opposite relations. Probably, such an effect
can be caused by the occupation of absorption sites with water molecules as a result of the
rise of the RH, which prevents the adsorption of NO2 molecules.

A comparison of sensing behavior was also carried out for NH3 detection at room
temperature. Detection of ammonia was taken in order to compare the behavior of CNFs
under the adsorption of different types of gas, since the latter is an electron-donating
compound. The sensor response to NH3 was more than two times lower compared to NO2
(Table 1). The increase in the RH of the air induced the drop of ∆R/R0 more than 4–5 times
depending on the concentration. However, the increase in the RH from 60% to 70% induced
the increase in response, which is caused by the beginning of the dissolution of ammonia
in the film of water absorbed on the surface of the carbon nanofibers [55].

For ammonia, similar dependences were found, when the response of the sensor
∆R/R0 decreased with an increase in the RH of the air. This is typical for materials that
have not been functionalized or contain a small number of functional groups themselves
(according to the XPS data, the oxygen content was 3.3 at.%; sample CNF-1 investigated
in [49]). The decomposition of the C1s spectrum showed five peaks at 284.65 eV (76.7%),
285.21 (12.9%), 285.83 eV (5.9%), 286.46 eV (2.9%), 287.2 eV (1.6%) related to the C–C
sp2-hybridized carbon atoms, the carbon atoms in the sp3 hybridization, and the carbon
atoms which are chemically bonded to oxygen (COC, COH, and C=O groups), respectively.
At the same time, for the highly oxidized carbon materials, such as graphite oxide, an
increase in the RH of the air, on the contrary, causes an increase in the relative response
of the sensor [55,56]. The response in relatively dry air (e.g., RH 20%) can be considered
high enough and comparable with some pristine carbon nanotube-based sensors [50] or
plasma-functionalized carbon nanomaterials [57].

The use of the third model gas (CH4) did not show any significant response of the
sensor (the relative response was comparable to the level of noise of the resistance measured)
(Figure 6a).
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The sensitivity obtained using the linear fitting of the response dependence on the
concentration showed that the range of nitrogen dioxide concentrations (CNO2 = 1–100 ppm)
can be treated using a linear function (∆R/R0= –0.39654 × CNO2 − 0.12341, R2 = 0.9844);
the sensitivity was –0.39654 %/ppm. The saturation appears when the concentration of
NO2 grows above 100 ppm, showing a decrease in the rate of sensor response growth when
increasing the concentration (Figure 6b).

3.3. Mechanism of NO2 Detection and Analysis of Adsorption

The typical mechanism of the resistance change of CNFs is based on the adsorption of
oxygen on the surface carbon material [58]. The oxygen ionizes to O2

– [59]:

O2(gas) <-> O2(ads) (3)

O2(ads) <-> O2
−(ads) (4)

The extraction of the charge carriers induces the growth of conductivity of the material
during the adsorption of gas [60].

NO2(gas) <-> NO2(ads) (5)

NO2(ads) + e− <-> NO2
−(ads) (6)

Of course, the pristine material contains a nickel catalyst, but it is covered with a
carbon shell (since no Ni was detected according to XPS) and takes part in the transport
of electrons only indirectly. Low concentrations of oxygen-containing functional groups
(ether, alcohol, and ketone groups’ concentrations) were 5.9 at.%, 2.9 at.%, and 1.6 at.% in
C1s photoelectron spectra [49]. However, there are different approaches to describe the
mechanism of NO2 adsorption on the surface of carbons. In [61], it was reported that NO
(this molecule was a result of the following reaction 2NO2 <–> NO + NO3 passing on the
surface of nanotubes) and NO2 are weakly bonded on the surface of the single-walled
carbon nanotubes. The results of the calculations showed the high energy of NO3 molecule
adsorption on their surface. The latter effect explained the long recovery of NO2 during the
sensing experiments.

The results of the sensor response were treated on the basis of various isotherms
(Table 2). During the fitting, it was supposed that the ratio of a number of adsorption
centers occupied as a result of the sorption Q is proportional to the sensor response ∆R/R0.
The best fitting of the response values was achieved for the Modified non-linear Langmuir
equation [62]. The energy of adsorption was calculated based on two equations that are
both used for the calculation of entropy (Equation (7) [63] and Equation (8) [64]).

∆S = R × ln(R × T) (7)

∆S = R × ln(K) (8)

Enthalpy was calculated according to the equation below:

∆H = −RT
(

ln(K) +
∆S
R

)
(9)

The enthalpy of adsorption ∆Hads possesses relatively low values indicating the
physical character of the NO2 adsorption on the surface of the granulated CNF material.
According to the Table 2, the energy of adsorption determined for the modified non-linear
Langmuir equation was 0.111 eV (Equation (7)) and 0.18 eV (Equation (8)).
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Table 2. Granulated CNF-based NO2 gas sensor performance compared to the literature data related
to different sensor materials.

Isotherm Equation Type of
Dependence R2 Qm

KL (for Langmuir) or
Kf (for Freudlich),

Pa−1
n ∆Hads, eV

Non-linear
Langmuir [63,65–68]

Q =

Qm × KL×p
1+KL×p

Q vs. p 0.96 68.99 0.1 n/a

0.142
Equation (7)

0.118
Equation (8)

Modified non-linear
Langmuir [62]

Q =

Qm × KL×pn

1+KL×pn
Q vs. p 0.98 55.85 0.03 1.87

0.111
Equation (7)

0.18
Equation (8)

Linear Langmuir
[65,67,68]

p
Q =

p
Qm

+ 1
KL×Qm

p/Q vs. p 0.96 67.65 0.09 n/a

0.139
Equation (7)

0.124
Equation (8)

1
Q =

1
Qm

+ 1
KL×Qm×p

1/Q vs. 1/p 0.97 17.84 0.05 n/a

0.124
Equation (7)

0.154
Equation (8)

Q =
Qm − Q

KL×p
Q vs. Q/p 0.58 51.82 0.15 n/a

0.152
Equation (7)

0.097
Equation (8)

Q
p = KL ×

Qm − KL ×Q
Q/p vs. Q 0.58 72.87 0.09 n/a

0.139
Equation (7)

0.124
Equation (8)

Freundlich
[65,67–69]

Q = K f × pn Q vs. p 90 - 9.87 0.46

0.259
Equation (7)

0.118
Equation (8)

Q is the number of adsorption centers occupied as a result of sorption, Qm is the maximum number of centers
occupied, p is the partial pressure of the gas (i.e., NO2) in air, Pa; ∆Hads—enthalpy of adsorption, eV.

A comparison of data of the response of the CNF-based NO2 sensor to the literature
data is presented in Table 3. The obtained results showed the efficiency of this material
for the room-temperature gas sensors, taking into account that there is a pristine material
used for the detection of nitrogen dioxide and there were no treatments used to enhance
its sensitivity. Taking into account the response of the sensor and the technology of
the production of CNFs from C1–C4 hydrocarbons coming from associated petroleum
gas [39,41,70], the obtained material will be cheap compared to other carbon nanomaterials,
such as carbon nanotubes, graphene, reduced graphene oxide, etc., which are relatively
expensive.
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Table 3. Granulated CNF-based NO2 gas sensor performance compared to the literature data related
to different sensor materials.

Active Material of
NO2 Sensor

NO2 Concen-
tration

Sensor
Response RH Temperature Ref.

Polypyrrole 100 ppm 36% n/a n/a (room
temperature) [71]

Ozone treated
graphene 200 ppm 17% n/a n/a (room

temperature) [72]

Fluorinated
graphene (CF0.33) 100 ppm 32% (in Ar) n/a 30 ◦C [73]

Reduced
fluorinated

graphite
100 ppm 11% (in Ar) n/a n/a (room

temperature) [74]

rGO/AuNP 50 ppm 3.2% n/a 150 ◦C [75]

N-MWCNT 9 ppm 0.16% n/a 25 ◦C [76]

CNFs 10 ppm 5.1% 20% 25 ± 2 ◦C This work

4. Conclusions

The presented results demonstrate the efficiency of non-treated granulated carbon
nanofiber material as an active material for nitrogen dioxide detection. The sensor based
on the non-treated carbon nanofiber material showed the response 5.1% to 10 ppm of NO2.
The data presented confirm the domination of the physical adsorption mechanism of the
interaction of NO2 and carbon nanofibers. Although the concentration of the functional
groups in the carbon nanofiber material is low enough, its response is high as for the non-
treated material. It was found that the increase in the relative humidity led to a decrease in
the sensor response. The CNFs obtained by catalytic decomposition of methane can make
the sensor cheaper and can be produced using a COx-free process as a by-product of the
production of so-called turquoise hydrogen.
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