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Abstract: In order to upgrade existing electronic technology, we need simultaneously to advance
power supply devices to match emerging requirements. Owing to the rapidly growing wearable and
portable electronics markets, the demand to develop flexible energy storage devices is among the
top priorities for humankind. Flexible supercapacitors (FSCs) have attracted tremendous attention,
owing to their unrivaled electrochemical performances, long cyclability and mechanical flexibility.
Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain
limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent
mechanical properties, high electrical conductivity, and large surface area, their assemblage adapt-
ability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes
CNTs attractive. In this review, we have summarized various assemblies of CNT structures, and their
involvement in various device configurations of FSCs. Furthermore, to present a clear scenario of
recent developments, we discuss the electrochemical performance of fabricated flexible devices of
different CNT structures and their composites, including additional properties such as compressibility
and stretchability. Additionally, the drawbacks and benefits of the study and further potential scopes
are distinctly emphasized for future researchers.

Keywords: carbon nanotubes; flexible; energy storage; supercapacitor; nanocomposites

1. Introduction

Development of flexible energy storage systems has improved in recent times, due
to the rise in demand for next-generation technology. Recent technologies such as smart
wearable and portable electronic devices have encouraged the utilization and further
advancement of energy storage components such as supercapacitors or batteries [1–4].
To make existing or upcoming upgraded electronics slimmer, lighter, and more flexible,
enhanced energy supply systems are necessarily required. Enhanced electronic devices
or technologies which have exhibited great scope of application include electronic tex-
tiles, flexible displays, distributed sensors, artificial electronic skin, etc. [5–7]. However,
researchers continue to search for promising energy storage systems to achieve desired
features for more complex electronic devices [8–10]. Supercapacitors have potential for
energy storage utilization in future electronics devices, owing to characteristics including
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long cycle lifetime, high power density, fast charge–discharge process and a broad range
of workable temperature [11–13]. Conventional supercapacitors are usually comprised
of four major parts: electrodes, current collectors, electrolyte, and separator. In these
supercapacitors, electrodes are prepared by amalgamating active materials with conductive
binders and coating the composites onto metallic current collectors. This setup exhibits
inadequate gravimetric capacitances, and it is heavy because of the involvement of the
current collectors [14–17]. Consequently, the conventional supercapacitor setup does not
possess enough flexibility to meet the requirements of FSCs. Hence, to achieve lighter
weight, flexibility, and suitable mechanical and chemical characteristics, the supercapaci-
tor electrodes are configured in different way which will be discussed with appropriate
examples in upcoming sections.

Utilization of nanocarbon materials is very frequent in supercapacitor devices. Diverse
nanocarbon materials such as graphene, graphene nanoribbons, carbon nanotubes (CNTs),
activated carbons, etc., have been employed in different supercapacitor studies due to their
excellent physicochemical properties [18–21]. Carbon nanotubes have excellent mechanical
characteristics owing to their sp2 carbon–carbon bonds. Additionally, they have good chem-
ical stability, higher conductivity, large surface area, and low mass density. Due to these
superior features, they are considered a perfect fit for electrode material in electrochemical
energy storage devices. However, some existing studies have claimed that activated carbon
is preferable due to its low cost and specific surface area [22]. However, more recent studies
have demonstrated that the porous structure of CNT forms favourable conditions for high-
charge transport in electrochemical processes, which significantly enhances the functional
properties of supercapacitors [23]. The porous structure easily interacts with the electrolyte
ions, which improves capacitance value. Studies clearly revealed that CNT-coated porous
substrates have potential when employed as electrodes in flexible thin-film SCs [24]. In
addition, ease of surface functionalization and large aspect ratio, due to which various nano-
materials can be chemically integrated, make CNTs adequately suitable. CNT electrodes
can be improved by combination with pseudocapacitive materials such as transitional
metal oxides/sulfides, and conductive polymers [25].

A few more points can be highlighted; firstly, difficulties have been reported regarding
the interaction between electrolyte ions and the micropores of activated carbon, which
significantly affected the overall performance of SCs; secondly, in graphene nano-sheets,
agglomeration through van der Waals interactions during the drying process has been ob-
served, which restricts electrolyte ions’ interaction with the ultra- small pores, especially for
larger ions such as an organic electrolyte and at a high charging rate [26]. Employing these
materials has proven efficacious in FSCs configurations including one-dimensional fiber
supercapacitors, two-dimensional film supercapacitors, stretchable supercapacitors, and
micro-supercapacitors [27–29]. Among the nanocarbon materials, carbon nanotubes (CNTs)
are an attractive choice for application in flexible supercapacitors. CNTs are cylindrical
structures with a nanometer-scale diameter, usually divided in two different categories of
single-walled and multi-walled nanotubes. In this article, we elaborate the utilization of
carbon nanotubes (CNTs) in various flexible supercapacitor structures, emphasizing electro-
chemical impact of different dimensional architectures of CNTs including one-dimensional
fibers, two-dimensional films, and three-dimensional foams. Moreover, various prepara-
tion strategies are discussed in this review article. This review paper provides a critical
and comprehensive review of advanced trends in flexible supercapacitors using carbon
nanotubes as electrode material. The review focuses on different architectures of fabricated
CNT-based FSC, identifying the pros and cons as well as the challenges to be faced.

2. Flexible Supercapacitors (FSCs)

FSCs are considered one of the potential candidates to power next generation devices
and power supplies, due to their useful properties such as high instantaneous power
delivery, long term cycling stability, ability to perform in a broad range of temperatures,
reduced charge–discharge time, etc. The major requirements for FSCs are structural flexi-
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bility and lightness in weight. Compared to conventional supercapacitors, the structural
arrangements of FSCs are more compact and precise. Polydimethylsiloxane, polyethylene
terephthalate, ethylene/vinyl acetate copolymer film, etc., are mostly preferred as flexible
substrates for coating the active electrode material for assembling FSCs [30,31]. In contrary
to conventional supercapacitors, which make use of metal electrodes as charge collectors,
the highly conductive carbon nanotube networks in FSCs can simultaneously act as current
collector and active electrode for charge storage [32–35].

Different configurations of flexible supercapacitors such as one-dimensional fibers,
two-dimensional films, patterned supercapacitors, micro-supercapacitors, etc., (as shown
in Figure 1) have been investigated based on their different electronic device application re-
quirements such as weaving, wearing, or pasting [36–38]. These configurations are further
sub-categorized, accompanied by inherent advantages and pitfalls. Winding, twisting, par-
allel, and coaxial designs are the four sub-categories of one-dimensional fiber FSCs [39–41].
The twisting setup offers enhanced contact surface, higher stretchability, and flexibility,
due to the strong interaction between electrodes. Similarly, the coaxial setup also provides
higher contact area as well as utilization of more surface area to enhance electrochemical
performance [40,42,43]. It is inferred that one of the major benefits of one-dimensional (1D)
fiber FSCs is their capability to form any shape, giving them considerable edge over conven-
tional supercapacitors. In addition to flexibility as a major aspect of these configurations,
other crucial performance parameters to achieve favorable activity include specific capacity,
energy density, and cycling performance; these also require monitoring during construction.
Furthermore, two-dimensional films and micro-supercapacitor configurations also have
attractive features.
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Ultra-thin, flexible, and lightweight, two-dimensional films are considered a promis-
ing candidate for FSCs. Nevertheless, these FSC configurations often encounter structural
stability issues due to the formation of an interface between the flexible substrate and the ac-
tive materials, which restricts electron conduction [44]. Moreover, in some cases low energy
density issues have also been observed, which can be repaired using surface interface engi-
neering [42]. Use of micro-supercapacitors is also beneficial for amplifying the energy and
power density performances. Due to their dimension range of micrometers to centimeters,
they are promising for powering future microelectronic devices [19,43]. Interdigital-type
and sandwich-type configurations are the two frequently explored micro-supercapacitor
setups. The interdigital-type configuration uses a pattern design of electrodes for the de-
vice. In this architecture, the electrodes are interconnected to each other to maintain a flow,
appearing like a long spiral snake. In the sandwich-type, the electrodes are placed on each
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other with electrolytes in middle to maintain the connection. These structures exhibit effi-
cient charge transport and stable structural integrity. However, precise fabrication methods
and utilization of active materials are required to attain superior electrochemical activity.

3. Different Carbon Electrodes in FSCs

Carbon has been widely used in various applications of science and technology, owing
to its microscopic and macroscopic dimensional structures [45–50]. Carbon nanomateri-
als have unique physicochemical and structural characteristics, due to which they have
been recommended by many studies. Owing to their higher conductivity and excellent
electrochemical activity, the use of one-dimensional (1D) and two-dimensional (2D) carbon
materials as electrochemical device components became a popular trend. Graphene, car-
bon nanotubes, carbon fibers, and carbon materials of different geometric structures are
regarded as favorable choices for electrode material. Carbon film, carbon textile, carbon
fabric, and paper-like flexible carbon networks have been found most efficacious when used
in flexible supercapacitor devices. Basically, aggregation (caused by van der Waals forces
or hydrogen bonds) of one-dimensional or two-dimensional carbon particles contributes
to the fundamental architecture of carbon films, carbon textiles, carbon coating, or carbon
fabric-like networks, used to fabricate efficient flexible electrodes [51,52]. The use of carbon
fibers, graphene, or carbon nanotubes as starting materials is very common to prepare
these flexible electrodes via preparation techniques such as chemical vapor deposition,
dipping–drying, printing, weaving, filtration, etc. [53–57]. However, combination of pseu-
docapacitive materials (which can store charges through redox reactions) with these carbon
networks has been introduced to improve the electrochemical performances of the resulting
composite electrodes, due to the synergistic effects of individual components [58]. For
instance, prepared fabrics may depict favorable properties such as outstanding flexibility,
adequate strength, and stiffness, but at the same time exhibit low capacity which restricts
the electrochemical activity of the fabricated electrode [59]. Use of carbon composite elec-
trodes not only prevented such issues, but also improved electrochemical activity due to
the presence of pseudocapacitive materials [60–62]. Various ranges of pseudocapacitive
materials such as Polyaniline, Polypyrrole, Polyurethane, In2O3, MnO2, RuO2 etc. have
been used to prepare carbon composite electrodes [30,53,62–70]. In order to fabricate such
composite materials, solution-based physical mixing techniques, in situ growth techniques,
electrodeposition and electropolymerization tend to be preferred [71]. Additionally, direct
filtration has been used to prepare composite electrodes [72].

Along with carbon nanotubes (CNTs) and graphene, other forms of carbons including
carbon nanospheres (CNSs), fullerene, etc., have been utilized to prepare composite ma-
terials for FSCs. Although these carbon materials show excellent conductivity, flexibility,
accessible surface area, etc., they tend to restack during their synthesis due to van der Waals
and electrostatic interactions, making them practically cumbersome for certain applications.
So, preparing their composites with other nanostructured materials not only enhances
their electrochemical performances, but also prevents them from restacking [73,74]. Xia
et al. described metal grown on CNS core-shell arrays in which ZnO was used as a sac-
rificial template for the core-shell and Ni microtubes were grown above the CNS. The
as-synthesized core-shell material when tested as a flexible symmetric supercapacitor exhib-
ited a specific capacitance of 227 F g−1 at 2.5 A g−1 and an astounding stability of 97% after
40,000 cycles [75]. Strauss et al. reported porous graphene from carbon dots which showed
a high volumetric capacitance of 27.5 mF L−1 with a high energy and power density of
24.1 mW h L−1 and 711 W L−1 [76].

4. CNTs in FSC and Their Electrochemical Performances

The 1D CNTs have shown beneficial electronic (electrical conductivity of 107 S m−1),
mechanical (higher Young’s modulus and tensile strength), and thermal (thermal con-
ductivity of 3500 W m−1 K−1) characteristics. In general, CNTs can be prepared using
chemical vapor deposition, laser ablation, arc-discharge deposition methods etc. [77–79].
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However, randomly organized morphologies of prepared CNT powders have exhibited
property deterioration, and that is why suitably ordered macroscopic morphologies such
as one-dimensional fibers, two-dimensional films, and three-dimensional sponges are
recommended [80]. Wet spinning and chemical vapor deposition methods have been
preferred for preparing 1D CNT fibers [81,82]. However, recent studies have demonstrated
that by utilizing other synthesis procedures like electrospinning, better CNT fibers can
be synthesized that have proven useful for flexible electronics application [83,84]. On
the other hand, preparation of two-dimensional CNTs films involves techniques such
as layer-by-layer assembly, spin coating, CVD and floating-catalyst CVD methods, and
vacuum filtration [85–88]. These preparation techniques can be employed to prepare
two-dimensional films using well-dispersed precursor solution, but there are inherent limi-
tations related to defects created during the dispersion and preparation of CNT films. Such
defects degrade the electrical and mechanical properties of CNT films. Similar to CNT fibers
and CNT films, three-dimensional CNT sponges are prepared using CVD technique [89,90].
In addition, hydrothermal techniques have been used to prepare CNT sponges [91], which
have lighter weight, higher porosity, hydrophobic nature and can be elastically and re-
versibly deformed into any shape [92,93]. Avasthi et al. reported tunable CVD growth of
vertically aligned CNT (VACNT) with TiO2 coating on stainless steel, as shown in Figure 2a.
The prepared material showed very good flexibility and its electrochemical performance
remained almost unchanged even after mechanical deformations (Figure 2b,c). The mate-
rial exhibited good electrochemical properties with pseudo-symmetric charge discharge
profiles, suggesting contributions from both double layer and redox properties in the charge
storage (Figure 2d,e). This method of CVD growth resulted in a specific capacitance of
16.24 mF cm−2, very high in comparison to the literature (Figure 2f) [77].

Li et al. reported a facile one-pot synthesis of MnO2 supported CNTs. The CNTs
were coated uniformly by MnO2 flakes, forming an open porous nanostructure facilitating
the intercalation and de-intercalation of electrolyte. This not only increased the specific
capacitance but also gave an ultrahigh stability of 10,000 cycles for 43 days with no ob-
servable change in performance [94]. Liu et al. prepared Zn2GeO4/CNT using a one-step
hydrothermal method. Under solvothermal growth conditions, cross-linked metal oxide
rods were grown within the CNT framework, which demonstrated a specific capacitance
of 164.25 F g−1 which dropped to 120 F g−1 after 200,000 cycles [95]. Tan et al. reported
a chemical deposition method for the synthesis of MnO2/CNT by varying the synthesis
time and pH. The best performance was obtained for 3 h synthesis time at pH 5, which
exhibited 115 F g−1 with 95% retention after 1000 cycles [96]. Wu et al. reported a 3D
hierarchical self-standing structure with MnCO3 decorated graphene-supported CNTs,
which not only provided high mechanical stability for the assembled FSC, but also showed
a high specific capacitance of 467.2 F g−1. The assembled asymmetric device showed high
energy density of 27 W h kg−1. Furthermore, the composite exhibited good electrical
conductivity and its CV pattern remained unchanged while bending at different angles
(15◦, 45◦, and 90◦) [97]. Faraji et al. reported a polyaniline (PANI) nanocomposite with
CNT (PANI-CNT-PVC) as the flexible electrode for a supercapacitor, which showed a good
electrochemical performance of 298 mF cm−2 at 0.6 mA cm−2 with a good stability of
86.5% after 5000 cycles, three times higher than that of conventional methods. The porous
structure reduced the diffusive path length of the electrolyte and thereby improved the
kinetics of electron transfer in the faradaic process [98].
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Figure 2. (a) Schematic illustration of the synthesis process, (b) photograph showing the flexible
nature under mechanical deformation of as grown VACNT on SS mesh, (c) TiO2 coated VACNT-SS
mesh before and after zigzag folding showing negligible change in capacitance, (d) cyclic voltammo-
grams for SS mesh-VACNT as a function of increasing scan rate showing nearly ideal EDL behavior,
(e) galvanostatic charge−discharge curves for SS mesh-VACNT as a function of current densities
(f) comparative specific capacitance values with earlier reported literature for carbon-based electrode
materials showing improved performance. Reproduced from Ref. [77]. Copyrights (ACS, 2019).

5. Various Designs of FSCs Using CNTBased Electrodes
5.1. Flexible Fiber Supercapacitors

With recent advancements in wearable electronics, the role of fiber supercapacitors
has often been mentioned [99], and the smart textile industry has also highlighted the
contribution of supercapacitors. Integration of fiber supercapacitors in such applications
has allowed present generation users to imagine the ample benefits of upcoming tech-
nologies. In general, fiber supercapacitor devices have a one-dimensional wire shaped
architecture with diameters of µm to mm. Fiber supercapacitors consisting of CNT-based
electrodes employ either twisted or coaxial device configurations. For the twisted device
configuration, two fiber electrodes are twisted together with an electrolyte or separator
placed between them; the coaxial configuration comprises a structure of core fiber electrode
assembled layer-by-layer with an electrolyte or separator [100,101]. Coaxial configuration
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exhibits more structural stability and enhanced contact area between electrodes leading
to enhanced electrochemical performance, whereas twisted configuration offers restricted
contact interfaces and some structural instability.

CNT-based fiber electrodes can be prepared either by fabricating 1D freestanding CNT
yarns or by coating CNTs onto flexible substrates (such as carbon microfibers, metal fibers,
stainless steel, etc.) [102,103]. Prior to electrode development, it is mandatory to consider
their mechanical characteristics. Various methods have been discussed for preparing 1D
freestanding CNT yarns, with wet-spinning is the most frequently employed method to
prepare yarns possessing high mechanical stability [100,104–107]. Composites such as
CNT/chitosan or CNT/reduced graphene oxide/carboxymethyl cellulose coaxial fibers
are prepared via wet-spinning [106,108]. Additionally, researchers have recommended
the use of dry-spinning and chemical vapor deposition techniques to prepare 1D CNT
yarns. Using the dry-spinning technique, it is easy to control twist degrees and diameters
of 1D CNT yarns [109]. Coating CNTs onto flexible substrates is another way to prepare 1D
fibers (substrate-supported). Here the useful characteristics of 1D substrate allow better
electrochemical activity. Peng et al. reported construction of a coaxial structured shape-
memory fiber supercapacitor device, prepared by winding VACNTs on a shape-memory
polyurethane (SMP) substrate. The electrochemical activity appeared well maintained
during deformation and recovery of the fiber supercapacitor [110]. Also, during the
development of a highly stretchable coaxial fiber supercapacitor, SMP substrate acted
more efficiently than elastic [111]. Cherusseri et al. developed helically coiled hierarchical
mesoporous CNT (HCNT) on unidirectional carbon fibers (HCNTF), as shown in Figure 3a.
SEM image reveals the fiber-like morphology of HCNTF (Figure 3b). The as-prepared
material acts as electrode and current collector, as illustrated in Figure 3c. The fully solid-
state flexible device assembled using HCNTF electrodes was connected in series to power
an LED bulb. The brightness of the LED remained undisturbed even after bending at
180◦ (Figure 3d). The HCNTF FSC demonstrated excellent electrochemical properties
(Figure 3e) and symmetrical charge discharge capabilities even under different mechanical
deformations (Figure 3f,g) [112].

Li et al. reported a CNT aerogel employing electrochemical activation and freeze-
drying used as flexible fiber supercapacitor electrode. With its large surface area and
mechanical strength, the CNT aerogel exhibited a specific capacitance of 160.8 F g−1.
The assembled FSC used ion gel electrolyte, increasing the operating voltage to 3V and
subsequently achieving high energy density of 27.3 W h kg−1. Most importantly, the
CNT aerogel based FSC can operate in a large temperature range from 0 to 80 ◦C [113].
Xu et al. reported fiber-shaped FSC with carbon-fiber-supported Polypyrrole as one elec-
trode and CNT/MnO2 as the opposite electrode. The device showed an areal capacitance
of 66.27 mF cm−2 with an energy density of 23.56 µW h cm−2 [114]. In another report,
Xu et al. prepared reduced graphene oxide (rGO)/CNT hybrid fibers synthesized by wet
spinning, as shown in Figure 4a. Connected in series and in parallel, these devices demon-
strated that the series connection exhibits a wide potential window but similar charge
discharge time, while in parallel connection the potential window remained unchanged
and the charge–discharge time extended almost three-fold (Figure 4b,c). Furthermore,
the hydroiodic-acid-reduced rGO/CNT composites possessed a charge storage capability
almost three times that of the high-temperature-reduced sample (Figure 4d). The assem-
bled all-solid-state supercapacitor was capable of lighting an LED bulb when connected in
series, and most interestingly, its performance remained unchanged even under a bending
condition of 180◦ (Figure 4e,f) [115].
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connected in series, module bend 1800, module discharges via a white LED bulb and module bend at
180◦ while discharging via a white LED bulb, (e) CV at constant scan rate with different densities of
HCNTF, (f) galvanostatic charge–discharge curves at a constant current density of 0.28 mA cm2 of
HCNTF SC utilizing electrode with different HCNT densities, (g) galvanostatic charge–discharge
curves [inset: digital images of the HCNTF SC bend at 0◦ (i), 30◦ (ii), 60◦ (iii), 90◦ (iv) and 120◦ (v),
scale bar = 1 cm] of the HCNTF SC utilizing electrode with HCNT density of 5.77 mg cm−2 bent at
different angles. Reproduced from Ref. [112]. Copyrights (Elsevier, 2016).

5.2. Flexible Thin Film Supercapacitors

With inevitable research developments, thin-film FSCs adaptable to portable and
flexible electronic devices have a promising future. Macroscopic CNT films that possess
superior mechanical integrity and physical flexibility have become popular. CNT films
are basically categorized into substrate-supported CNT films and freestanding CNT films.
In substrate-supported CNT films, 1D CNTs are used to form a highly flexible CNT layer
on substrates. The van der Waals interaction between substrates and CNTs provides firm
attachment and good contact, resulting in a continuous conductive path. Literature has
reported the fabrication of CNT film over nonconductive substrates (such as cellulose fiber
papers, PVA, PET cotton or polyester, sponges, etc.) for use in FSCs [116,117]. Porous struc-
tures offer better contact between electrode and electrolyte ions, and improve the adhesion
between substrates and CNTs. Moreover, CNT films on porous substrates exhibit adequate
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mechanical strength, high specific surface area and enhanced electron transport kinetics.
Layer-by-layer assembly, dipping–drying, Meyer-rod coating, inkjet printing, spray coating,
and other techniques are used to deposit CNTs onto nonconductive substrate [117–121]. Du
et al. reported SWCNTs polyethylene terephthalate (PET) electrodes prepared using spray
coating. To make the SWCNT solution processable, it was first acid treated. Compared
with pristine SWCNTs, the SEM images of acid-treated SWCNTs (A-SWCNTs) showed
variation in the morphology; the diameter of pristine SWCNTs was 30 nm before func-
tionalization while A-SWCNTs had approximately 10 nm of diameters. Importantly, the
SWCNTs dispersed in Dimethylformamide (DMF) settled, whereas A-SWCNTs exhibited
dispersibility for up to 30 days, implying that the functional groups in A-SWCNTs help to
enhance dispersibility and wettability. Furthermore, the as-fabricated electrode was tested for
flexibility by bending 300 over several bending cycles. Interestingly, during these bending cy-
cles, the electrochemical performance and surface sheet resistance of the A-SWCNTs electrode
showed no significant deterioration from the initial performance. Also, the electrochemical
performance was analyzed with various electrolytes; a well redox peak in CV for H2SO4 was
due to the abundant oxygen functional groups in A-SWCNTs, and the GCD graph showed
the longest discharge time in H2SO4, which also showed high specific capacitance. It was
inferred that 1 M H2SO4 shows better electrochemical activity [122].
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Like the nonconductive substrates, a wide range of conductive substrates have also
been used to deposit CNTs. Graphene-based foams, graphite sheets, carbon cloths, and
carbon fibers have been explored as workable conductive substrates [123–125]. To deposit
CNTs on these conductive substrates, techniques such as CVD technology [123,126], elec-
trophoretic deposition, and electrostatic spraying are employed [124,127]. These studies
suggest that conductive substrates provide great mechanical support and act as suitable
current collectors for supercapacitor electrodes. From various FSC studies, it can be in-
ferred that substrate-supported CNT film electrodes resulted in improved electrochemical
activity including stable cyclic capability (charge–discharge) [128] and superior power
density [129,130], however, they failed to provide adequate energy density and specific
capacitance. To prevent these issues, flexible devices have been constructed using pseudo-
capacitive materials and CNT-composite materials with better energy density and specific
capacitance. PANI/SWCNT/cloth and MnO2/CNTs/textile composite electrodes are
examples, the use of which can achieve better specific capacitances [131].

Weight of the substrate is also an important factor, and affects the overall specific
capacitance of the assembled supercapacitors. To mitigate this, CNTs are prepared as
freestanding films using techniques such as casting method [132,133], dry-drawing from
VACNT arrays [134], vacuum filtration [135,136], CVD growth [137], and compression
of CNT aerogels into films [138]. The most frequently employed technique is vacuum
filtration, where CNT ink is synthesized via sonicating the dispersed solution of CNTs and
suitable surfactants in a solvent, and then filtered through a porous membrane, leaving a
solid CNT film over the membrane [139]. Furthermore, transparent ultrathin CNT films can
be produced by regulating the CNT ink’s volume and concentration [140]. Yuksel et al. pro-
duced a highly transparent thin film supercapacitor device with transmittance of 82% at a
wavelength of 550 nm and observed a specific capacitance of 22.2 F g−1 [141]. For freestand-
ing CNT films, composites of CNT and graphene or rGO-based films have been widely
explored [142]. Such CNT–graphene composite films have shown superior conductivity as
well as wider accessible surface area. Moreover, studies have confirmed the improved ca-
pacitance and energy density achieved using CNT–graphene composite films. Additionally,
various conducting polymers and transition-metal oxides/hydroxides/nitrides/sulfides
involving PANI, PPY, PEDOT:PSS, NiCo2O4, NiMn hydroxide, WO3, MnO2, V2O5, MoS2,
etc., have also been incorporated [143–149]. For instance, Chen et al. fabricated a flexible
asymmetric supercapacitor device employing In2O3/ SWCNT film and MnO2/SWCNT
films as negative and positive electrode respectively and achieved specific capacitance
of 184 F g−1, energy density of 25.5 W h kg−1 and power density of 50.3 kW kg−1 [96].
Preparation of freestanding CNT films by combining aerogels also led to improved specific
capacitance and energy density [123]. The suitable porous structure of aerogel–CNT films
enhances the adsorption of the electrolyte at the electrode interface, which provides an
apt diffusion channel for electrolyte ions, subsequently enhancing the electrochemical
properties of the fabricated supercapacitor system. Usually, the aerogel–CNT films can be
prepared via CVD or freeze-drying techniques, so their commercial upscaling would be an
easy task.

Such flexible thin films are usually fabricated by employing a typical stack formation.
The main drawback of this stacked structure is that it restricts diffusion of electrolyte ions
from the surface to deeper levels of the CNT electrode, which limits proper utilization of the
available surface area. As a result, stack formation leads to poor charge–discharge rates as
well as inefficient power and energy density. However, recent research work has provided
methods to prevent this unwanted circumstance. In-plane micro-supercapacitors have been
constructed to improve electrolyte ion diffusion capabilities by shortening the ion diffusion
length, resulting in a much superior power density [150,151]. This configuration comprised
of an array of interdigitated micron-scale microelectrodes. This approach has also provided
easy regulation of the structures of interdigitated electrodes based on freestanding CNT
films and their composites, which has alleviated design complexity and upgraded energy
density outcomes. These interdigitated electrodes have two individually addressable
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microelectrode arrays without separate need for reference and counter electrodes. The
micro-fabrication can be performed using various techniques involving layer-by-layer
assembly, CVD growth, etching process or spray coating. For instance, Sun et al. reported
the fabrication of a micro-supercapacitor using interdigital SWCNT/amorphous carbon
electrodes followed by MnO2 nanoflower deposition via the chemical bath deposition
method. The assembled micro-supercapacitor exhibited an enhanced energy density and
a capacitance retention of 92.4% after 5000 cycles [139]. Niu et al. presented a repeated
halving approach to prepare ultrathin SWCNT films having various thickness. Such
ultrathin SWCNT films were successfully used to fabricate high performance flexible and
transparent supercapacitors [152]. Chen et al. utilized a metal oxide nanowire supported
over SWCNT as a thin-film electrode to assemble an asymmetric device, which showed
a specific capacitance of 184 F g −1 with energy density of 25.5 W h kg−1 at a power
density of 50.3 kW kg−1 [96]. In another report, Hu et al. synthesized NiCo2O4 grown
on CNT film (CNT@NCO) via a simple dipping and calcination method, as shown in
Figure 5a. The growth of well dispersed NiCo2O4 over the CNT surface was confirmed by
SEM micrograph (Figure 5b). The assembled CNT@NCO-based FSC exhibited excellent
redox behavior and good charge–discharge capabilities (Figure 5c,d) with a specific volume
capacitance of 281.7 F cm−3. More interestingly, its electrochemical performance was
retained even after bending up to 180◦ (Figure 5e). Furthermore, FSC possesses a wider
workable potential window when connected in series and enhanced charge storage when
connected in parallel configurations (Figure 5f) [153].

5.3. Stretchable Supercapacitors

Devices fabricated by using stretchable substrates with circuits embedded or built onto
them have exhibited superior potential. The requirement for high-performance stretchable
supercapacitors with large elastic deformations is escalating sharply, to meet the precise de-
mands of powering next-generation highly stretchable electronics including micro-devices,
wearable electronics, implantable medical devices, etc. [154]. To successfully design a
stretchable supercapacitor, the electrode material must have very good stretchability, su-
perior conductivity, and high specific surface area. Various polymers and textiles have
been reported as stretchable substrates for constructing stretchable electrodes. For example,
Chen et al. reported a transparent and stretchable all-solid-state supercapacitor based on
CNT-array-derived sheets on a PDMS substrate (Figure 6a). The supercapacitors were
assembled using polyvinyl alcohol (PVA)/H3PO4 electrolyte sandwiched between two
symmetric CNT sheets on PDMS electrodes, in parallel and cross configurations. Mechani-
cal stability tests performed over multiple bending cycles showed only minor change in
electrochemical performances (Figure 6b–e). Moreover, the repeated stretching–relaxing
cycles suggest that the supercapacitors assembled in parallel and cross configurations
differ greatly in their respective charge storage capabilities. The specific capacitance in
parallel assembly increased almost twice compared to the cross assembly during 30 initial
stretching–relaxing cycles and maintained constancy in subsequent cycles (Figure 6f). More
interestingly, the capacitance remained unchanged under applied strain up to 30% for both
parallel and cross-assembled supercapacitors (Figure 6g). Furthermore, the electrochemical
performance analysis revealed that cross-assembled supercapacitors showed high energy
and power densities of 2.4 Wh kg−1 and ~0.9 kW kg−1 and an inferior internal resistance
(IR) drop compared to the parallel assembled supercapacitor (Figure 6h,i) [155].

Although such stretchable supercapacitors anticipated certain needs of next-generation
electronics, they exhibited inadequate electrochemical performances with restricted elastic
deformations, restricting their upscaling potential. Consequently, further developments
were initiated to introduce enhanced structures for designing improved performance
stretchable supercapacitors. Structures such as helical coiled fiber, buckled, and island–
bridge have been developed to fabricate elastomerically deformable high-performance
supercapacitors [156–158].
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(b) SEM images of CNT@NiCo2O4, (c) CV curves at various scan rates ranging from 1 to 8 mV s−1,
(d) charge−discharge voltage profiles at a current ranging from 0.3 to 3 mA, (e) CV curves when the
film SC was bent to different angles, (f) CV curves of two devices connected in series and in parallel,
respectively. Reproduced from Ref. [153]. Copyrights (ACS, 2020).
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Figure 6. (a) Schematic illustration of the process for fabricating the transparent stretchable su-
percapacitor, (b,c) photographs of supercapacitors, before and after stretching, (d) photograph of
supercapacitor wrapped outside along a glass tube, (e) GCD curves at straight, bending 1 and bending
2, (f) normalized specific capacitance of two supercapacitor types as a function of stretching cycles,
(g) normalized capacitance of the cross-assembled supercapacitor as a function of tensile strain as
it was biaxially stretched, (h) Ragone plots of the both types of supercapacitors, (i) galvanostatic
charging discharging curves of the supercapacitors at a constant current density of 0.25 A g−1 for the
parallel assembly and 0.23 A g−1 for the cross assembly. Reproduced from Ref. [155]. Copyrights
(Nature, 2014).

Generally, helical coiled fiber can be prepared by over-twisting CNT fibers together
with coiled loops (having pitch distance around dozens of microns and a smaller diameter
range) aligning along the fiber axis. Such helical coiled CNT fibers have demonstrated
excellent elasticity [159].During the stretching process, these helical coiled fibers can be
gradually and efficiently elongated; keeping the alignment of CNTs intact, and returning
to its initial coiled structure after being released. Shang et al. investigated such helical
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coiled fiber structures, with some modifications. They used a thin layer of gel electrolyte to
coat the helical coiled fibers and then twisted two individual coiled fibers to construct a
double-helix stretchable supercapacitor. The as-prepared supercapacitor showed a specific
capacitance of 19.2 F g−1 and maintained almost 94% of its initial capacitance even after
150% stretching [157].

To accommodate larger stretching strains, the buckled configuration has been preferred
over helical coiled fiber structures. This structural configuration has the capability to
alter the wavelength and wave amplitude of the buckling to protect the active electrode
materials from destruction, and thus this setup is convenient for enduring higher strain.
In general, to obtain the buckled configuration, active electrode materials are spread out
on a pre-strained substrate and later released. Described in various reports, researchers
have developed thin film supercapacitors and stretchable fiber supercapacitors using such
buckled structures [156,160]. For example, using a coaxial structure based on CNT/PANI
hybrid electrodes, a stretchable fiber supercapacitor was fabricated by Zhang et al. [161].
Under a strain up to 400%, the fabricated supercapacitor depicted specific capacitance
of 111.6 F g−1. In another study, Choi et al., observed almost double the super-elastic
deformation (800%) compared to the previous study. Here, the CNT-MnO2 composite
was placed in parallel with macroscopically coiled and microscopically buckled structured
electrode [162]. With this novel structure, the authors tried to fabricate an ultra-stretchable
fiber supercapacitor, which exhibited an areal capacitance of 22.8 mF cm−2 and linear
capacitance of 4.8 mF cm−1 [162]. Apart from involving the utilization of stretchable 1D
CNT fibers in buckled structures, studies have also included the use of stretchable 2D
CNT films. For instance, Niu et al. combined continuous reticulate directly grown single-
walled carbon nanotube films with pre-strained polydimethylsiloxane to prepare a highly
stretchable buckled structured supercapacitor [163]. This device demonstrated a specific
capacitance of 48 F g−1, and its electrochemical performance remained unperturbed during
the stretching process (under 120% strain). Lv et al. further added MoS2 which enhanced
the specific capacitance of stretchable SWCNT electrodes [164]. In addition to its uniaxial
stretchability, buckled structure can also be useful to form biaxial stretchability [165,166].
This only improves the stretchability but also impacts on the electrochemical activity of
fabricated systems.

The island–bridge structure is another suitable approach proposed by researchers to
attain higher orders of stretchability. By this design, not only superior stretchability, but
also better conductivity was achieved. In an island–bridge configuration, bridges consist of
interconnects and islands are prepared by attaching active electrode materials to the stretch-
able substrates. Due to the strong bond between electrode material, substrate, and the
interconnecting bridges, the structure offers higher flexibility. For example, Lim et al. uti-
lized a deformable substrate to fabricate a biaxially stretchable micro-supercapacitor, where
the interdigitated MWCNT was used to fabricate the micro-supercapacitor arrays [167].
Yu et al. reported SWCNT grown on PDMS as a stretchable and flexible electrode for
supercapacitors, which showed a specific capacitance of 54 F g−1 and exhibited a good
stability in electrochemical performance after 1000 strain cycles [54]. Further, Niu et al. also
described a stretchable supercapacitor based on SWCNT films grown on PDMS, demon-
strating a specific capacitance of 53 F g−1 and a power density of 32 kW kg−1 under 120%
strain condition [163]. Wang et al. reported MnO2 and carbon nanotube nanocomposite
film employed to fabricate an asymmetric stretchable supercapacitor with the CNT-MnO2
composite as positive and FeS2 at the negative electrode (Figure 7a,b). Interestingly, the
supercapacitor exhibited good faradaic pseudocapacitance and its performance remain
unchanged when scrolled or twisted. The fabricated supercapacitor exhibited high energy
and power densities of 27.14 Wh kg−1 and 571.3 W kg−1 with a wide workable poten-
tial window of 1.6 V (Figure 7c). Additionally, the electrochemical performance of the
CNT-MnO2 composite-based symmetric supercapacitor in static and dynamic conditions
showed negligible change in performance (Figure 7d,e) [168].
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metric supercapacitor, (b) CV curves of MnO2 and FeSe2 electrodes at 30 mV s−1, (c) CV curves
of MnO2//FeSe2 ASC at 30 mV s−1 for different voltage windows up to 1.7 V, (d) CV curves of
symmetric SC at scan rate of 30 mV s−1 with different dynamic speeds, (e) CV curves under different
dynamic cycles with a speed of 3 mm s−1. Reproduced from Ref. [168]. Copyrights (Elsevier, 2019).
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5.4. Compressible Supercapacitors

In addition to the configurations described above, utilization of CNTs have also been
proven suitable for porous CNT foams with enhanced compressibility and highly inter-
connected structure. Under large compressive deformation, these 3D macroporous CNT
foams act suitably as an electrode for compressible supercapacitors. The main features
they offer are enhanced capability to retain ionic conductivity as well as electronic conduc-
tivity. Such 3D compressible CNT foams are designed using different techniques such as
template-directed preparation, self-assembly from solvent dispersions or coating CNTs
onto compressible substrates [169–171]. A variety of microstructures of 3D-CNT foams
have been designed using the template-directed preparation method [169]. This prepa-
ration method is configured based on CVD technology; using randomly interconnected
CNT skeletons, the CNT foams develop porosity due to the inter-tube pore spaces, which
have shown complete volume recovery after squeezing at a strain of 60% [80,169]. The 3D
CNT foam-based compressible supercapacitors depicted low energy density outcomes, so
to alleviate such issues, pseudocapacitive materials have been incorporated into 3D-CNT
foams [172,173]. Utilization of reduced graphene oxide with CNT has been another success-
ful approach to obtain better electrochemical performance. Sun et al. employed chemical
reduction and freeze-drying to develop a porous and interconnected 3D framework of
CNT/rGO aerogels [174]. The as-fabricated ultra-flyweight CNT/rGO aerogel combination
not only exhibited superior electrochemical performance (including elasticity-responsive
conductivity, better power and energy densities) and large compressible deformation, but
has also depicted promising possibilities for commercial-scale production because of its
easy manufacturing procedure.

Another effective strategy for constructing 3D compressible CNT-based electrodes
involves coating compressible substrates with CNTs. The CNT coating on sponges re-
sulted in high conductivity and reversible compressibility due to combinational impact.
Furthermore, utilization of sponge is beneficial as a compressible substrate because it
consists of polyester fibers or small cellulose which offers to create a porous interconnected
network structure [166,167]. For example, Nyström G. et al. fabricated a layer-by-layer-
assembled compressible supercapacitor using such sponge-like architecture which exhib-
ited capacitance of 25 F g−1 and stable electrochemical performance over 400 cycles. Further,
COOH-functionalized SWCNTs/cationic polyethyleneimine employed as electrode showed
uninterrupted performance up to 75% compression [170]. In another study, Niu Z. et al.
constructed nanostructured PANI/SWCNTs/sponge electrodes which exhibited specific
capacitance of 216 F g−1, observing that under 60% compressible strain the assembled su-
percapacitor lost only 3% of its capacitance [171]. Song et al. reported a highly compressible
supercapacitor based on CNT-PDMS using a simple and low-cost drop-drying process.
The material exhibited maximum volumetric capacitance of 13.82 mF cm−3 [175]. Li et al.
described CNT@PPy, acompressible electrode which showed a high specific capacitance
of 300 F g−1 and maintained 90% of initial value even after 1000 50% strain compression
cycles [172].

6. Challenges of Using CNTs as Electrode in FSC

From the discussion above, it can be inferred that CNT electrodes have depicted
outstanding electrochemical activities and shown promising capability for flexible super-
capacitor application. Moreover, incorporating pseudocapacitive materials into CNTs is
helpful for mitigating device performances. Especially, combining conductive polymers
and transitional metal oxides or sulfides has efficiently resulted in better capacitance com-
pared with individual CNTs electrodes. However, utilization of CNT electrodes has also
exhibited a few limitations. Firstly, CNTs have a much lower packing density which nega-
tively impacts their volumetric performance; and, secondly, several studies have reported
deteriorating mechanical strength, cycling stability and power density among assembled
devices [25]. The electrochemical performances of several other CNT-based electrodes for
FSC applications are listed in the Table 1.
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Table 1. CNT nanocomposites as electrode materials for FSC applications.

Electrodes Synthesis Method Electrolytes Specific
Capacitance

Retention after
Bending/Twisting

Retention
Rate (Cycles)

Energy
Density

Power
Density Ref.

GR-
MnO2/CNT

electrochemical
deposition Na2SO4/PVP 486.6 F g−1 NA 92.8%

(800) 24.8 Whkg−1 NA [176]

CoO/CNT hydrothermal
method PVA-KOH 17.4 F cm−3 NA 85%

(1700)
0.00348

Whcm−3 NA [177]

MVNN/CNT hydrothermal
method PVA/H3PO4 7.9 F cm−3 NA 82% (10,000) 0.00054

Whcm−3
0.0004

mWcm−3 [178]

CNT chemical vapor
deposition PVA/H2SO4 135 F g−1 5% (100) 97% (3000) 41 Whkg−1 16,400 Wkg−1 [179]

MnO2
@MXene/CNT

hydrothermal
method 1 M Na2SO4 181.8 F g−1 95% (1000) 91% (5000) NA NA [180]

PVA/CNT/PANI in situ
polymerization PVA/H2SO4 196.5 F cm−3 NA 71.4% (5000) NA NA [181]

HPCF ageing followed by
calcination 6 M KOH 194.8 F g−1 NA 95% (10,000) 9.1 Whkg−1 3500 Wkg−1 [182]

CNT/Fe3O4/PANI

coating catalyst
chemical

vapor deposition
method

PVA/H2SO4 201 F g−1 NA 96.4% (10,000) 28 Whkg−1 5300 Wkg−1 [183]

CNT/Cu/PET electroplating
method PVA/H3PO4

4.312 × 10−3

F cm−2 NA 88% (2500) NA NA [184]

CNT/Au/PET electroplating
method PVA/H3PO4

3.683 × 10−3

F cm−2 97% (100) 89% (2500) NA NA

CNT/PANI in situ chemical
solution method 1 M H2SO4 NA NA 96.5% (1000) NA 9000 Wkg−1 [185]

Thus, it can be inferred that the utilization of composite CNT electrodes will be
able to alleviate to some extent the limitations associated with use of only CNT-based
electrodes. Also, other significant techniques such as interfacial engineering and surface
modification concepts are suitable for enhancing flexible device performance. In general,
these techniques exert precise control on the chemical interaction between the electrodes
and electrolyte which in turns help to facilitate device operations more effectively, hence
an excellent electrochemical performance can be attained. Use of appropriate solid-state
electrolyte must also be optimized as it is a necessary component of the supercapacitor
setup that has immense impact on the overall result. Problems of low ionic conductivity,
limited power output, and high viscosity have been observed because of the interaction
of CNT electrodes and solid-state gel electrolytes. Further research into new and effective
electrolytes with better mechanical properties and superior ionic conductivity can resolve
such issues. More profound definition of the interaction mechanisms of CNT electrodes and
electrolyte will help to develop these efficient electrolytes. Like electrolytes, appropriate
separators are also required to achieve better performance. Above all the problems, higher
cost inhibits large scale production, and remains a major concern. Nevertheless, research is
ongoing to identify appropriate strategies that are effective and affordable for successfully
fabricating FSCs from CNT electrodes. Based on this review, it would be beneficial to
anticipate promising research and development directions that may lead to maintainable
high ionic conductivity, increased capacity, increased energy density, and increased stability
under mechanical stress.

7. Conclusions

The increasing demand for flexible and wearable technologies with portable electronics
has provoked the quick advancement of the dedicated power supply devices. Among vari-
ous energy storage devices, flexible supercapacitors (FSCs) have attracted overwhelming
attention owing to their diversified configuration, superior electrochemical performance,
mechanical robustness, light-weight portability, long cycle lifetime and wide working tem-
perature range. Carbon nanotubes (CNTs) with inherent crystalline cylindrical structures,
high Young’s modulus, suitable tensile strength, large elastic strain limit, large surface area
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and the ability to form various macroscopic assemblies, are considered a perfect fit for
electrode material in FSCs. The major focus of this article is to identify a variety of CNT
electrodes examined as flexible supercapacitors, and to discuss recent progress in the field.
To portray a clear scenario, we have elaborated the efficacy of different configurations of
flexible supercapacitors with different CNT structures. For a more specific understanding,
we have mentioned the benefits as well as the limitations associated with the electrode
materials. Aiming to identify further scope of explorations, we have tried to illustrate
recent advancements using a comparative approach. The flexible supercapacitor as a tech-
nological asset needs more than mere improvement, it requires enormous upgradation
to reveal it well-hidden capacities and further potential for large-scale applications. It is
worth noticing here that much of the efforts so far have been dedicated to the development
of high performance FSCs. However, it will be necessary to maintain cost-effectiveness
and a high production rate to bring this technology to wide-scale applicability. By enhanc-
ing these power supply devices, we will be able to move towards the next generation of
electronic technologies.
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