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Nadan Kravić 1, Julia Savosina 2, Marina Agafonova-Moroz 2, Vasily Babain 1, Andrey Legin 1,3

and Dmitry Kirsanov 1,3,*

1 Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26,
198504 Saint-Petersburg, Russia; nadankravic@mail.ru (N.K.); v.babain@spbu.ru (V.B.); a.legin@spbu.ru (A.L.)

2 Khlopin Radium Institute, 2 Murinsky Prospect, 28, 194021 Saint-Petersburg, Russia; july-s@khlopin.ru (J.S.);
ma-m@khlopin.ru (M.A.-M.)

3 Laboratory of Artificial Sensory Systems, ITMO University, Kronverksky Prospect, 49,
197101 Saint-Petersburg, Russia

* Correspondence: d.kirsanov@gmail.com

Abstract: Potentiometric multisensor systems were shown to be very promising tools for the quan-
tification of numerous analytes in complex radioactive samples deriving from spent nuclear fuel
reprocessing. Traditional multivariate calibration for these multisensor systems is performed with
partial least squares regression—an intrinsically linear regression method that can provide subop-
timal results when handling potentiometric signals from very complex multi-component samples.
In this work, a thorough investigation was performed on the performance of a multisensor system
in combination with non-linear multivariate regression models for the quantification of analytes in
the PUREX (Plutonium–URanium EXtraction) process. The multisensor system was composed of
17 cross-sensitive potentiometric sensors with plasticized polymeric membranes containing different
lipophilic ligands capable of heavy metals, lanthanides, and actinides binding. Regression algorithms
such as support vector machines (SVM), random forest (RF), and kernel-regularized least squares
(KRLS) were tested and compared to the traditional partial least squares (PLS) method in the simulta-
neous quantification of the following elements in aqueous phase samples of the PUREX process: U,
La, Ce, Sm, Zr, Mo, Zn, Ru, Fe, Ca, Am, and Cm. It was shown that non-linear methods outperformed
PLS for most of the analytes.

Keywords: spent nuclear fuel; multisensor systems; potentiometric sensors; nonlinear regres-
sion; chemometrics

1. Introduction

Chemical monitoring of spent nuclear fuel reprocessing poses a challenging analytical
task for a variety of reasons. To this day, the PUREX (Plutonium–URanium EXtraction)
process remains the most common industrial method of SNF (spent nuclear fuel) repro-
cessing [1,2]. The main goal of this process is to separate uranium and plutonium from
other compounds, i.e., fission products and minor actinides, through several extraction/re-
extraction cycles. The final products of interest are uranyl nitrate, uranium, and plutonium
oxide, and these can be reused as nuclear fuel [3].

Current analytical control of PUREX technological media is based on spectroscopic
methods such as ICP-MS and ICP-AES (inductively coupled plasma mass spectrometry
and atomic emission spectrometry) [4–6]. These methods have the necessary qualities
for performing this type of analysis, where low detection limits, high accuracy, and good
reproducibility are the most important. However, the realization of these methods is
demanding work that requires special working conditions and difficult sampling, which
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affects the safety of the analysis in general [7]. The far bigger disadvantage is the fact
that none of these methods can provide us with immediate, real-time results because
they require sampling, and there is no possible way that they can be set up for on-line
analysis. It can take up to several hours from the moment of taking samples to obtaining
the results. Finding a method that would allow on-line process monitoring would not
only improve the process in terms of automation but would also improve its safety and
reliability. This would be a common-sense tendency and requirement in terms of further
development of SNF reprocessing technologies. North-East Atlantic Environment Strategy
and IAEA (International Atomic Energy Agency) are strongly focused on the development
of automated analytical techniques that are capable of reliable detecting discharges of
radioactive substances [8,9].

It was shown that optical spectroscopic methods, such as UV-Vis spectrometry, IR-
spectrometry, Raman spectrometry, and their various combinations, can accurately quantify
concentrations of analytes in the processing of nuclear materials in on-line and near-real-
time regimes [10,11]. Although such methods have good and reliable results, there are
several drawbacks associated with them. Turbidity and gas formation in the analyzed
media affect light scattering and deteriorate the results, and high detection limits are
another concern for optical methods [12].

Potentiometric multisensor systems show promise in the analytical determination
of compounds in nuclear fuel reprocessing. Earlier works that are based on combining
chemometrics with potentiometric multisensor systems show that lanthanides and some of
the tetra- and hexa-valent actinides (thorium, uranium, plutonium) in multi-component
mixtures can be determined with appropriate accuracy [13–15]. The processing of the
data in these works was performed using traditional partial least squares (PLS) regression
method in order to relate the response of the multisensor arrays to the concentration of
target elements. While being a powerful chemometric tool, PLS is an intrinsically linear
method. At the same time, for complex chemical mixtures, such as the technological media
of the PUREX process, it would be much more suitable to apply a nonlinear regression
model for determining the concentrations of analytes. The nonlinearity of the potentio-
metric sensor response in complex multi-component solutions derives from the logic of
Nikolsky’s equation describing the response function in potentiometry:

E = E0
I +

RT
zIF

ln(aI + ∑n
I,J=1 KIJa

zI/zJ

J )

The sum of the products of selectivity coefficients and contributing ion activities is
under a logarithm in order to linearize the response in E − ln(aI) coordinates. Thus, PLS
modeling works well when the modeled concentration is expressed in logarithmic scale;
however, this is neither convenient for narrow nor for rather broad concentration ranges as
the modeling errors, in this case, are also expressed in logarithmic scale.

The purpose of this study was to explore the potential of nonlinear regression meth-
ods in the construction of predictive models for the quantification of various analytes in
SNF reprocessing media. The traditional PLS regression algorithm was considered as a
benchmark for comparison.

2. Materials and Methods
2.1. Sensor Array

The potentiometric multisensor data were obtained using an array of 17 electrodes
with PVC-plasticized sensor membranes and a standard pH glass electrode ESL 63-07
(ZIP, Gomel, Belorussia). The polymeric sensor membranes were produced using the
ligands with pronounced binding ability towards actinides and lanthanides, described in
our previous studies [13–15]. The concentration of each ligand in the sensor membrane
was 50 mmol/kg. The employed ligands are presented in Table S1 (Supplementary Mate-
rials). The membrane matrix of all the electrodes was made of poly(vinylchloride) (PVC)
(33 wt%) and 2-nitrophenyloctyl ether (NPOE) as a plasticizer (64–65 wt%). Potassium
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tetrakis[3,5-bis(trifluorometyl)phenyl]borate (KTFPB) and the acidic (H+) form of chlo-
rinated cobalt dicarbollide (CCD) in a concentration of 10 mmol/kg were employed as
cation exchangers. PVC, NPOE, and KTFPB were obtained from Sigma-Aldrich (Darmstadt,
Germany). CCD was kindly provided by Catchem (Prague, Czech Republic). Polymeric
sensor membranes were prepared through a standard protocol: the required amounts of
membrane components were dissolved in freshly distilled tetrahydrofuran and then poured
in Teflon beakers with a flat bottom. The resulting membrane mixtures were left for 48 h
for solvent evaporation. After that, sensor membranes 8 mm in diameter were cut from the
parent membranes and glued upon the tops of PVC sensor bodies with PVC–cyclohexanone
mixture. The visual appearance of the potentiometric multisensor system is provided in
Figure S1 (Supplementary Materials).

2.2. Samples

The samples for analysis were acquired from the pilot extraction stand equipped
with SCEK-342 extractors (Khlopin Radium Institute, St. Petersburg, Russia) during the
trial experiments on the combined scheme of SNF reprocessing, which includes the first
extraction cycle with separated re-extraction of U, Np, Pu, and Tc, intermediate evaporation
of highly active raffinate, and its fractioning with single extracting agent based on 45%
tributyl phosphate (TBP) in Isopar-M (isoparaffin C13-C14). Thus, the samples represent
complex mixtures of multiple elements in highly acidic solutions (pH around 2). In total,
23 samples of aqueous phase were acquired from three different extraction blocks. The
volume of each sample was 20 mL. The potentiometric multisensor measurements were
performed directly without any sample pretreatment. The measurement time in each
sample was 3 min; the sensors were washed with several portions of distilled water
between the samples.

2.3. Reference Analysis

The concentrations of the following elements Na, Mg, K, Ca, Cr, Mn, Fe, Ni, Zn, Y, Zr,
Mo, Ru, La, Ce, Pr, Nd, Sm, Eu, and U in the samples of aqueous phases from the extraction
stand were determined with an inductively coupled plasma–atomic emission spectrome-
try (ICP-AES) (Technologies, Inc., Santa Clara, CA, USA) instrument Varian 725 (Agilent
Technologies, Inc., Santa Clara, CA, USA). The concentrations of radioactive isotopes of
americium and curium were determined using alpha- and gamma-spectrometry. The con-
tent of the nitric acid varied over the samples in the pH range 1.5–2. The specific activities
of gamma-emitting isotopes 241Am, 243Am, and 243Cm were quantified with a Canberra
gamma-spectrometer (Canberra, Australia) equipped with a GC1018 detector (Canberra,
Australia), DSA-1000 analyzer (Canberra, Australia), and Genie-2000 ver.3.1 software pack-
age. The specific activities of alpha-emitting isotopes 241Am, 243Am, 242Cm, and 244Cm
were evaluated with alpha-spectrometer Canberra 7401 (Canberra, Australia). The obtained
specific activities were recalculated into the concentrations of elements. The content of the
elements in the analyzed samples is provided in Table S2 (Supplementary Materials).

2.4. Data Processing
2.4.1. Partial Least Squares (PLS)

Partial least squares is a well-known multivariate regression tool and its description
can be found elsewhere [16].

2.4.2. Support Vector Machines (SVM)

Support vector machines are used for solving both classification and regression prob-
lems with linear and non-linear models. The method is based on projecting an original
input space to a high-dimensional feature space. After that, a linear regression function
is constructed in a high-dimensional space for obtaining non-linear models in an original
space by using kernel functions in accordance with Mercer’s theorem. SVM, in comparison
with traditional regression methods such as PLS, does not rely on minimizing the observed
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training error alone. Instead, it minimizes the generalization error bound to achieve a
higher generalization performance. Moreover, because of the model complexity control,
SVM can avoid overfitting [17,18].

For this research, we used nonlinear regression with Gaussian radial basis function kernel:

K
(
xi, xj

)
= e

−‖xj−xi‖
2

2σ2

where ‖xj − xi‖2 is squared Euclidean distance between two vectors from samples xi and
xj, and σ is a free parameter/constant value.

2.4.3. Random Forest (RF)

Random forest represents an ensemble of fully grown decision trees in combination
with a bootstrap sampling technique. In regression problems, every tree depends on the
values of a random vector in a way that the tree predictor has its numerical values. Each
of the built trees offers a specific prediction value, and on the output, we have the mean
prediction value of these individual trees [19].

This method has two major advantages. First, it has very few tuning parameters,
which makes it simpler to manipulate, and it is computationally fast. Second, it handles
non-linear correlations well within the model. Moreover, it allows judging on variable
importance [20].

2.4.4. Kernel Regularized Least Squares (KRLS)

Kernel regularized least squares (KRLS) was first introduced by Hazlett and Hain-
mueller [21]. KRLS is a machine learning method for solving regression and classification
problems without assumptions on linearity or additivity of the features. We did not find
the applications of this method in chemometrics.

KRLS creates hypothesis space by using kernels as radial basis functions to find a
best-fitting surface in created space for a certain model. This is achieved through the
minimization of a complexity-penalized least squares problem.

Function k
(
xi, xj

)
should be thought of as a measure of similarity between xi and xj.

This is the so-called ”similarity-based view“. Considering this, we can write a formulation
for space of functions:

f (x) =
N

∑
i=1

cik(x, xi)

where ci is the weight for each input pattern and k(x, xi), once again, represents the
similarity between point of interest x and xi, one of the input patterns. The weights are
calculated using kernel function (Gaussian in our case) and their values depend on the
distance between the data points.

Finally, we can consider regularization to obtain the following:

argmin = ∑n
i=1( f (xi)− yi)

2 + λ‖ f ‖2
K, f ∈ H,

where H is the reproducing Hilbert space of functions and λ is the always positive scalar
parameter governing the trade-off between model fit and complexity.

KRLS is somewhat similar to k-nearest neighbors regression, but the averaging of
the response of the predicting neighbors is carried out with the weights dependent on
kernel function.

Prior to regression modeling, the data were explored using principal component
analysis (PCA)—a common dimensionality reduction tool that decomposes the initial data
matrix into the product of scores and loadings matrices, where scores matrices describe the
relationship between the samples, their similarity and dissimilarity, and loadings matrices
describe the relationship between the variables and their influence on sample grouping [22].
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All calculations were performed in R programming language and R version 4.0.5.
software with packages mdatools [23], e1071 [24], randomForest [25], KRLS [26], and caret [27].
For the analysis of multivariate data obtained from the multisensor system, four methods
were applied and compared to each other.

The initial dataset from the multi-sensor system was a matrix consisting of 23 rows,
which represent samples from three different extraction blocks, and 17 columns, which
represent sensor data. In the analysis of some elements, the dataset was modified because
of the large variations in concentration ranges between the three extraction blocks. This
adjustment usually involves the exclusion of samples from the first block, which left us
with 17 samples we could operate with.

Root mean square error of cross-validation/prediction was used to evaluate the per-
formance of the models:

RMSECV/RMSEP =

√
∑n

i=1
(yi − ŷi)

n
,

where yi and ŷi are the reference and predicted concentrations of an analyte in the ith
sample, n is a total number of samples in a test set. Two distinct approaches were used in
the evaluation of the models: leave one out cross-validation over the whole set of samples,
and Monte Carlo cross-validation.

1. Leave one out cross-validation (LOOCV) is a well-known method that estimates the
performance of a model by leaving one point out of the full dataset, with the rest being
used to train the model. After training, the left-out data point is used to test the model.
The process is repeated throughout the whole initial dataset on all the samples. The
main disadvantage of this method is that it provides too optimistic/unrealistic results.

2. Monte Carlo cross-validation (MCCV) has a somewhat different algorithm. The data
are randomly split to make training sets and test sets. In our case, we had 25–75%
split in favor of the training set in each iteration. After that, the model is tested by
calculating the average error after 100 iterations. This method offers a better insight
into the performance of the model and provides somewhat more realistic results
than LOOCV.

3. Finally, the performance of the regression tools was tested on the most interesting
analytes through calculating the RMSEP on the test set that was made by randomly
picking the samples from the full dataset. The training set from the remaining samples
was used to build the models of corresponding methods.

3. Results and Discussion

In order to explore the reference data on the element content in the samples (Table S2),
we applied principal component analysis (PCA). Figure 1 shows the loadings plot for the
first two principal components. The close grouping of certain variables in the loadings plot
implies a strong correlation between them. In this way, the content of Am, U, and Cm is
correlated in the samples; the same holds for Pr, Nd, Sm, and Eu and for Mg, Ni, Cr, Fe, Ru,
and Ca.

These correlated variables may pose a certain problem for regression modeling as the
selectivity of such models among correlated target elements will be not clear. After consid-
ering this plot, the following elements, which were most important from a technological
point of view, were chosen as targets for regression models: U, La, Ce, Sm, Zr, Mo, Zn, Ru,
Fe, Ca, Am, and Cm.

Using various regression methods, we constructed and optimized the calibration
models relating the responses of potentiometric multisensor systems in the samples to the
content of the elements. Figure 2 shows typical ”measured vs predicted” plots obtained
with different algorithms for the quantification of uranium. SVM models were optimized
with respect to epsilon, cost, and gamma parameters. KRLS models were optimized with
respect to lambda and sigma parameters. The optimal number of PLS components was
chosen based on the minimum on RMSECV–number of LVs plot.
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The visual appearance of the plots indicates that, in the case of uranium, KRLS
outperforms the rest of the regression methods. Table 1 summarizes the RMSECV values
obtained for all studied elements in Monte Carlo cross-validation. Table S2 (Supplementary
materials) shows the RMSECV values obtained in full cross-validation. Noteworthily, the
discrepancy between these two cross-validation approaches is not very large, with the
Mont Carlo procedure offering slightly higher values for most of the cases. The bold typing
is used to indicate the best performance.

Table 1. RMSECV values for regression models obtained in Monte Carlo cross-validation.

Element
RMSECV, Monte Carlo Cross-Validation,

Repeats = 100 Concentration
Range *, mg/L

PLS SVM RF KRLS

U 125.8 49.8 70.4 47.8 4.6–741.7
La 33.9 28.7 29.1 24.7 0.1–209.1
Ce 18.1 19.5 23.7 16.9 0.1–104.5
Sm 8.8 6.6 16.7 8.1 1.2–101.6
Zr 16.6 15.4 10.4 14.3 1.2–92.3
Mo 0.34 0.33 0.43 0.30 0.6–2.7
Zn 0.89 0.25 0.88 0.79 0.7–10.5
Ru 0.94 0.94 0.74 0.81 0.0–4.9
Fe 2.84 3.56 2.44 2.79 0.0–12.0
Ca 68.1 53.7 68.7 41.7 60.8–469.5
Am 0.16 0.21 0.21 0.18 1.4–3.8
Cm 0.86 0.87 0.61 0.51 1.8–8.0

* Concentration range in case of Am and Cm is in logC values.

Based on these results, it can be concluded that, in general, KRLS provides higher
modeling precision. KRLS has the best performance for six elements out of twelve modeled
and it provides the worst RMSECV for none of the elements. Although for most of the cases
the differences between the RMSECV obtained with four methods are not dramatic, in the
case of uranium, KRLS offers more than two times the improvement in modeling error
compared to PLS. RF was the best for three elements; however, it was inferior in four cases.
This type of performance can probably be explained by the fact that RF is intrinsically not
very suitable for processing small datasets such as ours. PLS was the worst for six elements.
These results confirm our initial guess on the better suitability of non-linear models for
describing potentiometric sensor responses in complex multicomponent media.

An important feature of PLS is that it allows the assessment of the contribution of
variables in model performance through the analysis of regression coefficients. This feature
is very valuable in the context of multisensor arrays as it provides a way for the optimization
of sensor arrays by the elimination of poorly contributing sensors and offers the idea for
further sensor development. KRLS also has this opportunity. As an example, Figure 3
shows the relative importance of the employed sensors in the quantification of four different
elements. It can be seen that the most contributing sensors vary depending on the element
and these plots can also be employed for sensor array optimization.

As a final step of the study, we assessed the performance of the models in the indepen-
dent test sets for several key elements of the PUREX process. Table 2 shows the resulting
RMSEP values.
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Table 2. RMSEP values for quantification of U, Sm, Am, and Cm in PUREX solutions.

Element #Samples in the
Test Set

RMSEP, mg/L Concentration
Range *, mg/LPLS SVM RF KRLS

U 1, 3, 8, 14, 16, 21 87.8 28.7 71.3 20.2 4.6–741.7
Sm 2, 4, 5, 15, 19, 20 17.6 7.4 18.2 6.3 1.2–97.3
Am 1, 7, 11, 13, 15, 23 0.10 0.14 0.25 0.79 1.4–3.8
Cm 1, 9, 11, 13, 21 0.68 0.46 0.57 0.39 1.8–7.9

* Concentration range in case of Am and Cm is in logC values.

As can be seen from Table 2, the precision in the quantification of Sm, U, Am, and
Cu is sufficient for expressing technological monitoring needs. Taking into account the
ultimate simplicity of direct potentiometric measurements and their suitability for on-line
implementation, these results have a good potential for the development of a novel on-
line industrial chemical monitoring protocol. Considering the radiation stability of the
potentiometric sensors [28], this protocol appears to be suitable for the nuclear industry as
the sensors can withstand the absorbed radiation doses of 50–100 kGy depending on the
membrane composition. Further radiation dose accumulation may lead to gradual decay
in sensor sensitivity. This stability is sufficient for continuous sensor application in SNF
process streams for at least one month, which is a reasonable duration when taking into
account the overall challenging character of the analytical problem.
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4. Conclusions

The response of cross-sensitive potentiometric sensors in multi-component samples
can have a very complex character, and thus non-linear regression algorithms can be
better suited for making quantitative predictive models. This hypothesis was confirmed
for analysis of spent nuclear fuel reprocessing media with a potentiometric multisensor
system. The system is capable of simultaneous quantification of Ca, Fe, Zn, Y, Zr, Mo, Ru,
La, Ce, Sm, U, Am, and Cm. The possibility of potentiometric quantification of Am and
Cm is demonstrated for the first time, to the best of our knowledge. The comparison of
the intrinsically linear PLS algorithm with three non-linear regression methods (SVM, RF,
and KRLS) has revealed that the latter, on average, demonstrates higher precision. KRLS
outperformed the rest of the methods in most cases. These results imply the relevance of a
broad study and application of non-linear regression algorithms for processing the data
from multisensor arrays.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10030090/s1, Table S1: Sensor membrane composi-
tion; Figure S1: Visual appearance of the multisensor system; Table S2: Elemental composition of the
samples taken from the pilot extraction unit.
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