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Abstract: Triethylamine (TEA) is an organic compound that is commonly used in industries, but its
volatile, inflammable, corrosive, and toxic nature leads to explosions and tissue damage. A sensitive,
accurate, and in situ monitoring of TEA is of great significance to production safety and human
health. Metal oxide semiconductors (MOSs) are widely used as gas sensors for volatile organic
compounds due to their high bandgap and unique microstructure. This review aims to provide
insights into the further development of MOSs by generalizing existing MOSs for TEA detection
and measures to improve their sensing performance. This review starts by proposing the basic
gas-sensing characteristics of the sensor and two typical TEA sensing mechanisms. Then, recent
developments to improve the sensing performance of TEA sensors are summarized from different
aspects, such as the optimization of material morphology, the incorporation of other materials (metal
elements, conducting polymers, etc.), the development of new materials (graphene, TMDs, etc.), the
application of advanced fabrication devices, and the introduction of external stimulation. Finally,
this review concludes with prospects for using the aforementioned methods in the fabrication of
high-performance TEA gas sensors, as well as highlighting the significance and research challenges
in this emerging field.
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1. Introduction

Emissions of noisome gases are ubiquitous in daily life and industrial production.
Outdoor fuel combustion and transportation and indoor emissions from building and
decorative materials, furniture, household appliances, cleaning agents, and the human
body itself all produce noxious fumes. Volatile organic compounds (VOCs) are a common
class of hazardous gases in the air that can have a huge negative impact on human health.
As a member of VOCs, triethylamine is a colorless oily substance that is slightly soluble in
water and easily dissolves in organic solvents such as ethanol; it is toxic and flammable
and has a strong ammonia odor [1–3].

In many chemical synthesis processes, TEA is considered a multifunctional and effi-
cient organocatalyst and solvent [4]. Because of its relative safety, commercial availability,
and low price, it is often used in industrial production as a synthetic dye and preservative,
and because of its excellent physical and chemical properties, it is also used in large quan-
tities in chemical experiments [5]. However, when the TEA concentration is too high, it
endangers our physical health by causing injuries such as skin burns and headaches as well
as pulmonary edema and poisoning by accidental swallowing; its vapor can also strongly
irritate the eyelids and mucous membranes [6,7]. It also has the risk of rapid burning and
explosion when exposed to open fire, high temperature, and strong oxidizing agents [8,9].
Both the European Commission and the American Conference of Governmental Industrial
Hygienists have recommended that the threshold concentration of TEA exposed to air be
1 ppm [10,11]. Therefore, TEA gas sensors with low detection limits that can detect quickly
need to be developed.
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The gas-detection methods developed so far include quartz crystal microbalance gas
sensor [12], visual colorimetric detection [13], headspace gas chromatography [14], elec-
trochemical sensors [15–17], and chemiresistive semiconductor gas sensors. The detection
methods mentioned above can all detect a certain concentration of TEA, but several of
them have a long detection time, high detection cost, and complicated detection operation.
Therefore, the chemiresistive semiconductor sensors, which can be fast, accurate, and highly
sensitive; have low detection limits; and can be manufactured in batches, have received
widespread attention from scientific researchers around the world. To date, semiconductor
gas sensors are mostly made of metal oxide semiconductors (MOSs), which have excel-
lent physicochemical properties such as wide bandgap, unique microstructure [18–20],
higher sensitivity to gases, and fast response time; most importantly, lower fabrication costs
make them circulate in the market in large quantities. The most commonly used n-type
semiconductor metal oxide materials are ZnO, SnO2, Fe2O3, and MoO3 [21], and p-type
semiconductor metal materials are Co3O4, CuO, and NiO [22]. It is found that they all
respond to TEA gas, but all have the shortcomings of low detection limit, poor stability,
and high operating temperature to be solved. To improve the gas-sensing performance of
TEA sensors, experimenters have been studying the uninterrupted optimization of material
morphology and the compositions of different materials (MXenes, TMDs, and graphene
materials) in terms of all sorts of sensing characteristics.

In the body of this review, the working principle and gas-sensing characteristics of
gas sensors are introduced. More importantly, several known methods for improving
the sensing performance of TEA-sensing materials are described in turn in the following
sections, such as the optimization of the morphology and surface structures, combinations
with other materials like metal elements and conducting polymers, the development of
new materials, the application of advanced fabrication devices, and external stimulation.
The conclusion and outlook are summarized at the end.

2. Gas-Sensing Characteristics

It is usually necessary to use some specific indicators to evaluate the gas-detection
ability of a sensor. At present, the characteristic parameters commonly used to measure
gas-sensing performance include optimal working temperature, sensitivity, selectivity,
stability, repeatability, response and recovery time, and the lowest detection limits.

2.1. Optimal Working Temperature

The sensing characteristics of MOSs depend on the carrier concentration, which is
relevant to the working temperature. Only at the optimum operating temperature can
the sensitive materials fully stimulate the chemical activity to push the gas sensor to its
maximum response. Several response curves are shown in Figure 1 [23], which often show
an increase–maximum–decrease trend. When the temperature is too low, TEA molecules
are inert and cannot overcome the activation energy barrier to react with the adsorbed
oxygen [24]; then, as the temperature increases, the whole reaction will accelerate. However,
at higher temperatures, the gas molecules get enough energy to rapidly escape from the
material surface without affecting the conductivity of the sensor, resulting in the decline
response [25].

At the present time, the optimal working temperature of most semiconductor sensors
is high, often in hundreds of degrees Celsius, which causes huge power consumption.
Developing a special gas sensor with a low operating temperature is also one of the current
challenges. According to research, metals have surface redox reaction or catalytic properties,
so noble doped or loaded can reduce the demand for energy input [26]. Additionally, the
construction of heterojunctions can regulate carrier transport, or layered or core–shell
gas-sensing materials will be more conducive to gas adsorption and desorption because of
the porous structure and large specific surface area [27–29]. The above three methods are
used to reduce the operating temperature of gas sensors.
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Figure 1. (a) The response curves of SnS2 and SnS2/ZnS to 50 ppm TEA under various working
temperatures [23]; (b) The response curves of Fe2O3, Au/Fe2O3, and SnO2/Au/Fe2O3 to 100 ppm
TEA at different operating temperatures [30]; (c) The response curves of sample-1, -2, -3 to 100 ppm
TEA at various operating temperatures [31].

2.2. Sensitivity

The sensitivity K of a gas sensor is an indicator of the responsiveness of a gas sensor to
the target gas. It represents the compliance relationship between the electrical parameters of
the gas sensor and the target gas concentration. There is no doubt that the greater the K value,
the better the performance of the gas-sensing materials. The sensitivity K is usually expressed
as K = Ra/Rg (n-type semiconductor) or K = Rg/Ra (p-type semiconductor) [32,33]. Ra and
Rg represent the resistance of the sensor in air and in the target gas, respectively.

2.3. Selectivity

The selectivity of a gas sensor refers to its ability to recognize and measure a gas with-
out interference from non-target gases in multigas environments [34]. In short, selectivity is
the ability of a gas sensor to identify the measured gas more accurately in mixed gas. Only
when the sensitivity of the target gas is several times or even tens of times higher than that
of other interfering gases can a sensor be said to have good selectivity.

2.4. Stability

Stability is an important index for evaluating the property of a sensor. It refers to
whether the sensor can work for a long time and still maintain or approach the initial
performance within the predetermined working range [35]. Considering the practical
application of gas sensors, the sensor’s ability to maintain long-term stability is very
necessary. Normally, the response of the prepared sensor over one or several months will
be measured to ensure its stability.

2.5. Repeatability

Repeatability is defined as the ability of a semiconductor resistance sensor to restore
its resistance to its original value and maintain its high sensing performance after target
gas measurement. If the sensor cannot recover the resistance value in the normal gas
environment, it maybe that the target gas has an irreversible impact on the sensor that
makes it no longer operational [36].

2.6. Response Time (τres) and Recovery Time (τrec)

Response time (τres) is defined as the time required for the resistance value of a sensor
in the air to reach 90% of the resistance value in the measured gas. Similarly, recovery time
(τrec) is specified as the time required to recover to 90% of the resistance value in the air
after removing the target gas [37]. The preparation of sensors that can quickly detect TEA
gas is also one of the directions that people are vigorously studying.
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2.7. The Lowest Detection Limits

The lowest detection limit is one of the major indexes pursued by many TEA sensors.
It refers to the minimum gas concentration that can make the sensor respond under certain
conditions, that is, the minimum detection concentration. High-performance sensors with
low detection limits can often detect parts from per million (ppm) or even lower to parts
per billion (ppb) [38]. This makes it possible to capture mixed harmful gases in the air
much earlier when gases leaks.

A comparison of the performance of several TEA sensors is given in Table 1.

Table 1. The sensing characteristics of several typical triethylamine sensors.

Nanomaterial Shapes τres/τrec (s) T (◦C) Conc. (ppm) Lim. (ppm) Res. Ref.

SnS2/ZnS microspheres 2/8 180 50 - 11.21 [23]
ZIF-67/PBA arrays 5/182 180 100 - 11.7 [24]

ZnFe2O4–ZnO mesoporous 0.9/23 240 50 - 21.23 [25]
Au−PdO Modified Cu-Doped K2W4O13

Nanowires 17/27 120 10 1 282 [26]

mesoporous ZnO/Co3O4 nanosheets 17/25 240 50 0.087 67.8 [27]
COFs@SnO2@carbon

nanospheres 7/5 RT 2 0.2 95.1 [28]

ZnO/SnO2
micro-camellia 27/12 100 100 1 780 [29]

yolk-shell SnO2/Au/Fe2O3 nanoboxes 7/10 240 100 0.05 126.84 [30]
Zn2SnO4/ZnSnO3 19/37 190 100 0.5 179.7 [31]

ZnO/Co3O4 nanomeshes 30/55 100 5 - 3.2 [32]

Note: τres and τrec represent response times and recovery times, respectively. T and Conc. indicate the optimal
working temperature and detection concentration, respectively. Lim. is the abbreviation of the lowest detection
limit. And Res. and Ref. represent response and reference, respectively. RT represents room temperature.

3. Triethylamine Gas Sensing Mechanism

To date, scientists have used various ways to explain the gas-sensing mechanism of
semiconductor sensors. Several widely used theories are electron depletion layer theory,
hole accumulation layer theory, bulk resistance control mechanism, and gas diffusion
control mechanism.

3.1. Electron Depletion Layer (EDL) Theory

For n-type semiconductors, the gas-sensing mechanism is more often explained us-
ing electron depletion layer theory. As an n-type semiconductor, the main carriers are
negatively charged electrons [39]. When the sensor is in an air environment, oxygen
molecules are adsorbed on the material surface, and the material traps its free electrons
in the conduction band, forming the surface adsorption of O2−, O− and O2

−,described
by Equations (1)–(4) [40]. The result is the formation of an electron depletion layer on the
sensor surface, which leads to an increase in resistance. At this point, TEA gas is passed
and will undergo a redox reaction with the adsorbed oxygen on the material surface, while
the captured electrons will be released back into the conduction band, the process of which
is described by Equation (5) [40]. This process will significantly reduce the Schottky barrier
height and decrease the depletion layer thickness, leading to lower resistance. An typical
image of the mechanism is shown in Figure 2 [41].

O2(gas)→ O2(ads) (1)

O2(ads) + e− → O2
−(ads) (T < 146.85◦C) (2)

O−2 (ads) + e− → 2O−(ads) (146.85◦C < T < 396.85◦C) (3)

O−(ads) + e− → O2−(ads) (T > 396.85◦C) (4)

(C2H5)3N + O− → CO2 + H2O + NO2 + e− (5)
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Figure 2. One typical n-type gas-sensing mechanism for an SnWO4 sensor exposed to air and TEA
gas [41].

3.2. Hole Accumulation Layer (HAL) Theory

For p-type semiconductors, the gas-sensing mechanism is more often explained using
hole accumulation layer theory. As a p-type semiconductor, the main carriers are positively
charged holes. In the air, oxygen molecules come in contact with the material and draw
electrons out of the conduction band; they are then adsorbed on the surface to form
chemisorbed oxygen (O2−, O−) [42]. The loss of electrons results in the formation of HAL
on the surface and a concomitant decrease in the resistance of the sensor. The process is
represented by Equations (6) and (7) [43]. When the sensor is exposed to TEA gas, the gas
molecules adsorbed on the material surface undergo a chemical reaction and decompose
into ammonia and ethylene, and the chemisorbed oxygen oxidizes the ammonia and
ethylene to nitrogen dioxide, carbon dioxide, and water. Then, the free electrons return
to the material surface, the thickness of HAL decreases, and the resistance of the sensor
gradually returns to the original value. The process is represented by Equations (8)–(11) [43].
An example image of the mechanism is shown in Figure 3.

O2(gas) + e− → O2(ads) (6)

O2(ads) + e− → 2O−(ads) (7)

(C2H5)3N → NH3 + 3C2H4 (8)

NH3 + O−(ads)→ NO2 + H2O + e− (9)

C2H4 + O−(ads)→ CO2 + H2O + e− (10)

(C2H5)3 + O−(ads)→ CO2 + NO2 + H2O + e− (11)
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4. Optimizing the Material Shape and Surface Structure

As is known to all, the gas-sensing performance of nanomaterials is partly deter-
mined by their ability to convert oxygen in the air into lattice oxygen. The stronger the
conversion ability, the better the gas-sensing performance will be [44]. Obviously, the
conversion ability is affected by the morphological structure of nanomaterials because the
larger the specific surface area and porosity of the nanomaterials, the more active sites will
adsorb oxygen, and the stronger their ability to adsorb oxygen. Researchers have prepared
such nanomaterials as zero-dimensional (nanocrystals [45], nanoparticles [46], quantum
dots), one-dimensional (nanorods [47,48], nanowires [49], nanofibers), two-dimensional
(nanosheets [50], nanofilms), three-dimensional (nanofoam, nanospheres [51], nanoflow-
ers [52]), and other nanomaterials by hydrothermal method, solvothermal method, and
sol-gel method. In addition, nanocrystals also have complex surface structures, with
clear shapes and exposed crystal surfaces [53]. Semiconductor nanocrystals usually have
different surface structures on the atomic scale and exhibit different physical and chem-
ical properties. It can be inferred that adjusting the different exposed crystal planes of
nanomaterials also plays a key role in the sensing performance of TEA.

4.1. Zero-Dimensional (0D) Nanomaterials

Low-dimensional nanomaterials such as 0D nanoparticles and nanocrystals are the
earlier nanomaterials prepared for gas sensors [54,55]. Because of their small specific surface
area and low porosity compared with other dimensional nanomaterials, they often need
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some ways to improve their gas-sensing characteristics [56], although some 0D materials
do have good sensing performance.

Yu et al. [57] synthesized hierarchical hollow GaFeO3 by a kind of solvothermal method
and a subsequent annealing strategy. They obtained Fe4 [Fe(CN)6]3 MOF precursors
through a facile hydrothermal process and then used Ga3+ as the modifier to modify the
precursors. The hollow porous nanocube microstructure was vividly depicted by TEM,
SEM, and XRD in Figure 4. They found that the microsized morphologies and hollow
interior structures of GaFeO3 microcubes can be feasibly modulated by controlling the
thermolysis temperatures. The ultrasmall GaFeO3 nanostructure exhibited rapid response
times (9 s), good selectivity, and excellent stability.
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cellent selectivity, and superior sensitivity to ppm level TEA. In another study, Liu et al. 
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Figure 4. (a) From bottom to top, the simulated and experimental XRD patterns of Fe4 [Fe(CN)6]3

MOFs (JCPDS No. 01–0239), the experimental XRD patterns of Samples-1, -2, -3, -4, and the simulated
XRD pattern of GaFeO3 phase (JCPDS No. 76–1005). The FE-SEM images of (b) Fe4 [Fe(CN)6]3 MOF
precursors and (c–f) porous GaFeO3 microcubes of Samples-1, -2, -3 and -4 obtained at 400, 450, 500,
and 550 ◦C, respectively. (g) TEM and (h) HRTEM images of Sample-3 obtained at 500 ◦C. (i) The
selected SEM image of Sample-3 and the corresponding elemental mapping images of (j) Ga, (k) Fe,
and (l) O, respectively [57].

Meng et al. [58] successfully synthesized SnO2 nanoparticles with abundant oxygen
vacancies (OVs) by a combined hydrothermal route and ice-water bath stirring method.
The sensors based on this material reveal excellent selectivity, ppb level detection limit,
and long-term stability. The outstanding sensing characteristics of the sensor could be
attributed to the abundant OVs, improving the O2 adsorptivity and enhancing electron
transfer. Du et al. [59] synthesized SnO2 quantum dots with controllable size by changing
the amounts of hydrazine in the hydrothermal process. The experimental results show that
the smaller the SnO2 quantum dot material, the better the sensing performance for VOC
gases. More critically, it has a faster response time and a lower detection limit for TEA than
other VOC gases.
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4.2. One-Dimensional (1D) Nanomaterials

Hierarchical materials with 1D structures can be used to design adjustable surface-
active regions to obtain more reactive sites, boost electron transmission efficiency, and
optimize electron transmission channels [60–62]. Moreover, 1D hierarchical structures can
inhibit aggregation, resulting in significantly improved gas dispersion and transfer [63].

Lv et al. [64] successfully fabricated well-crystallized ZnO nanorods using a simple
solution route with dodecyl benzene sulfonic acid sodium salt as a modifying agent. The
experiment results reveal that this material has a low working temperature (150 ◦C), excel-
lent selectivity, and superior sensitivity to ppm level TEA. In another study, Liu et al. [65]
fabricated ultralong NiO nanowires assembled with NiO nanocrystals by adjusting the
hydrothermal reaction temperature and time to enhance the gas-sensing properties. The
TEM images of the structural representations of the material are shown in Figure 5, and
typical transient response curves of several powders of NiO are exhibited in Figure 6. The
curves indicate the improvement in gas sensing of ultralong NiO nanowire compared with
the other two nanomaterials.
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Zou et al. [66] reported a hollow SnO2 microfiber that was prepared via a unique
sustainable biomass conversion strategy for highly efficient TEA detection. The authors
established that the unique structure efficiently immobilized Sn2+ cations during the sub-
sequent calcination process to synthesize the hollow SnO2 microfiber. The excellent TEA
gas property in turn contributed to the synergism of the 1D carbon morphology and the
porous hollow structure.
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4.3. Two-Dimensional (2D) Nanomaterials

Mesoporous or layered 2D nanomaterials composed of nanoparticles often have large
specific surface area and porosity, which also gives them good sensitivity, long-term cycle
stability, and excellent selectivity, which is more conducive to the detection of TEA [67].
Researchers today are still focusing on research and development related to different 2D
nanostructures to improve gas-sensing performance.

Zhang et al. [68] used polystyrene-polyacrylic acid ZIF-8 as the collaborative template
by calcination precursor for 2 h to obtain mesoporous ZnO nanosheets. The team completely
characterized the morphology as well as the microstructure and specifically tested the gas
properties for TEA. The test results show that the high response to 50 ppm TEA can reach
43.771 at 268 ◦C. Meanwhile, the low detection limit (1 ppm) and rapid response/recovery
are also advantages of the material. In one recent report, Liu et al. [69] designed 2D ultrathin
SnO2 nanofilms for manufacturing low-temperature TEA gas sensors. They studied the
effect of calcination temperature on crystal crystallization and found that with the increase
in temperature, the crystal size decreased, and the uniformity and density of the surface
particles gradually increases. Furthermore, the decrease in crystallinity combined with the
increase in interfacial defects led to the suppression of grain boundary migration and an
increase in the energy barrier for grain growth.

4.4. Three-Dimensional (3D) Nanomaterials

There are now a variety of 3D porous core-shell, layered, microsphere, and other
nanostructures assembled by low-dimensional nanomaterials with greatly increased spe-
cific surface areas and active sites that can promote the adsorption and transmission of
gas molecules [70]. The increased specific surface areas and pore diameters of 3D porous
hollow structures also avoid agglomeration [71,72].

Wang et al. [73] prepared a 3D porous ZnO foam structure through a simple solvother-
mal method by dissolving Zn(NO3)2·6H2O solid in ethylene glycol solution and calcining
the precipitate at 350 and 450. The sample obtained at 350 ◦C showed an excellent response
to low-concentration TEA. One type of WO3 hollow microsphere for fast TEA gas sens-
ing was successfully prepared by Zhai et al. [74]. They used a simple low-temperature
solvothermal strategy followed by an annealing process in atmospheres. The fabricated
WO3 hollow microspheres material shows excellent selectivity and fast response time to
50 ppm TEA at 220 ◦C. The response is almost greater than that for all of the previously
reported TEA sensors. In the SEM images shown in Figure 7, we can clearly see the mi-
crosphere structure of the prepared material. Its large specific surface area and hollow
structure play a key role in improving its response speed. Sui et al. [75] constructed three-
dimensional novel flower-like α-MoO3 with hierarchical structure via a facile solvothermal
route without any surfactant or template and performed subsequent calcination at 400 ◦C in
the air for 2 h. The experimental results present that at the working temperature of 250 ◦C,
this material to 100 ppm TEA not only attains a high response (416) but a low detection
limit (0.5 ppm). However, the long recovery time is also a big problem to be solved.
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4.5. Exposed Crystal Plane

Lattice is the regular arrangement of atoms in the crystal. In the process of sponta-
neous growth, crystals can develop polyhedral shapes composed of planes with different
orientations [76]. The planes in these polyhedral shapes are called crystal faces. Crystal
will produce two different situations: anisotropic and isotropic. The anisotropy of crys-
tals means that the periodicity and density of the arrangement of protons are different
along with different directions of the lattice, resulting in different physical and chemical
properties of crystals in different directions. The opposite is isotropy, that is, the physical
and chemical properties of crystals in different directions are the same. The crystals often
show anisotropy, so they often show different gas-sensing characteristics when exposed to
different crystal planes [77].

There are few reports on the effect of exposed crystal on TEA gas sensing; however, Xu
et al. [78] prepared SnO2 nanorods with {200} crystal faces and successfully made normal
SnO2 nanorods with outstanding TEA selectivity. Xiang et al. [79] make a profound study
of the TEA-sensing characteristics of nonpolar (11–20) and polar (0001) GaN thin films. The
results show that Mn atoms at (111) surface show remarkably improved sensing properties,
which allows the active unsaturated Mn atoms to adsorb oxygen, creating electrons and
catalyzing the gas-sensing reaction.

In Table 2, the reaction of nanomaterials with different morphology and exposed
crystal surface to TEA is sorted out.

Table 2. TEA-sensing properties of different gas-sensing material shapes.

Nanomaterial Shapes τres/τrec (s) T (◦C) Conc. (ppm) Lim. (ppm) Res. Ref.

0D

hollow GaFeO3
microcubes 9/49 200 200 - 7.4 [57]

SnO2 nanoparticles 163/163 260 100 0.001348 430.65 [58]
SnO2 quantum dots 1/47 240 100 1 153 [59]

1D
ZnO nanorods 15/15 150 1 0.1 39 [64]
NiO nanowires - 350 9 2 3.5 [65]

Hollow SnO2 Microfiber 14/12 270 100 2 49.5 [66]

2D
ZnO nanosheet 7/21 268 50 1 43.771 [68]
SnO2 nanofilms - 150 100 - 19.2 [69]

3D
porous ZnO foam 1/1 350 100 <5 79.5 [73]

WO3 hollow microspheres 1.5/22 220 50 - 16 [74]
flower-like α-MoO3 3 s/1283 250 100 0.5 416 [75]

crystal
face

SnO2 nanorods
{200} crystal faced 6 s/465 120 50 - 64 [78]

polar (0001)
GaN thin films 7.9 s/20.7 480 200 0.2 5.23 [79]

5. Combinations of Different Materials

Although the metal oxide of a single metal has a certain response to VOCs, most of
the materials have a high intrinsic value band, leading to weak gas adsorption capacity
and resulting in low sensitivity, poor selectivity, and insufficient response speed. In the
process of continuously improving the performance of the sensor, researchers found that
combinations of different materials can often increase the adsorption sites and reduce the
reaction energy consumption [80]. Several material combination methods for improving
the sensing ability will be introduced below.

5.1. Effect of Metal Elements and Non-Metallic Elements

Among the sea of methods for enhancing the gas-sensing characteristics of gas-sensing
materials, the use of metal or nonmetallic elements to dope and modify the target materials
is the most convenient and popular [81]. Both the catalysis of metal materials and the
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electronic properties of nonmetallic materials can reduce the adsorption energy of gas [82],
and the formation of defects on the surface and modification of the electronic structure
can also play a role in improving sensing properties [83]. The action of metal elements
can be simply divided into two categories, doped and surface decoration, and the action
of nonmetallic elements can be roughly divided into doped and conductive polymer
composite modification.

5.1.1. Role of Transition Metals, Noble Metals, and Rare Earth Elements

Through a large number of studies, it is found that noble metals and transition metals
have strong catalytic properties and can replace the metal ion sites in the original materials
to form more oxygen vacancies and surface adsorption sites, so as to improve the adsorption
performance of gas. Therefore, transition metals such as Fe, Cr, Ni, Co, Ce, Cu, and noble
metals such as Ag, Au, Pt, and Pd have been utilized as dopants into nanostructured [84,85].
In addition, rare earth elements such as Y, Sc, La, Ce, Ho, and Gd with unique electronic
shells as dopants can cause lattice deformation and defects, increasing the number of
oxygen vacancies and improving the gas adsorption capacity [86].

Liu et al. [87] loaded Pt nanoparticles on InO3 novel hierarchical ZnO microspheres
via a two-step hydrothermal method. They not only compared the TEA gas-sensing
performance of the prepared Pt-ZnO nanospheres with that of commercial ZnO but also
discussed the role of Pt decoration in enhancing the gas-sensing properties. Figure 8 depicts
that the responses of the self-made ZnO nanospheres mixed with Pt at 200 ◦C are much
higher than those of commercial ZnO and the self-made nanospheres without Pt. Zhu
et al. [88] dropped different holmium ions concentrations of 0 at.%, 0.11 at.%, 0.45 at.%, and
0.53 at.% in SnO2 nanoparticles (NPs) via gas–liquid phase chemical deposition following
annealing. Figure 9 the presents the TEM images of the process, showing that Ho particles
are already dropped in SnO2. Meanwhile, Figure 10 reveals the brief enhancement of its
TEA gas-sensing properties.
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Zhang et al. [89] prepared Cr-doped SnO2 microrods using a facile hydrothermal
method to detect TEA. The gas sensitivity test found excellent selectivity and sensitivity
to TEA; what was more surprising was its marvelous response time (1 s) as well as its
humidity resistance. The latter above all makes it one good commercial sensor. In one
recent study, Bi et al. [90] synthesized Rh-SnO2 nanosheets by facile hydrothermal synthesis
and subsequent surface impregnation precipitation and heat treatment. The sensor had
better stability and gas selectivity, and its temperature response was nearly 15 times higher,
than that of the nondoped sensor at the best working temperature (325 ◦C).

5.1.2. The Roles of Nonmetallic Elements

Adding nonmetallic elements to the material can reduce the Fermi level and enhance
the electron transfer between the material and gas molecules, so as to improve the selectivity
and sensitivity of the material to the target gas [91]. At present, some researchers have
added carbon and other nonmetallic elements to gas-sensing materials to improve their
gas-sensing properties [92].

To overcome the problems of high concentrations of chemical hydrothermal solutions
and complex chemical reactions, Peng et al. [93] applied the magnetron sputtering process
to prepare the core-shell structure and then combined it with reduced graphene oxide to
prepare boron-doped reduced graphene oxide- (BRGO) coated Au@SnO2. Figure 11 is
the structure of the prepared materials. The enhancement of its gas-sensing properties
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may be largely attributed to the wrapping with BRGO. In another report, Zhang et al. [94]
prepared carbonized polymer dots doped with hierarchical tungsten to solve the problems
of the high working temperature and high detection limit of TEA sensors. They not only
developed the preparation method of the mixed material but also studied its gas-sensing
performance to TEA and the effect of the carbon compound point on the performance
improvement, which laid a foundation for the further study of carbon doping in the future.
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5.2. Noble Metal Oxides and Transition Metal Oxides

Similar to the idea of using metals to enhance gas-sensing properties, the combination
of different metal oxides can also improve gas-sensing performance [95]. In semiconduc-
tor physics, semiconductors with electrons as the main charge carriers are called n-type
semiconductors, semiconductors with holes as the main charge carriers are called p-type
semiconductors, and heterojunctions will be produced when different semiconductors
contact [96]. Generally, the semiconductor oxides with different properties have differ-
ent gas-sensing mechanisms and effects. According to investigations, common types of
heterojunction are p-p, p-n, n-p, and hybrid junctions [97]. Because of the existence of
heterojunctions, the material resistance is often very high, and in order to balance the Fermi
level, it will produce a greater response when exposed to the target gas [98].

5.2.1. N-N Heterojunction

The n-type semiconductor metal compounds tend to have better gas-sensing perfor-
mance and are the most used class of semiconductor metal compounds. Investigators have
combined a large number of various n-type semiconductor compounds in an attempt to
enhance their performance with TEA detection. The main principle of n-n heterojunction
for enhancing the gas-sensing performance is as follows. The main carrier of n-n hetero-
junction is electrons, where the carriers will flow from the high side of the conduction band
to the low side of the conduction band; an EDL is formed on the high side of the conduction
band, and a charge accumulation layer is formed on the low side of the conduction band.
This change will result in a larger response of the sensing material before and after exposure
to the target gas with a larger range of electron changes [99].

Among the many examples, Xu et al. [100] prepared n-n heterojunctions via assembling
SnO2 nanosheets and TiO2 nanoparticles employing the PLD method. They characterized
the shape of the material by SEM and TEM, and they analyzed the elemental composition
of the material by EDS, XRD, and XPS. The gas sensors were completely tested for several
gas-sensing indexes such as repeatability, selectivity, and operating temperature. The
test reports show that the sensor has not only excellent TEA selectivity but fast response
time and recovery time. Xue et al. [101] prepared CeO2/SnO2 nanoflowers using the
one-step hydrothermal method. The result shows that the response of 5 wt.% CeO2 content
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composite excellently improved. The sensing mechanism diagrams of pure SnO2 and
CeO2/SnO2 are shown in Figure 12.
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5.2.2. P-P Heterojunction

Based on previous experimental experience, the gas-sensing performance of p-type
semiconductor metal compounds is poor compared with that of n-type semiconductor
metal compounds, but the gas sensing performance of p-type semiconductors can be rel-
atively enhanced by forming p-p heterojunctions. The enhancement mechanism of the
gas-sensing performance through p-p heterojunctions is mainly as follows. P-P heterojunc-
tions have holes as the main carriers, in which the carriers will flow from the side with a
higher valence band to the side with a lower valence band, forming a hole depletion layer
on the side with a higher valence band and a hole accumulation layer on the side with a
lower valence band [102]. The change in resistance due to this change is beneficial for the
increase in gas-sensing performance [103].

Wang et al. [104] prepared NiWO4@NiO p-p heterostructure via a self-sacrificing
template method. The response of the heterojunction material prepared by the template
was enhanced from 2.5 to 65 compared with pure NiO at an optimum operating temperature
(240 ◦C) with 50 ppm of TEA gas. The team found that the p-p heterojunction needs to
keep the balance of the Fermi energy level; electrons will be transferred from NiWO4 to
nickel monoxide, and the electron-hole pair recombination leads to higher resistance. The
mechanism diagram is shown in Figure 13.
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5.2.3. P-N Heterojunction

P-N heterojunctions, the most representative heterojunction, applied in a variety of
different fields to enhance the physicochemical properties of semiconductors, are also
one of the most important means of enhancing the TEA-sensing performance. P-N het-
erojunctions to improve gas-sensing performance are briefly described below. For p-n
junction MOS sensing materials, the electron will migrate from n-type material to p-type
material, and a large number of electrons are lost in the p-type material, forming a thick
EDL, while holes are transferred to the p-type material, leading to band bending [105]. This
process accelerates the carrier transfer efficiency in the accelerated material, so that the p-n
heterojunction material obtains a higher resistance in the post-in and target gas reactor
process to obtain the reaction-generated free electrons, lowering the resistance to obtain a
large response [106].

For instance, Zeng et al. [107] fabricated a p-n heterojunction of Co3O4/WO3 by
a ZIF template. In this study, the sensor shows superb selectivity, excellent long-term
stability, and a linear response for TEA. The authors explained the high performance of
the sensor according to the large specific surface area, porosity, and most importantly, the
depletion principle. In another study, Yu et al. [108] fabricated mesoporous and hierarchical
hollow-structured In2O3-NiO composites via solvothermal reaction and subsequent cation
exchange. The result in Figure 14 shows the obvious descent of the working temperature.
Figure 15 depicts the gas-sensing mechanisms as well as the energy band states of NiO,
In2O3, and In2O3-NiO.

Chemosensors 2022, 10, x FOR PEER REVIEW 14 of 30 
 

 

5.2.3. P-N Heterojunction 
P-N heterojunctions, the most representative heterojunction, applied in a variety of 

different fields to enhance the physicochemical properties of semiconductors, are also one 
of the most important means of enhancing the TEA-sensing performance. P-N heterojunc-
tions to improve gas-sensing performance are briefly described below. For p-n junction 
MOS sensing materials, the electron will migrate from n-type material to p-type material, 
and a large number of electrons are lost in the p-type material, forming a thick EDL, while 
holes are transferred to the p-type material, leading to band bending [105]. This process 
accelerates the carrier transfer efficiency in the accelerated material, so that the p-n het-
erojunction material obtains a higher resistance in the post-in and target gas reactor pro-
cess to obtain the reaction-generated free electrons, lowering the resistance to obtain a 
large response [106]. 

For instance, Zeng et al. [107] fabricated a p-n heterojunction of Co3O4/WO3 by a ZIF 
template. In this study, the sensor shows superb selectivity, excellent long-term stability, 
and a linear response for TEA. The authors explained the high performance of the sensor 
according to the large specific surface area, porosity, and most importantly, the depletion 
principle. In another study, Yu et al. [108] fabricated mesoporous and hierarchical hollow-
structured In2O3-NiO composites via solvothermal reaction and subsequent cation ex-
change. The result in Figure 14 shows the obvious descent of the working temperature. 
Figure 15 depicts the gas-sensing mechanisms as well as the energy band states of NiO, 
In2O3, and In2O3-NiO. 

 
Figure 14. The selectivity of In2O3-NiO composites to seven different VOCs at various temperatures 
[108]. 

 
Figure 15. Schematic diagrams of the energy band states of NiO, In2O3, and In2O3-NiO, (a,b) in a 
vacuum, (c) in air, and (d) in TEA [108].  

Figure 14. The selectivity of In2O3-NiO composites to seven different VOCs at various tempera-
tures [108].

5.3. Conducting Polymer

Although MOS materials are widely used as sensors, their high operating tempera-
tures have always affected their practical applications. To solve the temperature problem,
experimenters have begun to gradually apply conductive polymers in semiconductor gas
sensors. Among them, the most widely used were the well-known polyaniline (PANI),
polypyrrole (PPy), polythiophene (PT), and poly (3,4-ethylene dioxythiophene) (PEDOT).
In 2016, Bai et al. [109] apply polyaniline to fabricate a TEA detection sensor. The fabricated
polyaniline@SnO2 shows excellent selectivity and ultra-low detection temperature, which
are the important performance indicators of TEA detection. This material opens the way to
combining conducting polymer with semiconductor mental oxide for TEA detection.
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5.4. Quantum Dots

Quantum dots are one species of material used in chemiresistive sensors. Since their
first introduction in 1983, scientists found that the bandgap properties of quantum dot
materials can be changed by adjusting the quantum dot size. The materials have been
applied in various fields including gradually in the sensing field [110]. In a report on
TEA detection, Liu et al. [111] combined CdS quantum dots with ZnO to form a kind
of n-n heterojunction structure, improving the response time (2 s) and decreasing the
working temperature (200 ◦C). The following year, Liu et al. [112] again used quantum
dots technology to combine CsPbBr3 quantum dots with ZnO. This material has a higher
response and lower detection limit compared with the previous experiment. The images
of response versus temperature are exhibited in Figure 16. The two experiments by Liu
et al. show that quantum dot materials have great potential for TEA detection, and more
quantum dot materials may be used for TEA detection in the future.
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6. New Materials Application

Although conventional MOSs such as ZnO and SnO2 have certain gas-sensing abil-
ities, they are still difficult to work with at room temperature and have high detection
limits, which hinders their practical application [113,114]. Therefore, it is imperative to
find new materials to solve their existing problems. In recent years, graphene and its
derivatives, carbon nanotubes, 2D transition metal carbides and nitrides (MXene), 2D
transition metal dichalcogenide (TMDs), and spinel and perovskite materials have been
gradually developed by scholars to enhance gas detection [115–117].

6.1. Graphene and Its Derivatives-Based

Graphene is a single-layer carbon sheet with a hexagonal filled lattice structure, which
has many outstanding physical and chemical characteristics, such as good low temperature,
high carrier mobility, excellent optical properties, large specific surface area, and excellent
thermal conductivity [118]. The performance of graphene derivatives, graphene oxide (GO)
and reduced graphene oxide (RGO) tablets, is further improved for their reactive oxygen
groups [113,119]. Graphene and its derivatives combined with various functional materials
are widely used in lithium-ion batteries, metal oxide supercapacitors, and other applica-
tions [120]. Because of its ability to adsorb gas at room temperature, large specific surface
area, and high conductivity, graphene is also gradually being used in gas sensors [121].

Bai et al. [122] prepared a hybrid of pine dendritic BiVO4/RGO via a one-step hy-
drothermal method enhancing the response of 10 ppm TEA at a working temperature of
180 ◦C. Figure 17 shows SEM images that indicate sufficient contact between the two mate-
rials and the full interaction of both. Figure 18 displays the nitrogen adsorption/desorption
isotherm of BiVO4/13.0 wt.% RGO hybrid; the figure reveals its large specific surface area,
which is a benefit for TEA detection.
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Wei et al. [123] successfully prepared a MOF-derived α-Fe2O3 porous spindle com-
bined with RGO using Fe-MIL-88 as a precursor through a simple solvothermal method to
improve TEA sensing performance. Figure 19 presents dynamic response–recovery curves.
It clearly shows that the new material decorated with RGO not only greatly increased
response but accelerated response time. Responses of RGO/α-Fe2O3 nanocomposites
display better linearity and superior sensing performance.
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Figure 19. (a) Dynamic response–recovery curves (100 ppm TEA) of pure α-Fe2O3 spindles and
RGO/α-Fe2O3 nanocomposites at 280 ◦C. (b) Concentration-dependent response curves of pure
α-Fe2O3 spindles and RGO/α-Fe2O3 nanocomposites to 10–1000 ppm TEA [123].

Yu et al. [124] modified Co3O4 nanoparticles by wrapping RGO via a simple hydrother-
mal method. In their experiments, they found that Co3O4 with {100} crystal planes and
{112} crystal planes could be prepared by changing the amount of sodium hydroxide. The
experimental results show that the nanostructures with {112} surface contain more adsorbed
oxygen, which can enhance the adsorption of TEA. Figure 20 shows the 3D electron density
difference between the Co3O4 (100)/graphene interface and the Co3O4 (112)/graphene.
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6.2. MXenes-Based

Since the first MXene report in 2011, MXene materials have received extensive at-
tention [125,126]. Various MXene materials such as Ti3C2Tx, Mo2CTx, and V2CTx have
been successively prepared and gradually used in the research on gas sensors [127]. MX-
enes are early-transition metal carbides/carbonitrides and nitrides with a general formula
Mn+1XnTx, where M represents transition metals (like Sc, Ti, V, Cr, Zr, Nb, Mo, and Ta), X is
C or N, and T represents surface terminal groups (like O, F, and OH) [128].

MXene is a multifunctional material that is mostly used in catalysis, ion batteries,
and gas storage [129]. Due to its special geometric and electronic structure, good conduc-
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tivity, large specific surface area, excellent gas adsorption capacity, rich active sites, and
excellent stability, it has been the focus of much attention in the field of gas sensing in
recent years [130]. In one recent study, Liang et al. [131] applied MXene material for the
first time to a TEA gas sensor and achieved a good response. They synthesized 2D/2D
SnO2 nanosheets/Ti3C2Tx MXene nanocomposites by a simple hydrothermal method and
achieved fast response/recovery time, relatively high sensitivity, high stability, and excel-
lent selectivity to the synergistic effect of SnO2 and MXene in SNTM composite and its
highly interconnected porous structure determine. Figure 21 is its XPS spectrum.
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6.3. TMD-Based Materials

In addition to graphene and its derivatives as well as MXenes, 2D transition metal
dichalcogenide (TMD) nanosheets are also applied in gas sensing. TMDs are a kind of
layered material [132]. The basic chemical formula can be written as MX2, where M
represents transition metal elements, including Ti, V, Ta, Mo, and W, and X represents
chalcogenide atoms (S, Se, Te, etc.); MoS2, WS2, MoSe2, and WSe2 are a few of the typical
materials [133]. Because of its unique layered structure, large specific surface area, and
excellent physicochemical as well as electronic properties, TMD has great application
potential in the field of gas sensors [134].

However, there are few cases of its application in TEA detection. Xu et al. [135]
proposed a novel n-n heterojunction material based on MoS2/ZnO, and its size and mi-
crostructure were designed by controlling the annealing rate. They determined that the
material remaining in a weak acid environment CTAB can gradually be adsorbed on MoS2
nanosheets to form the n-n heterojunction. Then, they carefully researched its TEA sens-
ing mechanism and enhanced the sensitivity by the unique microbridge structure. Yang
et al. [136] studied the gas selectivity of 3D MoS2/GO hybrid nanostructures under TEA
and other VOCs. They found that the material had better selectivity for TEA gas at working
temperature (260 ◦C). It may be that the synergistic effect of the layered TMDs and GO
produce strange sensing characteristics. Figure 22 is the response curves.

6.4. Perovskite Structure and Spinel Structure

The general formula of perovskite structure is ABX3, and the structure commonly used
in gas sensors is ABO3 [137,138]. Perovskite-type ternary compounds have a wide bandgap,
excellent thermal stability, and chemical compositions including the partial substitution
of A and/or B positions with aliovalent elements of variable sizes and values [139,140].
However, chemical instability, low porosity, and poor low-temperature stability hinder
its application in gas sensors [141,142]. There are only a few perovskite materials applied
to TEA sensing. Zheng et al. [143] obtained the CoSnO3 nanoboxes via the calcination of
CoSn(OH)6 precursors derived from a solution–precipitation method. After a series of
experiments, they came to the conclusion that the material is a kind of p-type semiconductor
that can detect TEA under a low temperature with a low detection limit.
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Hao et al. [144] modified porous LaFeO3 microspheres with RGO following a simple
electrostatic self-assembly strategy. Figure 23a shows the sensing mechanism that the
tight interface contact between LaFeO3 microspheres and RGO tablets. RGO is wrapped
on the surface of the microspheres to form p-p heterojunctions, causing the adsorbed
oxygen to trap free electrons from the conductive band, in turn making the electrical
resistance decrease. Figure 23b reveals the excellent selectivity of LaFeO3, RGO/LaFeO3
nanomaterials to 100 ppm of five different VOCs at 240 ◦C.
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In recent years, spinel structures have also been used in TEA gas detection because of
their good thermal stability and sensitivity to VOCs [145,146]. The common formula for
normal spinel structures is Atetra(B2)octaO4 where A is the distribution of positive second-
order metal cations in tetrahedral voids, and B is the distribution of positive trivalent
metal cations in octahedral voids [147]. The common formula for inverse spinel struc-
tures is Btetra(AB)octaO4. The distribution of A and B is just the opposite of that formal
spinel structure [148]. The different cation spices and charge states of two sites in the
polyhedral crystalline structure will significantly affect the physicochemical properties of
nanomaterials [149]. Ma et al. [150] prepared hierarchical spinel-type corn-like MGa2O4
(M = Ni, Co) architectures using a facile hydrothermal method and subsequent calcina-
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tion. Subsequently, they completely and scientifically investigated the phase compositions
and microstructures, which may be the essential influence factor of excellent gas-sensing
properties. Yang et al. [151] investigated the impact of the calcination temperature on
the morphology and TEA-sensing properties of NiCo2O4 microsphere nanomaterial. The
experiment results reveal that the material shows good selectivity to TEA but that its high
working temperature and slow response time need to be improved. The synthesis process
and calcination results of NiCo2O4 micromaterials are displayed in Figure 24.
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The comparison of gas-sensing characteristics of nanomaterials listed in this paper
will be given in Table 3 at the end of this section.

Table 3. The gas-sensing properties of various materials.

Nanomaterials τres/τrec (s) T (◦C) Conc. (ppm) Res. Lim. (ppm) Ref.

Pine dendritic BiVO4/RGO 5.9/11.4 180 10 5.9 2 [122]
α-Fe2O3 porous spindle/RGO 2/7 280 50 24 - [123]

Co3O4/RGO - 25 100 10 - [124]
2D/2D SnO2 nanosheets/Ti3C2Tx

MXene 1/1 140 50 33.4 5 [131]

MoS2/ZnO bridge-like 35/142 200 100 31.08 0.097 [135]
MoS2/GO hybrid nanostructures 7/11 260 1 2.8 1 [136]

CoSnO3 nanoboxes - 100 5 2.7 0.134 [143]
RGO-wrapped porous LaFeO3

microspheres 3/4 240 50 103.5 1 [144]

corn-like MGa2O4 (M = Ni, Co) 136/41 270 100 7.6 - [150]
Hierarchical NiCo2O4 microspheres 49/54 300 50 - 0.145 [151]

7. The Application of Advanced Instruments to Make Sensing Materials

The different fabrication methods of gas-sensing materials usually create different
morphologies of the materials with different gas-sensing properties. Therefore, using some
advanced equipment to prepare or modify sensing materials is also one typical way to
improve gas-sensing properties. Generally, because of the simple synthesis operation, and
low production costs, one-step hydrothermal [152] or solvothermal [153], sol-gel [154],
and coprecipitation methods are popular. However, micromaterials prepared by atomic
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layer deposition (ALD) [155], utilizing DC-sputtering technology, pulsed laser deposition
(PLD) [156], or electrospinning [157] can achieve remarkable responses.

Take the ultrathin ZnO films (20 nm) as an example, Li et al. [158] prepared them
by depositing ZnO on SiO2 wafers by ALD. The preparation process for ALD deposition
is exhibited in Figure 25a, and Figure 25b depicts the scheme of the Ar plasma process.
The improvement of the TEA gas-sensing properties is attributed to oxygen vacancies
acting as electron donors and multiple existing active sites. PLD is a technology that uses
a laser to bombard a target material and deposit the bombarded plasma on the substrate
for thin-film growth. The easy agreement with the target material composition is the
biggest advantage of PLD, which is the main mark to distinguish it from other technologies.
Moreover, the advantages of high deposition rate, short test cycle, high orientation, and
high film resolution have allowed experimenters grow thin films using PLD for almost
all materials [159]. Song et al. [160] successfully fabricated a kind of n-n heterojunction
that combined ZnO nanorods with α-Fe2O3 nanoparticles by the PLD method. Superior
response, lower detection concentration, and shorter response time of the material were
caused by its larger specific surface area, which adsorbs more oxygen ions.
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Electrospinning is also a common method of preparing the nanofibers that are often
used to obtain 1D nanoscale continuous fibers such as hollow fibers [161]. Because of the
unique reaction process that mixes different materials into the electrospinning solution,
the process can often yield 1D materials with good pore structure, large specific surface
area, and excellent electron transport properties for a variety of applications [162]. A
single needle electrospinning setup is drawn in Figure 26. Although electrospinning is
efficient and convenient, there are few application examples in the manufacture of TEA
gas sensors. One of the cases is Ma et al. [163], who fabricated several In2O3 hierarchical
structure materials by electrospinning controlling calcination time and temperature. And
the materials could be used in room temperature TEA detection, preserving superior
sensitivity. A comprehensive analysis of the gas-sensing performance of the material
was accomplished, and the team attributed the improved sensing performance to the
unique material structure, multiple active sites, and special electron transmissions obtained
by electrospinning.
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A summary of the performance of the sensors manufactured with the various devices
in this section is given in Table 4 at the end of this section.

Table 4. The gas-sensing properties of various materials fabricated by different devices.

Nanomaterials τres/τrec (s) T(◦C) Conc. (ppm) Res. Lim. (ppm) Ref.

ultrathin ZnO films 531/46 180 10 1.8 - [158]
α-Fe2O3 nanoparticle/ZnO nanorod 4/86 300 50 63 1 [160]

InO2 184/- 40 50 87.8 5 [163]
SnO2 26/13 235 50 54.9 1 [165]

8. External Stimuli on Sensing Performance

In the practical application and production process of these sensors, we should not
only consider the hard indexes such as the sensitivity, selectivity, and stability of the gas
sensors to the target gas but factors such as the power consumption, repeatability, and
manufacturing cost of the sensors. If the working temperature of a sensor can reach room
temperature, the power consumption of the sensor will be greatly reduced, which can
decrease both the fabricating and use costs. Decades ago, people began to look for auxiliary
methods such as voltage biasing, UV light, and visible light excitons to enhance gas-sensing
performance without relying on high temperature [166,167].

Liu et al. [168] investigated the enhancement of the TEA gas-sensing mechanism after
the light irradiation of ZnO/ZnFe2O4 composites and developed a synthesis strategy by
calcinating Zn2Fe-LDH at different temperatures. The preparation process is shown in
Figure 27a. The changing curves of sensor resistance after illumination are exhibited in
Figure 27b. Clearly, light irradiation improves TEA gas sensing. Shanmugam et al. [169]
reported an experiment with UV light to improve the gas adsorption properties of CeO2
nanomaterials. The test result shows materials with higher TEA adsorption capacity
compared with other VOCs attributable to Ov in the prepared CeO2 NPs and photo-
generated electron-hole pairs of the material. Yang et al. [170] investigated the impacts
of ultraviolet light irradiation on ZnO-SnO2 heterojunction nanobelts for TEA sensing.
The conclusion is that under UV laser illumination, response/recovery times (1.8 s/18 s)
significantly accelerate.
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9. Conclusions and Outlook

Nanomaterial MOS sensors have gradually become an important development trend
in gas detection. In this review paper, we briefly introduce the sensing characteristics of
these gas sensors and two gas-sensing mechanisms for TEA detection. The major section
of this review elaborates on several strategies to enhance the gas detection performance,
such as the optimization of material structure, combining with other materials, using
new materials, preparing materials with more advanced instruments, and stimulating the
materials with external excitation.

In general, the alteration of the morphology and surface structure of materials can
be either a dimensional increase to enlarge the specific surface area, porosity, and active
adsorption sites for improved gas absorption or a change in the exposed crystal plane
to improve gas selectivity and sensitivity. Various metal and nonmetal single elements
can be doped into materials to improve gas-sensing performance due to their catalytic
properties or electronic sensitization mechanisms. Other chemical compounds can also
be incorporated to form p-p, p-n, and n-n heterojunctions to improve response. Recent
advances also indicated the potential of quantum dot materials and conducting polymer
materials in the optimization of sensitive performance. Furthermore, new materials such
as graphene and its derivatives, MXenes (Ti3C2Tx, Mo2CTx, V2CTx), TMDs (MoS2, WS2,
MoSe2, and WSe2), perovskite, and spinel materials are also used in TEA detection and
possess unique characteristics such as reducing the working temperature. Advanced
technology methods such as ALD and PLD also allow for preparing materials with better
microstructures. Finally, external simulation can be an additional strategy for improving
gas-sensing properties; for example, UV stimulation may allow gas-sensing materials to
play an unexpected role.

Technology advances give rise to great numbers of materials with potential TEA-
sensing capability, but further improvements are still in need. The previous summary
illustrates that current TEA detection materials remain highly dependent on the traditional
MOSs such as ZnO and SnO2. However, there is still much room for improvement in
its gas-sensing properties. First, the current poor response and selectivity of TEA gas
materials should improve because many of the specific surface areas and porosities of
these materials cannot adsorb enough target gas. Currently, polymetallic composites are
becoming one of the main trends in TEA sensors, and the improvement of composite
materials often increases the specific surface area and porosity of the material. Second,
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the operating temperature of most TEA sensors is still high, most above 100 ◦C; graphene
material is usually one of the choices to solve the high working temperature because of the
unique properties of graphene composite materials. Third, many TEA-sensing materials
are still in the laboratory stage, and practical TEA sensors that can be used in industrial
production need to be developed and produced. This review provides a summary of
existing techniques and materials and aims to improve the sensitivity performance of the
TEA sensors, which may pave the way for the development of more advanced sensors in
the future.
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