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Abstract: This work introduces a novel method for the detection of H2O2 vapor/aerosol of low
concentrations, which is mainly applied in the sterilization of equipment in medical industry. Inter-
digitated electrode (IDE) structures have been fabricated by means of microfabrication techniques.
A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a
passive sensor element (passive IDE), where the former was immobilized with an enzymatic mem-
brane of horseradish peroxidase that is selective towards H2O2. Changes in the IDEs’ capacitance
values (active sensor element versus passive sensor element) under H2O2 vapor/aerosol atmosphere
proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s).
The influence of relative humidity was also tested with regard to the sensor signal, showing no
cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive
signal in eight subsequent cycles of exposure to H2O2 vapor/aerosol. Room-temperature detection
of H2O2 vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional,
flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.

Keywords: hydrogen peroxide concentration; interdigitated electrodes; enzyme membrane;
horseradish peroxidase; capacitive signal; enzyme-based IDE

1. Introduction

Hydrogen peroxide (H2O2) is applied widely as a sterilant in aseptic processes for
sterilization of materials, objects or food, in liquid or gas phase, with or without combi-
nation with other methods [1–4]. In that regime, monitoring and controlling its physical
and chemical properties during the aseptic process is of great importance. Previous stud-
ies present investigations regarding the detection of gaseous H2O2 and controlling its
conditions (concentration range up to 8% v/v) at high temperatures (up to 240 ◦C), as
it is applied for aseptic food packaging [5–11]. Therefore, calorimetric gas sensors have
been micro-fabricated for the detection of gaseous H2O2 by means of a differential setup,
utilizing a catalyst (e.g., MnO2). In addition, interdigitated electrode structures (IDEs) have
been suggested for evaluating sterilization efficacy using a chip-based biosensing approach
with the help of resistant spores of Bacillus atrophaeus DSM 675 [12–14]. These studies
benefit from the miniaturized structures and the combination of different electrode setups,
which also, in their most sophisticated stage of expansion, can simultaneously determine
the H2O2 concentration and the microbiological activity of the spores after sterilization
treatment.

On the other hand, when it comes to the detection of low concentrations of H2O2
in ambient conditions (<1000 ppm), not much research has been conducted lately (e.g., a
detection range of <1 ppm is discussed in [15–18]). In one study, colorimetric/fluorescence
detection methods were used [15]. However, the detection was not online and did not
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quantitatively evaluate the signals toward various concentrations. In addition, the reaction
of the setup to the humidity, as an important factor, was not discussed.

Another study reported the vapor detection of H2O2 by means of nanocomposites and
single-walled carbon nanotube sensors [18]. In this study, a vapor concentration detection
range from 0.1 to 10 ppm was reported. The changes of resistance by applying the H2O2
vapor are measured. However, no differential setup was used to allow elimination of
disturbing external factors. Other strategies described the use of carbon nanotubes for the
detection of H2O2 vapor [19]. Typically, the initial liquid concentration, e.g., 50 ppm, was
given as information. However, the gas concentrations of H2O2 were often not discussed
in detail.

A recent review article overviews the different types of sensors for detection of
H2O2 [20]. Here, no enzyme-based-H2O2 vapor detection was reported, which func-
tioned similarly to the present biosensor. There are several recent studies where H2O2 was
detected in solution (not in the vapor/aerosol phase), in a concentration range similar or
close to the range discussed in this manuscript (<1000 ppm) [21–24]. To the best of the
author’s knowledge, there are currently no reports which indicate the vapor/aerosol detec-
tion of H2O2 by HRP in the discussed concentration range. Literature data have mainly
focused on the detection of low concentrations of H2O2 in solutions (concentration range
of <10 ppm), and there is only little information on H2O2 detection in the vapor/aerosol
phase [17,18,25–31]. These physical/chemical conditions are, however, typically applied in
the sterilization of medical tools and materials (e.g., in medical or pharmaceutical isolators),
where the monitoring of low concentrations of H2O2 in the vapor or aerosol phase at room
temperature is critical [1,32–36]. In such an isolator, a sterile atmosphere is accomplished
by a proper circulation of the vapor/aerosol phase H2O2, which facilities the surface saniti-
zation through contact interaction over a predetermined exposure time with all internal
surfaces of the isolator chamber and filling machine parts during the decontamination
phase. Following the H2O2 decontamination phase, the chamber will undergo an aera-
tion phase which decreases the concentration of residual H2O2 below 1 ppm. During the
aeration phase, gaseous H2O2 is removed from the chamber. Currently, commercial gas
detectors are applied to monitor and control the conditions inside medical isolators at “one
spot”. Their properties are not satisfying for a multi-dimensional mapping in medical
isolators. These specific gas detectors are expensive (costing about EUR 2000–3000). Most of
these detectors also have bulky sizes, which excludes the possibility of multi-dimensional
mapping of the isolators without influencing the gas streaming conditions inside the steril-
ization chamber. Therefore, there is still an ongoing demand in developing miniaturized
H2O2 sensors for the vapor/aerosol phase, which can (i) cover the required concentration
range of interest (100 to 1000 ppm) and (ii) be fabricated by means of cost-effective chip
technologies to allow three-dimensional H2O2 mapping inside the pharmaceutical isolator.

To address these challenges, the present work deals with a cost-efficient, miniaturized
and flat novel IDE-based capacitive enzyme-type biosensor for the detection of low con-
centrations of H2O2 vapor/aerosol (<630 ppm) at room temperature. Taking advantage
of previous research papers on the detection of H2O2 in aqueous solutions, we employ
the enzyme horseradish peroxidase (HRP), which is selective against H2O2 [37–40]. HRP
remains stable over a long time-span when stored at 2–8 ◦C [41]. The utilization of this
enzyme in a differential setup of IDE structures enables direct and fast detection of H2O2 in
the vapor/aerosol phase with a response time of less than 1 min. The sensor setup has been
physically characterized by microscopic studies. Electrochemical sensor characterization by
means of impedance spectroscopy (capacitive monitoring/read-out) was performed with
regard to the sensitivity behavior (linear concentration range, response time, repeatability).
In addition, the influence of relative humidity was studied. This achievement, for the first
time, leads to the application of a miniaturized biosensor setup in sterilization chambers
such as medical or pharmaceutical isolators in order to monitor and record low H2O2
concentrations during the sterilization process.
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2. Materials and Methods

Sensor fabrication and preparation. Dzyadevich et al. introduced the conductometric
detection of hydrogen peroxide (e.g., urea) in liquids by means of a differential setup of
IDEs with enzymatic activation [42]. Motivated by these studies, IDE structures of Ti/Pt on
glass substrates were prepared in this experiment (see process scheme, Figure 1a).
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Figure 1. (a) Process scheme of IDE microfabrication: 1—Photoresist spin-coating on the glass
substrate; 2—photoresist patterning after UV exposure; 3—metal deposition; 4—metallic patterning
after lift-off process; 5—enzyme membrane coating on the active IDE sensor. (b) Optical microscopy
image of the IDE structures (the white scale bar represents 500 µm); (c,d) SEM images (magnified
zoom) of the micro-fabricated interdigitated electrodes.

For that, a 3 inch borosilicate glass wafer (MicroChemicals GmbH, Ulm, Germany) was
used as a substrate material. After the photoresist (AZ 5214 E photoresist, MicroChemicals
GmbH, Germany) was spin coated onto the glass wafer, it was baked on a hot plate for
5 min at 95 ◦C. One UV exposure step (mask aligner Karl Suss MJB 3, i-line intensity:
100 mJ/cm2) was carried out with a photomask to finish the patterning of the photoresist.
Subsequently, the developer (MIF 326, MicroChemicals GmbH, Ulm, Germany) was used
to develop the photoresist for 1 min. Figure 1a, step 2, schematically shows the patterned
photoresist. Then, 20 nm of titanium and 200 nm of platinum were deposited by means of
electron-beam evaporation (Univex, Leybold GmbH, Köln, Germany), shown in Figure 1a,
step 3 (metal layer deposition). After metal evaporation (step 3), a lift-off process followed
(step 4) and finally, the interdigitated electrode structures were achieved. The wafer was
diced into chips of 5 mm × 10 mm, where each chip included one IDE sensor. For the
later-on sensor setup (that consists of two IDE structures), one IDE structure was activated
(next to the passive IDE structure) by enzyme immobilization with HRP; see Figure 1a, step
5, and Figure 2. A pair of active and passive IDE sensor elements was employed for the
capacitive detection of the H2O2 vapor/aerosol.

As the capacitive measurement of the enzyme-based IDE biosensor depends on the
design, i.e., the geometry and surface of the sensor, different sensor designs have been
investigated regarding changes towards varying H2O2 concentrations. Figure 1b depicts an
exemplary microscopic image of an IDE structure, containing 30 fingers with 95 µm width
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and 110 µm spacing. Figure 1c,d presents scanning electron microscopic (SEM) images
of the fabricated IDE structures with a magnification of 75× and 220× (high-resolution
Jeol JSM-7800F Schottky field-emission microscope, Fa. JEOL GmbH, Freising, Germany),
having a detailed view of the electrodes.

Sensor principle of the IDE biosensor for H2O2 detection. IDE structures allow mea-
surement of impedance changes and, consequently, capacitance variation with respect to
the electrode surface and electrochemical interactions on top of it. Two identical IDE struc-
tures, as the active and passive element, respectively, were arranged in a differential sensor
setup, electrically connected, and soldered on a printed circuit board (PCB) next to each
other (see Figure 2). The PCB (except the IDE) was encapsulated by an insulating silicone
paste (Silicone Rubber, Adhesive Sealant, RTV 1180, Momentive, Leverkusen, Germany) in
order to protect the electronic part from the surroundings.

The active sensor element was coated with a colorless membrane containing HRP
(Peroxidase from Horseradish, Type VI, 250 U/mg, Sigma-Aldrich, Taufkirchen, Germany),
to react with H2O2 and finally, to detect it in the vapor/aerosol phase (see [41] for more
details on HRP). The HRP was dissolved in phosphate-buffered saline (PBS: NaH2PO4 +
Na2HPO4 + deionized (DI) water, pH = 6.8). Next, 5 µL of this solution was applied onto
the surface of the active IDE sensor by means of drop coating, i.e., physical adsorption was
selected as the immobilization strategy. The immobilized HRP membrane was then let dry
at room temperature for 2 h. When not in use, the sensors were stored at 4 ◦C. Since the
present experiments were not performed in solution, an additional encapsulation of the
IDE structure (prior to the silicone) was not necessary.
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Figure 2. Photograph of two identical IDEs, namely the active and the passive element, soldered on a
PCB. The active IDE structure is additionally covered with the immobilized enzymatic membrane
containing HRP.

Several characterization techniques were employed in order to assess the surface and
the thickness of the HRP membrane layer. According to the reports, which validate the
HRP structure by X-ray diffraction, the side length of the HRP in its three-dimensional form
can be up to 11 nm long [43,44]. However, for an enzyme with adsorptive immobilization,
both the surface coverage and the amount of enzyme on the surface are important, and
consequently correspond with the functionality of the sensor [45,46].

In that regime, profilometry was employed to assess the thickness of the membrane
layer. The thickness of the HRP membrane on the biosensor surface proved to be <1 µm,
which is typical for adsorptively immobilized enzymatic membranes [46]. An exemplary
result of the profilometric investigation on the enzyme membrane-coated and passive
IDE structure is presented in Figure 3. The surface is scanned across the interdigitated
electrodes. At the left side of Figure 3, the results show the pattern of the examined
passive IDE chip with the profile of the interdigitated electrodes of about ~220 nm. This
corresponds to the thickness of the metallic electrodes. At the right side of Figure 3, the
surface of the membrane-coated IDE (active IDE) is scanned, which indicates a change
of profile, presenting the membrane layer on the sensor. This study shows a thickness of
around 500 nm for the enzymatic layer. The volume of the membrane was adequate to cover
the whole surface of the active IDE structure. These results are comparable to literature
data with adsorptively immobilized enzymes; in general, the amount of the adsorptively
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immobilized enzyme on the sensor surface corresponds with the sensor functionality [45].
What has always been an important factor is the sensor sensitivity, which is evaluated
regarding the membrane composition. Here, factors such as the enzyme concentration or
the enzyme activity mainly determine the sensor performance (see [45,47]).
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passive IDE sensor structure with the interdigitated electrodes. On the right side, the surface profile
of the active IDE depicts the addition of membrane on the surface, which is calculated to be around
500 nm.

The surface of the IDE structure with the coated enzyme membrane layer is also
investigated by optical microscopy (Figure 4a). A blurry surface of the examined IDE
sensor can be seen. Therefore, for investigating the layer morphology in more detail, a SEM
technique is employed as well. Figure 4b presents a 5000×magnification on the enzyme
membrane-coated surface. The layer is shown to homogeneously cover the IDE sensor.
Figure 4c presents a 20,000× magnification inside Figure 4b, for a better observation of
the membrane layer. This series of characterizations confirms a dense and homogenous
membrane layer on top of the IDE structures, following the adsorptive coating of the HRP
membrane on the IDE.

The mechanism behind the reaction of H2O2 with HRP and its sequences, depending
on the methods and application, is discussed elsewhere [25,38–40,48,49]. As it is well
understood by far, the HRP immobilized on the sensor surface will react with the present
H2O2 and is oxidized. This oxidized form of HRP is then reduced to the native HRP by an
electron transfer reaction [40,50]. The process of this enzymatic reaction can be explained
step by step by the following chain Equations (1)–(3). In the first step, the HRP is oxidized,
and its first oxidized form is called Compound–I or C–I (Equation (1)). At the second step,
C–I is reduced to form Compound–II or C–II by an electron transfer reaction (Equation (2)).
Two completely environmentally friendly end-products, namely water and oxygen, result
during these two reactions [50]. Then, by means of a second electron transfer reaction, C–II
is reduced again to form the HRP original state (Equation (3)). Studies show that the HRP,
which is incorporated in the membrane on the sensor surface, catalyzes the reduction of
H2O2, while its enzymatic activity remains intact. This enzymatic activity has also been
confirmed by electrochemical and cyclic voltammetry detection elsewhere [40].

H2O2 + HRP→ C-I + H2O (1)

C-I + e− → C-II + O2 (2)
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C-II + e− → HRP (3)
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Figure 4. Optical microscopy image of the investigated IDE sensor (a). The scale bar is 1000 µm.
SEM images of the membrane layer with 5000× magnification (b) and 20,000× magnification
(c), zoomed-in region of the enzyme-covered IDE structure.

Figure 5 (left) schematically represents the enzymatic reaction of H2O2 with HRP. On
the right side, the predicted sensor signal change (due to this reaction) is depicted. It is
assessed by capacitive measurements in this study.

The enzymatic reaction between the HRP and H2O2 can also be discussed from a
physical point of view, as it impacts the impedance and, subsequently, the capacitance
of the sensor structure. As discussed elsewhere [51–53], the IDE structure holds specific
characteristics which allow its impedimetric analysis. The capacitance of the system (C) is
described as follows:

C = L(N − 1)

 ε0εr,t

2

K
((

1− k2) 1
2

)
K(k)

+ 2ε0εr,m
t
S

 (4)

Equation (4) includes L as the length of the fingers, N as the number of fingers and
t as the thickness of the electrode fingers. ε0 represents the dielectric permittivity of the
vacuum and εr,t is the total relative permittivity which surrounds the IDE electrode; i.e.,
for the active IDE sensor element, it is the enzyme membrane incorporated on the surface
and the glass substrate, and for the passive IDE structure, it is air and the glass substrate.
K(k) is the first-order elliptic integral, which represents the fringing field. The influence of
the periodic structure of the IDEs, namely the fingers’ spacing and width, is reflected in k
precisely, as described by Equation (5):

k = cos
(

π

2
ω

s + ω

)
(5)

Here, s is the fingers’ spacing and ω is the width of the fingers (see also in Figure 1d).
Considering the physical specifications of the periodic IDE structure, the impedance and
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capacitance of the structure hold a relationship [51,52,54], where the capacitance can be
described by the following formula:

C =
− sin(ϕ)

2π f Z
(6)

In case of impedimetric characterization, the impedance behavior (Z) across a defined
frequency range ( f ) is assessed. ϕ is the phase angle between the impedance and capaci-
tance (C). From Equation (6), one can acquire the capacitive response behavior of the IDE
sensor structure, which is discussed in this research. The capacitive signal change of the
IDEs, therefore, mainly corresponds to the impedance change in the immobilized enzyme
membrane (in this case, due to the enzymatic reaction of HRP with H2O2; see also Figure 5,
right).
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Figure 5. Schematic presentation of the enzymatic reaction of HRP with H2O2 (left). Here, H2O2 is
decomposed to water and oxygen. Schematic expected change of the capacitive sensor signal in the
presence of H2O2 (right).

Some studies show that the enzymatic activity of the HRP could be possibly influenced
by metal ions (e.g., Mn2+, Co2+, Ni2+, Fe3+, Cu2+, Hg2+, Cd2+, Pb2+, etc., which might also
be used in alloys in the surrounding measurement area), and this influence has to be
taken into account [55,56]. The reports show that metal ions have a larger effect at higher
concentrations [55]. On the other hand, some metal ions, such as Ni2+, are effective for
higher enzymatic activity and for increased functional stability of the HRP (which is caused
by activatory concentration of Ni2+). In that case, it is notable that the enzymatic activity
increased and remained for a longer time-span in comparison to the native enzyme. The
metal ions might also block the substrate interaction and cause inhibition. However,
the study is performed in the liquid phase, where high concentrations of the metal ions
are applied [55]. On the other hand, metal ions such as Fe3+ and Cu2+ demonstrate a
higher activation effect when the enzyme is immobilized on an Fe3O4Np–PMMA film [56].
Nevertheless, one must keep in mind that the sterilization process in medical isolators
follows very well-defined conditions (without varying metal ion concentrations) to avoid
any re-contamination [32,35].

Experimental setup of the glass box for H2O2 detection. The IDE structures’ signal
change against low concentrations of H2O2 in vapor/aerosol phase was assessed first
in a glass box to simulate a medical/pharmaceutical sterilization isolator. The box was
employed for a simplified proof-of-concept experiment to evaluate the H2O2 detection
by the prepared differential setup. The glass box (L, W, H: 18 × 15 × 6 cm3) contained
20 mL of 35% w/w H2O2. Figure 6a shows the schematic design of the box including the
different detectors and sensors: The PCB loaded with the chip-based H2O2 biosensor (IDE
arrangement), as well as a SHT 31-D (Sensirion AG, Stäfa, Schweiz) reference sensor for
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the detection of the relative humidity and a H2O2 reference gas detector (Vaisala sensor,
HPP270 series, Vaisala GmbH, Bonn, Germany) were inserted in the box.

The capacitance values of the active and passive IDE sensor elements, as well as
the humidity data from the SHT 31-D, were read out and recorded by a micro-controller
board (Arduino Duemilanove, Arduino IDE 1.8.15). The microcontroller was adjusted
for a timing 5 V signal and a sampling rate of 300 ms. The H2O2 concentration values
were monitored in addition by the Vaisala H2O2 gas detector to be able to compare the
data with the developed H2O2 IDE-based sensor. The values from Vaisala were recorded
by a Yokogawa DAQ system (Touch Screen GP10/GP20, Yokogawa electric corporation,
Musashino, Japan).

Monitoring the sensors’ values started when the box was opened and the sensors were
outside of the box. Then, the sensors were inserted, the lid of the box was closed firmly, and
the measurement continued for about 10 min. Consequently, the concentration of H2O2
vapor increased in the atmosphere of the box (blue color in Figure 6a). Here, the evaporated
H2O2, which was captured inside the box, reacted with the enzyme membrane on the active
IDE sensor element and influenced the detected capacitive values, as discussed above. The
Vaisala gas detector and the SHT 31-D recorded changes in the H2O2 concentration and
relative humidity, respectively, providing reference data. In the next phase, the lid of
the box was opened, the concentration decreased, and this reduction was recorded again.
The results of these measurements are considered as proof of concept for the capacitive
biosensor detection of H2O2 in the vapor/aerosol phase at room temperature.
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Figure 6. The two experimental setups for the detection of low concentrations of H2O2 vapor/aerosol.
(a) Design of the glass box with mounted sensors and 20 mL of H2O2 inside for the detection of
H2O2 vapor. (b) Experimental sterilization test rig, containing the spray nozzle and the reference
sensors/detector as well as the IDEs for the detection of the H2O2 vapor/aerosol.

Sterilization test rig as experimental setup for H2O2 aerosol detection. For continuous
sensor operation with varying H2O2 and humidity, experiments were performed in ambient
conditions inside an experimental sterilization test rig, which is described in [6,57]. For
room temperature and aerosol dosing of H2O2, a spray nozzle (Skan fog nozzle system)
was mounted on the chamber wall of the test rig in order to dose 35% w/w H2O2. The
dosing rate was assessed as 47.8 mg/min. The PCB containing the active and passive
IDE-sensing element, as well as the SHT 31-D and a H2O2 detector Dräger (Dräger Polytron
7000, Dräger Safety AG & CO. KGaA, Lübeck, Germany) were mounted inside the chamber.
Figure 6b sketches the experimental setup, including the IDE arrangement as well as other
detectors/sensors positioned inside the chamber. The biosensors and the reference detec-
tors were positioned according to the accessibility to their read-out devices, and besides
that, at a certain distance to avoid undesired possible turbulations, which might affect the
sensor signals.
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Here, H2O2 was injected by means of the spray nozzle and reached a maximum
concentration (monitored by the Dräger detector), considering the humidity and the size of
the chamber. Afterwards, the injection stopped until there was no remaining H2O2 signal
by the Dräger gas detector, while the exhaust was on. The data from the Dräger detector
were recorded with the help of the Yokogawa system, mentioned above. The chamber
humidity was observed by the SHT 31-D and the capacitive signal changes of the active
and passive IDE sensor elements were simultaneously recorded by means of the Arduino
micro-controller (see above).

Assessment of the differential IDE setup reaction toward humidity. In order to study
a possible influence of the relative humidity on the fabricated differential IDE setup, an
experiment utilizing deionized (DI) water was performed. The same arrangement similar
to Figure 6b was employed. This time, by means of the spray nozzle, DI water was injected
into the chamber of the sterilization test rig (instead of H2O2) in two intervals with the same
characterization as for the H2O2 monitoring (e.g., injection rate). The results of the detected
signals from the IDE structures under the exposure of H2O2 and H2O are compared and
discussed in the results section.

3. Results and Discussion
3.1. Capacitive Detection of the H2O2 Vapor Inside the Glass Box as Proof-of-Concept Experiment

Figure 7 presents the capacitive measurement results from the active and passive IDE
elements inside the glass box, loaded with 20 mL of 35% w/w H2O2. In this experiment,
the sensors were inside the glass box in two “time windows”. From 1900 to 4000 s and
from 5200 to 6600 s the box was closed, whereas from 0 to 1900 s, 4000 to 5200 s, and 6600
to the end, it was opened. During the closing phase, the H2O2 evaporated, increasing the
gaseous H2O2 concentration that could be monitored by the commercial Vaisala reference
detector; these values (Figure 7, blue dashed lines and right y-axis) served as a control for
the developed IDE sensor structure. As the box was opened, the concentration continuously
decreased to zero. Then, to conduct a second cycle, the box was closed again, knowing
well that due to constant H2O2 evaporation (note: original load of 20 mL), the H2O2
concentration in the box will somewhat decrease. This behavior can be seen by the blue
dashed line of the reference detector. The maximum H2O2 concentration reaches up to
around 128 ppm for the first peak and to about 116 ppm for the second peak.

More interestingly, these changes in H2O2 concentration were also detected by the
developed IDE sensor setup when the box was closed or opened, respectively. The ca-
pacitive signal of the active sensor element with immobilized HRP (black curve) changed
significantly and had a very good correlation with the Vaisala reference detector. The
response characteristic was even faster (see, e.g., a sharp decrease in the IDE sensor signal).
In contrast, the passive IDE element (red curve) did not show any H2O2 concentration
dependence. Even though, in this regime, the passive element seems not to be necessary,
subtracting the two signals of the active and passive IDE elements (as differential signal)
might be helpful to eliminate external disturbances (e.g., temperature variations) and in-
trinsic sensor drift. In addition, the presence of the passive IDE element next to the active
one under H2O2 atmosphere is essential to validate the functionality of the enzymatic
membrane for the capacitive detection of H2O2.
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The measurement results in Figure 7 showed that the enzyme membrane of HRP on
the active element reacts to H2O2 vapor, present in the atmosphere in the closed box (as
discussed in Section 2 and elsewhere [39,40]), whereas no signal change was found for
the passive IDE element. From the physical point of view, the enzymatic reaction affects
the surface of the IDE sensor, which modulates the impedimetric/capacitive signal. If the
surface stayed unchanged (in case of the passive sensor element), the capacitive signal
did not change either (see the red curve in Figure 7). However, for the case of the active
IDE sensor, if the surface dielectric behavior of the sensor was influenced with regard to
the reaction of the enzyme membrane with H2O2 vapor in the box, the capacitance of the
IDE sensor changed. The proof-of-concept experiment allowed successful H2O2 vapor
detection in the <150 ppm H2O2 concentration range and encouraged us to perform further
measurements for the detection of H2O2 in an experimental sterilization test rig.

3.2. Capacitive Detection of the H2O2 Vapor/Aerosol in the Sterilization Test Rig

Motivated by the proof-of-concept experiments in Section 3.1, the detection of the
injected H2O2 vapor/aerosol was investigated in the experimental sterilization test rig. To
apply the H2O2 vapor/aerosol in the chamber, the spray nozzle, mounted on the chamber
wall, was adjusted to inject fine particles of H2O2 inside the sterilization chamber, as de-
scribed in Section 2. This scenario indicates typical conditions for medical/pharmaceutical
isolators, employed to sterilize medical equipment. For the detection of the H2O2 va-
por/aerosol, the same active and passive IDE sensor elements, of which the result of vapor
detection is presented in Section 3.1, were employed in the sterilization chamber.

Figure 8 presents an exemplary measurement of the developed IDE sensor setup with
an applied H2O2 concentration of 630 ppm: the PCB loaded with the active and passive
IDE sensor elements was mounted inside the chamber, as well as the reference detector
(see Figure 6b). As can be seen, the nozzle began dosing of the H2O2 vapor/aerosol in
the time window of 460 until 560 s (blue dashed lines corresponds to the signal from the
H2O2 reference detector). Before and after this period, no H2O2 was applied. The Dräger
reference gas detector monitored the increase in H2O2 concentration when the spray nozzle
started H2O2 dosing. Additionally, the active IDE (black curve in Figure 8), holding the
enzymatic HRP membrane, reacted accordingly to the increase in the H2O2 concentration,
and its capacitive sensor signal increased. The signal behavior of the Dräger reference gas
detector and the active IDE sensor did not perfectly overlap, which might be explained
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by somewhat different positions of the gas detector and the IDE sensor setup inside the
gas chamber, which had unequal distances to the gas inlet nozzle. On the other hand,
the peak amplitudes showed good correlation, which demonstrated the functionality of
the developed IDE sensor setup. In contrast with the active IDE element, the passive
IDE element (red curve in Figure 8) did not react to the presence of H2O2, as proved and
discussed already in the experiments in Section 3.1.

When the dosing of the H2O2 vapor/aerosol stopped, the active IDE element signal
also dropped accordingly, similar to the signal of the reference Dräger gas detector. As
for the measurements in the glass box, the response behavior of the IDE sensor was
“sharper” (faster) than for the reference gas detector and can be estimated to be <60 s. It is
important to note that no cross-sensitivity was found between the active and passive IDE
elements against the H2O2 vapor/aerosol. The differential IDE setup enables detection of
the presence of H2O2 vapor/aerosol in a smaller (e.g., glass box) or a bigger (sterilization
test rig) sterilization environment by changes in the capacitive sensor signal. Again, the
presence of the passive IDE sensor element (no reaction to the H2O2 aerosol) can be assessed
to avoid any environmental or intrinsic perturbations. In general, due to the miniaturized
and flexible IDE sensor setup, a mapping of the H2O2 concentration at different positions
of the sterilization test rig might be realized in the future to provide a higher grade of
information compared to commercial gas detectors.
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Figure 8. Detection of the H2O2 vapor/aerosol in the sterilization test rig by the differential sensor
setup with active (black curve) and passive (red curve) IDE element, respectively. The H2O2 concen-
tration, additionally monitored by the Dräger gas reference detector (blue dashed line, right y-axis),
reached a maximum concentration of 630 ppm.

A series of different H2O2 gas concentrations were applied and detected by the IDE
sensor elements in the setups described above. From the results of these measurements, a
calibration plot is depicted in Figure 9.

Here, the corresponding capacitive sensor signal toward the following H2O2 con-
centrations was evaluated: 116, 128, 165, 330, 340, 350, 380, 450, 548, 570, 630 ppm. The
data points show the average values from a set of measurements in each concentration,
with their standard errors (note: some data points have a smaller error, so they might
not be visible). From this series of measurements, a linear relationship between the H2O2
vapor/aerosol concentration and the change in the capacitive sensor signal arises. The
result presents a linear sensitivity of 57.8 ± 1.4 nF per c(H2O2) in ppm, which can be
determined by Equation (7):

C = S × c(H2O2) (7)
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where C is the capacitance measured by the IDE sensor setup (active enzyme-immobilized
sensor element) at the particular H2O2 concentration defined as c(H2O2). S indicates the
sensitivity of the sensor setup. The calculated Pearson correlation coefficient of the fit
shows r = 0.9922.

Additionally, the IDE differential setup was assessed for repeatability studies in detect-
ing the H2O2 vapor/aerosol. This set of experiments included an about 5 h long continuous
measurement inside the sterilization test rig, including eight subsequent “on”/“off” cycles
of the H2O2 vapor/aerosol with a concentration of 450 ppm. Figure 10 presents the results
of the repetitive capacitive detection of the H2O2 vapor/aerosol by the IDE differential
setup. As an example, the spray nozzle started to inject H2O2 from 2500 s for 5 min. These
cycles occurred with intervals of 10 min “resting time” with the spray nozzle closed, in
order to reach a minimum of the H2O2 concentration close to zero. The changes of H2O2
concentration in ppm is depicted by the blue dashed lines (right y-axis).
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Figure 9. The capacitive signals of the IDE differential sensor setup with regard to different H2O2

vapor/aerosol concentrations of 116, 128, 165, 330, 340, 350, 380, 450, 548, 570, 630 ppm. A linear
sensitivity of 57.8 ± 1.4 nF per c(H2O2) in ppm is determined.

The active sensor of the IDE setup (black curve) immediately followed the changes
in the H2O2 concentration with a very fast response characteristic. For a maximum H2O2
vapor/aerosol concentration of 450 ppm, the capacitance of the biosensor amounted to be
around 35 µF. This value is slightly higher than expected from the calibration curve (see
Figure 9). One possible reason for this behavior might be the fact that for the repeatability
experiments, a freshly prepared active IDE sensor (with immobilized HRP) was utilized, in
contrast with the calibration measurements (where the active IDE sensor was already in
operation for several weeks). At the same time, the passive IDE element (red curve) did not
show any change in its capacitance signal, as expected. Interestingly, with repeated inflow
of the H2O2 vapor/aerosol (i.e., with increasing number of cycles), due to some remaining
portion of the vapor/aerosol in the chamber (cycle 1–450 ppm, cycle 8–441 ppm), there was
also a modest rise in the sensor’s capacitance from originally 35.7 µF (cycle 1) to 39.3 µF
(cycle 8), whose effect seemed not to be present for the reference gas detector from Dräger
company.
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3.3. Influence of the Relative Humidity on the Capacitive Detection of the H2O2 Aerosol

The differential setup of the IDEs detected the presence of different concentrations of
H2O2 vapor/aerosol. However, since the applied 35% w/w H2O2 is originally an aqueous
solution (before being evaporated to its gaseous form), the influence of the water/humidity
in these experiments onto the capacitive sensor signal should be studied. As discussed in
Section 2, therefore, in a separate experiment, DI water was injected inside the experimental
test rig to provide a humid atmosphere. Both the IDE sensor setup and a reference humidity
sensor (SHT 31-D, Sensirion) monitored these conditions. This way, the influence of the
IDE sensor setup towards the relative humidity can be excluded.

Figure 11 presents a typical example of a capacitive measurement in a humid atmo-
sphere for the active (black curve) and passive (red curve) IDE sensor element with regard
to the water addition (blue dashed line, right y-axis). In this experiment, DI water was
injected into the chamber of the experimental test rig by the spray nozzle in two “time
windows”, from 350 to 600 s and from 950 to 1500 s. The relative humidity reached a
maximum value of 81%, which was controlled by the additional humidity reference sensor
SHT 31-D. In between the two dosing intervals, the spray nozzle was switched off, where
the relative humidity reached a minimum value of 68% (as the chamber was closed and no
dry air was pumped into it at the nozzle-off moments, the humidity cannot decrease to the
relative humidity of ambient air).

As can be seen from the global diagram, the active and passive IDE elements did
not react to the increase in the relative humidity inside the measurement chamber of
the experimental test rig, which is exhibited by the black and red curves in Figure 11a,
respectively. For comparison, the scaling of the left axis in this diagram (i.e., the capacitance
values) is equal to that in the diagram in Figure 8. Figure 11b shows a detailed view of the
influence of the relative humidity onto the IDE sensor structure. Here, the active/passive
IDE elements had only small capacitance changes of 53.7 nF when varying the relative
humidity to 81%. Such capacitive change would correspond to a change in the H2O2
concentration of less than 1 ppm (see calibration plot in Figure 9). These results indicate
that the differential IDE setup, containing the enzymatic HRP membrane, did not show
any cross-sensitivity behavior toward humidity. In addition, it also confirms that the HRP
membrane on the active IDE sensor does not react to water, meaning neither oxidation nor
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reduction occurs on the sensor surface, which could lead to a change in the overall sensor
signal.
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4. Conclusions and Outlook

A differential biosensor setup of two chip-based IDE structures (an active one with
immobilized HRP enzyme membrane and a passive one) was developed for the capacitive
detection of low H2O2 concentrations in the vapor/aerosol phase. Low H2O2 concentra-
tions are applied, for example, in medical or pharmaceutical isolators for sterilization of
medical equipment. Here, it is of great interest to monitor the H2O2 concentration in the
isolators online and to ideally have a two or three-dimensional mapping inside the isolator.
As a proof-of-concept experiment, the sensor setup was employed for the detection of
H2O2 vapor in a firmly closed glass box containing 20 mL of 35% w/w H2O2, where it
allowed functionality testing with a dependence of the capacitive sensor signal from a H2O2
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concentration regime between 0 and 128 ppm. To more accurately reproduce sterilization
processing for medical equipment in an isolator, subsequent studies were performed in a
sterilization test rig, where a spray nozzle enabled dosing of the H2O2 vapor/aerosol in
a concentration range of ≤630 ppm. The differential setup of the IDE biosensors reacted
to the applied H2O2 concentrations directly, with a fast response time and an average
sensitivity of 57.8 nF/c(H2O2). It was able to detect all concentrations reliably, which could
be demonstrated by an endurance test over 5 h, including eight consecutive sterilization
cycles. The biosensor setup did not suffer from any cross-sensitivity toward humidity;
similar experiments as for the H2O2 detection were performed utilizing DI water, which
was injected via the spray nozzle inside the sterilization chamber. As a result, the novel
IDE biosensor is capable of fulfilling the requirement in the medical industry for possible
online monitoring and 3D mapping of medical isolators, due to its flat shape, cost-efficient
production, miniaturized structure, and less cross-sensitivity towards humidity.

In general, this micro-fabricated enzymatic biosensor has shown a reliable detection
pattern explicitly for low concentrations of H2O2, which opens up a new avenue toward
future sterilization monitoring in medical or pharmaceutical isolators. Nowadays, monitor-
ing of the sterilization chamber is enabled using reference detectors available on the market,
which are also used in this research. To compare with the novel biosensors, one can take a
look into the characteristics of the Vaisala gas detector. Several factors could be assessed
and compared, including the size (flat and miniaturized size of the novel biosensor vs.
the bulky size of commercial detectors), the cost efficiency, the applicability (possibility
for simultaneous utilization of several sensors for multi-dimensional mapping of medical
isolators also to identify the so-called “cold spots”, where the sterilization does not work
properly), and so on. This type of mapping is important for medical isolators for (i) avoid-
ing fluctuations/deviations of the decontamination cycle parameters from the set values,
etc. and (ii) running a smooth process and monitoring the conditions simultaneously and
accurately. Table 1 gives a summary of the sensor features that have been discussed above.

In order to offer a high-tech solution of the miniaturized biosensor to be applied in
the market, further investigations need to proceed, as some additional parameters must be
evaluated: for instance, long-term measurements have to be addressed in order to evaluate
the lifetime of the biosensor (i.e., the enzyme membrane), check if the sensitivity is intact,
and suggest the next sensor renewal. The shelf-life of the stored biosensor needs to be
assessed as well. However, the enzymatic reaction of the HRP to H2O2 is catalytic, which
means, in case of the right storing condition, the sensor would function for a relatively
long time as the enzyme activity stays stable. In order to improve the functionality of
the biosensor setup even more and obtain a stronger sensor signal, evaluation of the IDE
structures with different electrode designs (e.g., electrode geometry, number and size of
fingers, and their distance) are mandatory. Here, additional analysis with modeling and
simulation tools will be beneficial, for example, by means of a COMSOL platform. In order
to cover mapping of the inner side-surfaces of isolators, even at critical spots such as corners
(where monitoring of the sterilization process is difficult), preparing these biosensors on
flexible substrates such as polyimide (as a biocompatible material) is promising. Ideally,
a two-dimensional mapping of the isolator walls would be possible, using the whole
surface of the flexible material and containing the sensors on it, in order to evaluate the
conditions perfectly. All of the above-mentioned applications of this miniaturized biosensor
indicate great advantages of investing and applying such biosensors in the area of medical
sterilization to avoid losing valuable time, labor costs, and other resources. Therefore,
continuous, reliable, and fast verification of sterilization conditions will be possible using
these novel enzymatic biosensors.
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Table 1. A comparison of several characteristics of the novel biosensor compared to the commercial
H2O2 gas detector, Vaisala.

Commercial H2O2 Detector (e.g., Viasala) Novel Enzymatic Biosensor Setup

Size Length: 22 mm + 96 mm
Diameter: 16 mm

Sensor: W × H: 5 × 10 mm2

PCB holder: 20 × 48 mm2

(Further miniaturization to about 2 × 2 mm2 for
2D and 3D mapping).

Response time Vaisala: >1 min <1 min

Applicability
Less probable application for 2D or 3D mapping
of medical isolators due to the large sizes and
non-flat sensor surface.

Due to flat shape, miniaturized structure,
possibility of 2D or 3D mapping of medical
isolators with several sensors at once.

Costs EUR ~2500 plus software and read-out devices.
<5 Euros, cost-effective read-out by Arduino
µ-controller;
for 3D mapping of the medical isolator: EUR
~200–300.
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