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Abstract: Although several biomedical assays have been developed to screen for antibodies against
SARS-CoV-2, very few can be completed without drawing blood. We developed a rapid lateral flow
screening tool that used saliva samples and yielded rapid results that could be quantified using a
cell phone. This assay provided the sensitive detection of IgG antibodies against SARS-CoV-2 within
10 min. We started by synthesising, modifying, and characterising gold nanoparticles. Using these
particles as a coloured label, we developed a lateral flow strip made of nitrocellulose, glass fibre, and
cellulose material. We quantified our visual results using pictures acquired with a cell phone and
calculated a limit of detection of 4 ng/mL of antibodies against the SARS-CoV-2 spike protein.
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1. Introduction

The COVID-19 pandemic was caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) [1]. This virus has impacted the health, employment, and lifestyle of
people across the globe [2]. This worldwide crisis has led to an increased need for research
pertaining to prevention, treatment, and testing, including antigen and antibody assays.
For diagnostic antigen detection, a real-time reverse transcriptase chain reaction has been
commonly used throughout the pandemic [3]. Additional techniques have been developed
for antigen detection, including nucleic acid amplification tests [3], fluorescence assays [4],
surface-enhanced Raman scattering techniques [5], and electrochemical assays [6]. In con-
trast to these diagnostic methods, our work focused on antibody testing, which can be used
to identify individuals who have been infected with COVID-19 in the past [7] or who have
developed antibodies through vaccinations [8]. This information can be used to inform
healthcare professionals and public health experts about the spread of the disease and
protect against the virus [9].

Studies by Hall et al. [10] and Lumley et al. [11] have shown that the development of
COVID-19 antibodies yields an increased immunity to the virus. The presence of antibodies
leads to a less severe illness. When a person is reinfected with COVID-19 after a previous
infection or experiences a breakthrough infection after a vaccination, the individual is
less likely to face severe symptoms, hospitalisations, or death if they have pre-existing
antibodies for the SARS-CoV-2 virus [12].

There are multiple varieties of COVID-19 antibodies, which have separate and distinct
viral protein targets. For instance, there are IgM and IgG antibodies that target both
viral spike (S) proteins and nucleocapsid (N) proteins [9]. The antibodies against the
N viral protein only develop from an infection and not a vaccination [9]. COVID-19
mRNA vaccinations work in part by encoding the S “spike” protein, to which the body
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develops antibodies; the same antibodies also develop from an infection [9]. Therefore, by
screening for antibodies against the S protein, it is possible to identify individuals who
have antibodies through vaccination and/or from an infection. The assay reported here
detected anti-SARS-CoV-2 spike protein S1 antibodies and anti-SARS-CoV-2 spike protein
S2 antibodies.

SARS-CoV-2 antibody assays often require blood samples [13–27]. Our test used saliva,
which is less invasive and can be easily collected by the patient at point-of-care or at-home
settings. Saliva-based COVID-19 antibody assays have been developed that use ELISA [28],
electrochemical processes [29], Simoa [30] or Luminex instrumentation [31,32], and optical
interferometry [33]. Our lateral flow assay (LFA) is advantageous because it is cost-effective,
simple, and can be administered without elaborate instrumentation. Table 1 compares the
proposed assay with the pre-existing LFAs for antibodies against SARS-CoV-2 [13–21,34,35].
Of these pre-existing assays, only two use saliva samples [34,35]. Our method offers unique
advantages due to a combination of a quick processing time (10 min) and low detections
limits. In addition to these advantages, our assay does not require a swab for the sample
collection. Previous studies have shown that the concentration of SARS-CoV-2 antibodies
in saliva are a thousand times lower than in blood [28]. With our highly sensitive lateral
flow assay, we could detect antibodies even at those low levels without using invasive
sampling methods.

The proposed LFA used colloidal gold nanoparticles (AuNPs), which offer advantages
over other commonly used probes such as latex beads, fluorescent particles (e.g., europium
beads and quantum dots), and colloidal carbon. Compared with AuNPs, latex beads
(polystyrene particles) yield a higher detection limit for LFAs [36] and require a coloured
dye [37] in contrast to the inherent colour of gold. Fluorescent probes have relatively high
sensitivity but have a higher toxicity and require an additional reader or laser equipment
for the visualisation [38,39]. Colloidal carbon is black in colour and yields a high sensitivity
in LFAs; however, its propensity for non-specific binding and its amorphous shape present
major challenges [38]. Oliveira-Rodríguez et al. compared the effectiveness of gold and
carbon nanoparticles as labels for an LFA to detect extracellular vesicles. The researchers
observed a lower limit of detection and stronger linearity between the analyte concentration
and signal response when using AuNPs as opposed to carbon [40]. AuNPs are biocompati-
ble and their surface chemistry allows for an easy conjugation with biological molecules
(e.g., antibodies and peptides) [38]. In the assay proposed here, this binding reaction
occurred between the AuNPs and the anti-IgG Fc-specific antibodies. Gold nanoparticles
support the localised surface plasmon resonance (LSPR) effect, which creates a deep red
colour [41]. This conjugation and colour make gold nanoparticles a clearly visible and
effective label in LFAs.

The proposed assay detected anti-SARS-CoV-2 spike protein S1 antibodies and anti-
SARS-CoV-2 spike protein S2 antibodies in saliva samples. The samples flowed over a
lateral flow strip. The SARS-CoV-2 antibodies in the saliva sample bound to the gold-
labelled anti-IgG Fc-specific antibodies. The entire complex flowed over the strip and
bound to the immobilised SARS-CoV S1 and S2 antigens on the test line. This produced a
red line to indicate a positive test result. In this paper, we describe the development and
efficacy of this lateral flow saliva test for COVID-19 antibody screening.
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Table 1. Analytical parameters of the proposed test compared with results from the literature for other LFAs.

Test Target Conjugate Limit of Detection Readout Instrument Running Time Sample References

Quantitative
SERS-based LFA IgM, IgG SiO2@Ag SERS tag 1 × 10−3 ng/mL

Portable Raman
spectrometer 25 min Serum [13]

Quantitative
SERS-based LFA IgM, IgG Au GERTs 0.1 ng/mL Raman spectrometer 15 min Serum [14]

Quantitative
Spectrochip-Coupled LFA IgG Au Nps conjugated

SARS-CoV-2 nucleoprotein 0.186 ng/mL Commercial LFA
spectrum analyzer 10–15 min Whole blood,

serum and plasma [15]

Qualitative
SeNps-based LFA IgM, IgG SeNPs conjugated

nucleoprotein 5 ng/mL Camera and image
processing software 10 min Serum, blood [16]

Quantitative
GMR-based LFA IgM, IgG SMNPs conjugated

SARS-CoV-2 NP 5 ng/mL GMR sensor 10 min Serum [17]

Quantitative
colorimetric-fluorescent

dual-mode LFA
IgM, IgG SiO2@Au@QD conjugated

S protein 1:106 dilution
Portable fluorescent

instrument 15 min Serum [18]

Quantitative protein-based
fluorescence LFA IgM, IgG SiO2@DQD conjugated

S protein 1:107 dilution
Portable fluorescent

strip reader 15 min Serum [19]

Qualitative LFA IgG AuNPs conjugated
anti-human IgG antibodies - - 15–20 min Serum [20]

Qualitative LNPs
-Based LFA IgG LNPs functionalized with

anti-human IgG antibodies - Portable fluorescence
reader 10 min Serum [21]

Quantitative magnetic
AuNps-based LFA IgG Magnetic AuNPs

conjugated S1 or NCP 0.3 µg/mL Camera and image
processing software 25 min Saliva [34]

Dual lateral flow opti-
cal/chemiluminescence

immunosensor
IgA GNP-labelled anti-IgA -

Complementary Metal
Oxide Semiconductor
camera and portable

charge-coupled device

15 min Saliva [35]

Quantitative LFA IgG AuNPs conjugated
anti-human IgG antibodies 4 ng/mL Camera and image

processing software 10 min Saliva Proposed
assay

GERTs: gap-enhanced Raman tags; SeNps: selenium nanoparticles; QD: quantum dot; NCP: nucleocapsid protein; GMR: giant magnetoresistance; LNPs: lanthanide-doped nanoparticles.
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2. Materials and Methods
2.1. Materials and Reagents

The anti-IgG Fc-specific antibodies were purchased from Sigma Aldrich™ (Burling-
ton, MA, USA). All other antibodies and proteins were purchased from Sino Biological™
(Beijing, China). The glass fibre conjugate pad (Standard 14) was obtained from Cytoviva™
(Auburn University, AL, USA). The Hi-Flow Plus 120 nitrocellulose membrane cards, the
cellulose fibre pad (C083), and the rest of the chemical reagents were purchased from Sigma
Aldrich™ (Burlington, MA, USA).

2.2. Preparation of Colloidal Gold Nanoparticles

The gold nanoparticles were prepared following a procedure based on the method
proposed by Turkevich [42] and optimised by Frens [43]. The preparation procedure was as
follows: 100 mL of ultrapure water was heated to approximately 85 ◦C and the temperature
was maintained throughout the reaction. Whilst under constant agitation, 1 mL of 1% gold
chloride solution was added, followed by 1.75 mL of 1% sodium citrate. The solution was
incubated for 15 min. The same volumes of the gold chloride and sodium citrate solutions
were added again, followed by a second 15 min incubation period, and then allowed to
cool. The prepared gold nanoparticle solution was dark red in colour and was stored at
4 ◦C.

2.3. Nanoparticle Modification

The AuNPs were modified with anti-IgG Fc-specific antibodies. This modification
occurred through passive absorption, a process whereby van der Waals and ionic forces
allow the citrate molecules surrounding the gold to be displaced by the antibody, which then
directly associates with the AuNPs [44]. Prior to the conjugation reaction, the antibodies
were purified using a spin column from Abcam™ (Cambridge, UK).

The steps of the modification process are shown in Figure 1. First, the pH of the
nanoparticles was increased to approximately 7.5 with potassium carbonate. A 20 µL
aliquot of 0.5 mg/mL antibody solution was added to 0.5 mL of the gold nanoparticle
solution whilst being vortexed. The reaction was incubated for 30 min. A total of 100 µL
of 5% bovine serum albumin (BSA) suspended in diluted phosphate-buffered saline (PBS)
was then added and the solution was vortexed for 1 h. The modified nanoparticle solution
was centrifuged and the pellet was resuspended in 100 µL of the resuspension buffer. The
resuspension buffer was phosphate-buffered saline (PBS)-diluted by a factor of 10 with
1% sucrose. This resuspension resulted in a conjugated nanoparticle solution that was ten
times more concentrated than the original nanoparticle solution.

Figure 1. Gold nanoparticle modification process. (a) An AuNP is suspended in a citrate solution;
(b) antibodies associated with the AuNP; (c) modified AuNP after blocking the surface with bovine
serum albumin (BSA).

2.4. Nanoparticle Characterisation

The nanoparticles were characterised at three stages using dynamic light scattering
(DLS) by a Malvern Zetasizer Pro (Figure 2a) and a Cytation 5 UV-Vis reader by Biotek™
(Winooski, VT, USA) (Figure 2b). DLS was used to measure the hydrodynamic radius
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of the particles and Cytation 5 provided the absorbance spectra. For both analyses, the
spectra were obtained for the AuNPs before the modification, after passive absorption
with the anti-IgG Fc-specific antibody, and at the end of the modification process when
the antibody—AuNP complex had been blocked with 5% BSA. The bare AuNPs were also
photographed using a scanning electron microscope (SEM) (Figure 3). The instruments used
were a JEM-1400 by JEOL™ (Tokyo, Japan) and an Orius SC100 by Gatan™ (Pleasanton,
CA, USA).

Figure 2. Characterisation spectra for AuNPs at three stages of the modification process: (a) DLS
spectra for the bare AuNPs, AuNPs with antibodies, and the AuNPs with antibodies and BSA.
(b) UV-Vis spectra for the same AuNP solutions.

Figure 3. SEM image of AuNPs before modification.

2.5. Preparation of the Test Strip

The layout of the test strip is displayed in Figure 4. The card material included a
nitrocellulose membrane with adhesive at both ends. This material was cut into strips with
a width of 0.5 cm and length of 6 cm. Glass fibre and cellulose were cut into pads that were
0.5 cm wide and 2 cm long and set aside. The glass fibre and cellulose pads acted as the
sample and wicking pad, respectively.
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Figure 4. Lateral flow strip diagram. The control line was formed using human IgG and the test
line was formed using SARS-CoV-2 S1 and S2 spike proteins. The conjugate pad contained AuNPs
modified with anti-IgG Fc-specific antibodies.

The nitrocellulose strips were placed in a humidity chamber for 15 min. After the
humidification, the antibodies were added to form the test and control lines. The test line
was formed by pipetting 5 µL of a SARS-CoV-2 spike protein S1 and S2 antigen solution
(0.5 mg/mL) in a line formation on the nitrocellulose strip. The control line was formed
using the same method but with human IgG (0.5 mg/mL). The strips were dried at 37 ◦C
for 1 h. The strips were blocked with diluted tris-buffered saline containing 2% BSA and
0.1% poly-vinyl alcohol for 2 h. The strips were then washed 3 times with diluted PBS with
0.05% Tween 20 and dried.

The modified nanoparticles (10 µL) were added to the 0.5 cm edge of the glass fibre
pad and dried for 10 min before being pressed onto an adhesive end of the nitrocellulose
strip. This formed the sample pad. The cellulose pad was added to the other adhesive end
of the strip to act as the wicking pad.

2.6. Control Line Selection

As shown in Figure 4, the lateral flow strips had a positive control line in addition
to the test line. After running the lateral flow strip, a red control line indicated that the
lateral flow results were valid. For this line, we used human IgG. This antibody was chosen
because it reliably bound to the anti-IgG Fc-specific antibody that was immobilised on the
AuNPs. This binding occurred whether or not there were SARS-CoV-2 antibodies in the
saliva sample. Therefore, it was an effective positive control to indicate that the lateral flow
strip was functioning and that the nanoparticles had migrated across the strip.

2.7. Sample Preparation

Healthy human saliva was collected and stored at −20 ◦C. Before use, the saliva was
centrifuged for 10 min at 7000× g. The supernatant was combined with a lateral flow
running buffer using 10 µL of saliva for every 100 µL of buffer. The running buffer was
composed of 1% BSA, 0.5% sucrose, 0.05% Tween 20, and PBS diluted by a factor of 10.
To create the positive samples, we added a SARS-CoV-2 antibody solution to the saliva
containing antibodies against SARS-CoV-2 spike protein S1 and SARS-CoV-2 spike protein
S2. The total antibody concentrations ranged from 10 ng/mL to 100 µg/mL. All antibodies
in the saliva were added by the researchers. Therefore, the exact concentrations were
known and an additional concentration analysis and validation were not necessary. The
presence of the antibodies was proven using the LFA.
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2.8. Lateral Flow Process

The lateral flow process is presented in Figure 5. The running buffer contained 1%
BSA, 0.5% sucrose, 0.05% Tween 20, and diluted PBS.

Figure 5. Schematic of the lateral flow process and result interpretation: (a) 10 µL of the sample
solution was pipetted onto a glass fibre pad; (b) 100 µL of running buffer was added to the same
pad; (c) the sample and buffer migrated upward over the entire strip; (d) in positive samples, the
SARS-CoV-2 antibodies in the saliva associated with the modified AuNPs on the conjugate pad and
continued to flow over the strip; (e) in positive samples, the antibody—AuNP complex associated
with the immobilised proteins on the test line to form a red line; (f) in all samples, the extra-modified
AuNPs associated with the IgG antibodies on the control line to form a red line; (g) the results were
read based on the presence or absence of the test line. The red control line indicated that the assay
results were valid.

3. Results
3.1. Characterisation Results

The DLS and UV-Vis results are shown in Figure 2. The bare AuNPs, antibody—AuNP
complex, and the blocked complexes had a peak size of 32.3 nm, 59.07 nm, and 125.6 nm,
respectively, as determined by DLS. This increase in size indicated that the passive absorp-
tion and blocking procedures successfully coated the surface of the gold nanoparticles. The
UV-Vis spectra presented peak absorbances at 520 nm, 530 nm, and 535 nm, for AuNPs
(Figure 1a), the antibody—AuNP complex (Figure 1b), and the blocked complex (Figure 1c),
respectively. This increase in the peak absorbance wavelength indicated that the diameter
of the NPs increased and the modification had taken place. The modification process led
to a slight aggregation. This contributed to the red shift and increased the variance, as
indicated by the broadness of the UV-Vis curve. The spectra for the bare AuNPs, AuNPs
with antibodies, and the AuNPs with antibodies and BSA corresponded with steps a, b,
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and c in Figure 1, respectively. A SEM image of the AuNPs is provided in Figure 3. The
average size of the AuNPs was determined by SEM (~35 nm).

3.2. Qualitative Results

The assay result was visually observed ten minutes after the addition of the sample
and running buffer. The presence of two red lines indicated a positive result, meaning that
SARS-CoV-2 antibodies were detected in the saliva sample. The observed colour of the test
line was more intense for the positive samples with higher antibody concentrations. Lines
were observed with the following antibody concentrations in the diluted saliva samples:
100 µg/mL, 10.0 µg/mL, 1.0 µg/mL, 100 ng/mL, and 10.0 ng/mL. All those samples
showed positive results. However, the 100 ng/mL and 10.0 ng/mL samples showed the
faintest lines. Photos of the strips are provided in Figure 6. The control and test lines shown
in Figure 6 were made with small circles of antibodies on the strip instead of straight lines
across the strip (as shown in Figures 4 and 5). This was done to save the biological reagents
during the development process.

Figure 6. Lateral flow strips showing results for a range of antibody concentrations: (a) 100 µg/mL;
(b) 10.0 µg/mL; (c) 1.0 µg/mL; (d) 100 ng/mL; (e) 10.0 ng/mL; (f) 0.00 ng/mL (negative result).

3.3. Quantitative Results

A cell phone was used to take pictures of the lateral flow strips after running the
samples with varying antibody concentrations ranging from 0.0 µg/mL to 100 µg/mL. The
colour intensity of the test line in these images was analysed with ImageJ™. Six strips were
analysed for each concentration and the colour intensity values were compared with the
corresponding value from the negative results. Using a one-tailed t-test, we concluded
that the difference in colour intensity between the positive strips and negative strips was
statistically significant at a 95% confidence level for the strips with 100 µg/mL, 10.0 µg/mL,
1.0 µg/mL, 100 ng/mL, and 10 ng/mL of SARS-CoV-2 antibodies in the saliva sample.
A calibration curve was created to show the correlation between the difference in colour
intensity and the concentration (Figure 7).

The minimum distinguishable signal was calculated by considering the mean blank
signal and three times the standard deviation of the blank signals [45]. This value was
the minimum difference in colour intensity that the lateral flow strip had to show to be
considered as a positive result. This minimum signal was calculated to be 3.33 arbitrary
units. To calculate our limit of detection, we used our calibration curve to convert this
value into the corresponding concentration value of 4 ng/mL. The same method was used
to calculate the limit of quantification, except that the standard deviation was multiplied
by ten as opposed to three. The limit of quantification was calculated to be 1.32 µg/mL.
Figure 8 shows our results in comparison with the minimum distinguishable signal.



Chemosensors 2022, 10, 234 9 of 12

Figure 7. Calibration curve showing the relationship between the colour intensity of the test line and
the antibody concentration in the saliva. The equation of the fitted line was y = 17.7 + 2.66 lnx and
R2 = 0.941.

Figure 8. Colour intensity results in comparison with minimum distinguishable signal.

A total of 15 positive saliva samples were tested. For every positive antibody con-
centration, 3 strips were made and run. All 15 strips yielded a positive result, thereby
indicating a 0% false negative rate. We also ran 15 strips without antibodies to test for false
positives. Of these 15 strips, one strip showed invalid results because the AuNPs did not
run over the strip. The other 14 strips showed a negative result. Therefore, we obtained a
0% false positive rate.

4. Discussion

The proposed assay is a rapid saliva-based antibody screening tool for SARS-CoV-2.
We started by synthesising, modifying, and characterising gold nanoparticles. We then
used their optical properties to create an antibody screening tool that could be read with
the naked eye in just 10 min and quantified using a cell phone.

Our quantification method required a consistent lighting scheme to avoid changes
in image colour due to external lighting. For a further development, a cell phone adapter
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could be created that controls the lighting shown in the photo [35]. Additionally, the
quantification process could be enhanced by developing a mobile application for an on-the-
go image analysis.

By using saliva samples, we eliminated the need for blood samples or swabs. One
limitation of saliva samples is their low concentration of antibodies. Typical levels of
IgG antibodies in human saliva are approximately 15 µg/mL compared with 15 mg/mL
in serum or blood [28]. After exposure to COVID-19, the concentration of SARS-CoV-2
IgG antibodies in saliva reaches 25.5 ± 47.7 µg/mL [46]. Our calculated detection limit
(4 ng/mL) was three orders of magnitude below this level and lower than the limit of
detection for pre-existing saliva-based antibody LFAs for SARS-CoV-2 [34]. Table 1 shows
a comparison between the proposed assay and other LFAs previously reported in the litera-
ture for the detection of SARS-CoV-2 IgG antibodies in different samples [13–21,34,35]. Our
method exhibited a lower limit of detection than other quantitative LFAs based on an image
analysis and magnetic measurements [16,17,34]. Other tests based on surface-enhanced
Raman spectroscopy, fluorescence spectroscopy, and reflectance measurements showed
lower limits of detection [13–15,19]. However, they required more complex conjugates
and instruments that, despite being portable, are expensive and more complicated to use
and require trained personnel to perform the analysis. The methodology described here
is advantageous because low limits of detection were achieved using saliva samples and
simple Au nanoparticle-based conjugates and image analyses.

As the pandemic approaches its final stages and public health authorities continue
to monitor COVID-19 immunity levels across populations, efficient and accessible ways
to identify individuals with and without SARS-CoV-2 antibodies are required. Previous
studies have shown the correlation between saliva and the serum levels of IgG antibodies
for COVID-19. Based on this, salivary studies may be a non-invasive alternative to serology
testing and can yield helpful information regarding immunity. By using our method,
COVID-19 antibodies can rapidly be detected even at low levels and quantified using a
regular cell phone.
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