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Abstract: Rapid and early diagnosis of lethal coronavirus disease-19 (COVID-19) caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue considering global
human health, economy, education, and other activities. The advancement of understanding of the
chemistry/biochemistry and the structure of the SARS-CoV-2 virus has led to the development of
low-cost, efficient, and reliable methods for COVID-19 diagnosis over “gold standard” real-time
reverse transcription-polymerase chain reaction (RT-PCR) due to its several limitations. This led to
the development of electrochemical sensors/biosensors for rapid, fast, and low-cost detection of
the SARS-CoV-2 virus from the patient’s biological fluids by detecting the components of the virus,
including structural proteins (antigens), nucleic acid, and antibodies created after COVID-19 infection.
This review comprehensively summarizes the state-of-the-art research progress of electrochemical
biosensors for COVID-19 diagnosis. They include the detection of spike protein, nucleocapsid protein,
whole virus, nucleic acid, and antibodies. The review also outlines the structure of the SARS-CoV-2
virus, different detection methods, and design strategies of electrochemical SARS-CoV-2 biosensors
by highlighting the current challenges and future perspectives.

Keywords: SARS-CoV-2; electrochemical transduction; immunosensors; aptasensors; bioreceptors;
serological test

1. Introduction

Since the first case in December 2019 in Wuhan, China, the global outbreak of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a life-threatening
respiratory infectious coronavirus disease-19 (COVID-19) that has significantly affects
the global human health, socio-economy, education, national financial policies, and other
activities [1,2]. World Health Organization (WHO) declared COVID-19 as a pandemic
on 12 March 2020, due to the rapid human-to-human transmission of the virus with the
primary symptoms of fever, coughing, short breathing, etc. [3]. The human-to-human
rapid transmission of this virus can occur through the droplet, contact, airborne, fomite,
fecal-oral, and bloodborne transmissions.

A person affected with SARS-CoV-2 virus or a COVID-19 patient can remain asymp-
tomatic without showing any signs or mild symptoms [1–3]. These asymptomatic COVID-
19 patients are the major spreaders of the SARS-CoV-2 virus. Therefore, within a short
time, the SARS-CoV-2 virus spread all the six continents of the world with the total number
of cases as of 29 May 2022 was over 531 million and total deaths of over 6.31 million [4].
Even though about 65% of the world population has been vaccinated with at least one dose
of WHO-approved vaccines [5], the number of virus-infected people and the associated
deaths are still increasing. This is mainly due to the mutation of the SARS-CoV-2 virus over
time by genetic variation in the population of circulating viral strains that limit the efficacy
of COVID-19 vaccines [6].

Thus, the best solution to control this lethal disease is still isolation of the infected pa-
tients through the earlier detection of COVID-19. At present, real-time reverse transcription-
polymerase chain reaction (RT-PCR) is the ‘’gold standard” method for diagnosing COVID-
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19 disease that is based on the molecular testing of single-strand ribonucleic acid (ssRNA)
from the SARS-CoV-2 virus (Figure 1a). Nevertheless, RT-PCR testing is time-consuming,
costly, and requires a specialized laboratory setup with expensive instrumentations and
trained personnel [7,8]. Furthermore, the highly contagious nature SARS-CoV-2 virus could
enable its faster human-to-human transmission during the sample collection and analyses.
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To overcome these drawbacks, several other molecular testing based on isothermal
nucleic acid (NA) amplification assays, such as loop-mediated isothermal amplification
(LAMP), recombinase polymerase amplification (RPA), deoxyribonucleic acid (DNA) nano-
scaffold-based hybrid chain reaction, and NA sequence-based amplification, have already
been reported (Figure 1a) [9–12]. These methods also exhibit some certain limitations along
with their advantages of being low cost, rapid analyses, and highly sensitive and specific.
For example, LAMP and RPA methods require the design of a complex primer, and the
LAMP method is unable to perform multiplex amplification [10].

In comparison to the above diagnosis methods, lateral flow immunoassay (LFIA)
platforms with optical detection (colorimetry/fluorescence), enzyme-linked immunosor-
bent assay (ELISA), chemiluminescent immunoassay (CIA), and electrochemistry-based
serological test (detection of antibody and antigen) have received much attention for di-
agnosis COVID-19 (Figure 1b) [13–17]. In particular, electrochemistry-based SARS-CoV-2
virus detection systems have received great potential over ‘gold standard’ RT-PCR, NA
amplification assays, and optical methods.

This is due to the superior advantages of electrochemical biosensors and immunosen-
sors, including a short reading time, require a small volume of samples, miniaturization
ability, point-of-care (POC) and point-of-need (PON) testing, and high sensitivity and
specificity [16–20].

Furthermore, electrochemical biosensors and/or immuno-sensors are capable of label-
free and label-based diagnosis of SARS-CoV-2 virus by exploiting redox indicators and
labels [21,22]. Accordingly, a larger number of electrochemical biosensors and immuno-
sensors have been developed for diagnosing COVID-19 by detecting antibodies, antigens
(structural proteins), and nucleic acids of SARS-CoV-2 along with the development of novel
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electrode modifiers and fabrication methods (Figure 1c) [9,16,17,23,24]. This review article
aims at providing recent progress on electrochemical biosensors and immunosensors by
reviewing about 50 research articles for the diagnosis of the SARS-CoV-2 virus along with
the general mechanism of detection and chemical structure of the virus by highlighting the
current challenges and future perspectives.

2. Structure of the SARS-CoV-2 Virus

The SARS-CoV-2 virus is a member of the coronavirus family with a spherical shape
(diameter ~130 nm), a genome size of approximately 30 kb, and ‘spike-like structures’
all over its surface [16,25]. The genome of SARS-CoV-2 is similar to most coronaviruses,
specifically, it is almost 80% and 50% similar to the SARS-CoV and middle east respiratory
syndrome coronavirus (MERS-CoV), respectively [26]. SARS-CoV-2 genome encodes four
structural proteins (nucleocapsid protein (NP), spike glycoprotein (SP), membrane protein
(MP), and envelope protein (EP)) (Table 1), and sixteen non-structural proteins (NSPs) [26].
NSPs generally mediate RNA processing and replication/transcription, modulating the
survival signaling pathway of the host cell, separating the translated protein, binding RNA,
etc. [27].

Table 1. Structure of the SARS-CoV-2 virus and the mass and function of its structural proteins.
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Binds and fuse to the host cell
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Binding to the viral RNA
genome critical for viral

replication and
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MP ~45–60 Viral assembly and shaping
viral envelope.

EP ~ 25–30 Formation of the
viral envelope.

Source: References [26–34].

Among the structural proteins, NP (mass of ~10 kDa) is an important antigen for
SARS-CoV-2 that contribute to packaging viral RNA within the viral envelope and forms a
ribonucleoprotein complex called nucleocapsid, in which RNA carries the virus genetic
information [28,29]. Furthermore, the NP of the SARS-CoV-2 affects host cell responses and
contributes to regulating the viral life cycle. The SP (mass of ~180 kDa) is a transmembrane
homo-trimer with two subunits (S1 and S2) and functioning the virus adhesion and infection
of a host cell [30,31]. The S1 subunit contains a receptor-binding domain (RBD) attached to
a host receptor, whereas the S2 subunit enables the viral and host membrane fusion [31].

The small-sized EP of SARS-CoV-2 with a mass of ~25–30 kDa is composed of an
N-terminal transmembrane domain followed by a C-terminal domain [32]. The main
functions of EP are the formation of the viral envelope required to induce membrane
curvature for viral assembly [33]. EP also mediates host immune responses and contributes
to the virulence phases of the viral life cycle. The MP of SARS-CoV-2 is about 98% similar
to the MP of SARS-CoV, while it is only 38% with the MP of MERS-CoV [34]. The key role
of MP is viral assembly and shaping envelope in conjunction with EP [33].

3. Designing Electrochemical SARS-CoV-2 Virus Biosensors
3.1. Antibody Biosensors

The antibody test is principally based on the detection of antibodies developed in indi-
viduals due to exposure to the SARS-CoV-2 virus [35]. The electrochemical antibody-based
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biosensors probe is based on the utilization of suitable nanomaterials (e.g., self-assembled
monolayer, functionalized graphene, and conducting polymer) modified electrodes for the
immobilization of SARS-CoV-2 structural proteins [36–38]. Subsequently, the SARS-CoV-2
structural proteins are used to anchor the antibodies (anti-IgG or anti-IgM), created in the
biological body fluids of COVID-19 infected patients (Figure 2) [37].
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For a label-free detection, the anchored SARS-CoV-2 antibodies induce a variation in
current, potential, and resistance of the redox indicator (e.g., [Fe(CN)6]3−/4−, [Ru(NH3)6]3+,
etc.) and enabling the label-free diagnosis of COVID-19 [21,22]. In contrast, for label-based
detection of SARS-CoV-2 antibodies, the representatives’ antibodies can be functionalized
with labels (e.g., quantum dots, redox-active molecules, and low-dimensional carbon
materials) prior to the attachment with the biosensor probe [39]. Upon anchoring the
labeled antibodies with a biosensor probe, the labels generate current responses suitable for
the detection/determination of the SARS-CoV-2 virus with high specificity and selectivity.

Label-free sensors are preferable to label-based sensors due to their less complicated
designs, short preparation time, and low cost [40]. However, lack of sensitivity, cross-
reactivity, and interference are major disadvantages of label-free sensors for their practical
application [39]. Even though anybody-based label-free and label-based diagnostic systems
for SARS-CoV-2 and other viruses are rapid and highly specific, their clinical efficacy
for SARS-CoV-2 infection testing is restricted, as it may take several days to weeks to
develop a detectable antibody response in COVID-19 patients after starting to show the
symptoms [35].

3.2. Antigen Biosensors

The antigen test for the diagnosis of SARS-CoV-2 infection is highly sensitive and
accurate and capable of rapid detection of the virus in clinical samples [23]. Therefore,
antigen tests have received emergency authorization from the food and drug administration
(FDA) to diagnose SARS-CoV-2 [41]. For a simple label-free electrochemical detection of
the SARS-CoV-2 virus, the protein receptor antibodies (anti- SARS-CoV-2 SP, anti- SARS-
CoV-2 NP, anti- SARS-CoV-2 EP, and anti- SARS-CoV-2 MP) can be immobilized onto
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nanomaterial-modified electrodes. Subsequently, the whole SARS-CoV-2 virus or the
corresponding structural proteins can bind with the sensors probe (Figure 2) [23,40].

This induces discrimination of the current, potential, and resistance signals of the redox
indicators, enable the label-free diagnosis of COVID-19 [21,22]. Aaptamers, molecularly
imprinted polymer (MIP), and angiotensin-converting enzyme 2 (ACE2) can also be used as
receptors for the construction of antigen biosensors. In contrast, for label-based detection of
the SARS-CoV-2 virus and the corresponding structural proteins, prior labeling of them is
required before anchoring to the sensor probe. Upon anchoring the labeled-virus or labeled-
structural proteins attached to the biosensor probe can generate a current response suitable
for the detection/determination of the virus with high specificity and selectivity [39,40].

3.3. Nucleic Acid Biosensors

Single-strand capture or probe NA (ss-NA) can bind with the target complementary NA
(c-NA) that forms the basis of gene chips, DNA computers, and NA biosensors [22,42,43].
The hybridization between the probe ss-NA and target c-NA converts the recognition event
into a measurable electrical signal. Based on this basis, electrochemical biosensors can
be developed to identify NA copies selectively in SARS-CoV-2 for diagnosing COVID-19
infection (Figure 2). Similar to the antibody and antigen test, both label-free and label-based
electrochemical NA biosensors can also be developed. For this purpose, a sensor probe
can be developed by immobilizing labeled or label-free probe NA onto a nanomaterial-
modified electrode.

In a label-free electrochemical SARS-CoV-2 NA biosensor, the virus c-NA genomic
sequence can bind with the sensor surface by the hybridization with the probe-NA and
induces a variation in electrochemical signals of a redox mediator to diagnose COVID-19.
While, for a label-based system, the label/molecular tag onto the probe NA or target c-
NA can generate a current response upon hybridization between capture NA and target
c-NA, suitable for the detection of SARS-CoV-2 virus with high sensitivity and selectivity.
However, the large genomic sequence of the SARS-CoV-2 virus (~30 kb) can easily form
complicated secondary structures, thus, limiting the accessibility of probe NA to the target
c-NA [44]. Furthermore, the low viral load in real-world samples can induce a low sensitive
signal in a NA biosensor for an unamplified SARS-CoV-2 gene in a COVID-19 patient [44].

4. Electrochemical Biosensors for the Detection of SARS-CoV-2 Virus
4.1. Electrochemical Antibody-Based Detection of SARS-CoV-2 Virus

Antibodies, such as anti-IgG, anti-IgM, and immunoglobin A (anti-IgA), can be devel-
oped from the COVID-19 patients’ body fluids that can be used to detect SARS-CoV-2. The
recent immuno-chromatographic study suggests that both IgG and IgM antibodies exhibit
11.1%, 92.9%, and 96.8% sensitivity of SARS-CoV-2 detection at the early stage (several
days to weeks after the COVID-19 infection), intermediate stage (1–2 weeks after the onset),
and late-stage (more than 2 weeks), respectively [45,46].

Anti-IgA is another major antibody in the respiratory tract that is produced by B-
lymphocytes and expressed after 2 weeks of COVID-19 infection [45,46]. Thus, the detection
of antibodies in human blood serum samples by developing highly sensitive electrochemi-
cal biosensors can be an effective tool for diagnosing COVID-19 infection at the early stage
of infection, in which SP and NP can serve as antigens for the specific binding of antibodies.

The IgG antibody is a lighter and smaller (~150 kDa) antibody compared to the IgM
antibody (~900 kDa) with two antigen-binding sites [47,48]. The anti-IgG can be detected
only after a week of infection without altering its concentration for a long period after
infection and after several weeks, anti-IgG reactivity reaches >98% [49]. Thus, the detection
of anti-IgG has attracted considerable attention over IgM and IgA antibodies. Some selected
examples for the detection of anti-IgG are outlined below.

Electrode materials play a crucial role in improving the sensitivity of electrochemical
detection. This is because electrode materials with high surface area and functionality
could increase the amount of immobilized target-specific antigens or antibodies [50,51]
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and induce to enhance the detection sensitivity with a wide dynamic range and low limit
of detection (LOD). The high electrical conductivity is also crucial for obtaining high
sensitivity, which can be achieved by providing an efficient electron transport channel for
the redox reaction of a redox probe or target analyte.

Among the various nanomaterials for the modification of electrode surfaces for biosen-
sor development, graphene, and its related materials, including graphene oxide (GO) and
reduced graphene oxide (rGO), have attracted significant interest [52,53]. This is mainly due
to their high chemical functionality and surface area, solution processability, and excellent
electron transporting capability [52]. Accordingly, Yakoh et al. reported a label-free elec-
trochemical immunosensor based on a GO-modified paper electrode that can successfully
detect IgG antibodies (Figure 3a) [54].

The IgG antibody can specifically bind with the SARS-CoV-2 SP antigen-modified
GO/paper immunosensor probe that induces the high specificity and sensitivity of COVID-
19 diagnosis in clinical serum samples. Upon forming the anti-IgG/SP antigen complex,
the redox activity of [Fe(CN)6]3−/4− is decreased with increasing the concentration of IgG
antibodies. This can be ascribed to the insulating nature of antibodies, which induce a
decrease in the redox peak current by increasing the charge transfer resistance (Rct) as the
electrode/electrolyte interface.

Concurrently, the immunosensor exhibits a wide linear range for the detection of
anti-IgG with the LOD of 1 ng/mL. In another report, Ali et al. prepared an ultrasensitive
and label-free 3D biosensor based on a micropillar array of Au nanoparticles (AuNPs)
coated with rGO sheets (Figure 3b) [55]. Subsequently, the SARS-CoV-2 NP was immobi-
lized onto the AuNPs/rGO-modified micropillar array via (3-dimethylaminopropyl)-N′-
ethylcarbodiimide (EDC)-N-hydroxysulfosuccinimide (NHS) coupling chemistry. Finally,
the immunosensor array was integrated into a microfluidic channel to complete the electro-
chemical cell.

The as-prepared immunosensor could selectively bind IgG antibodies, which induces
to increase in the Rct for [Fe(CN)6]3−/4− redox couple with increasing the concentration of
IgG antibodies in the detection range of 100 fM to 1 nM and the LOD of 13 fM. The same
research group utilized a similar rGO-modified Au micropillar array for the immobilization
of SARS-CoV-2 SP antigen via EDC-NHS coupling (Figure 3c) [56].

This label-free electrochemical microfluidic immunosensors probe could selectively
bind the IgG antibodies which induces to increase in the Rct values for the redox reaction
of [Fe(CN)6]3−/4− with increasing the concentration of anti-IgG. The corresponding LOD
of the immunosensor was 2.8 × 10−15 M for the detection of anti-IgG. A similar sensing
electrode based on GO and Au nanostar-modified carbon-based screen-printed electrode
(SPE) was developed by Hashemi et al. for the label-free detection of IgG antibodies specific
for SARS-CoV-2 SP antigen with a low LOD and high sensitivity (Figure 3d) [57].

Other than GO and rGO, metal-oxide, conducting polymers, and molecular func-
tionalization of electrodes can be effective substrates for the development of COVID-19
antibody sensors [58–61]. Li et al. prepared a label-free COVID-19 IgG antibody sensing
platform based on microfluidic paper-based analytical devices (µPADs) (Figure 3e) [58]. The
carbon-coated µPAD was modified with ZnO nanowires (NWs) using the hydrothermal
method. Then, the glutaraldehyde and (3-aminopropyl)-trimethoxysilane-modified ZnO
NWs electrode surface was functionalized with SARS-CoV-2 SP for the selective binding
of anti-IgG, specific for COVID-19 infection. The as-prepared electrochemical impedance
spectroscopy (EIS) based label-free immunosensor platform could detect IgG antibodies in
human serum samples up to 1 µg/mL.

To date, electrochemical label-based detection of COVID-19 antibody is less developed
compared to the label-free approaches. This is possibly due to the complicated labeling
steps, long preparation time, and high cost even though label-based detection exhibited
high specificity and selectivity. Ameku et al. reported a label-based method for the detection
of SARS-CoV-2 specific anti-IgG based on a polyglutaraldehyde SPE (Figure 3f) [59].
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of graphene-Au nanostar complex with IgG antibodies against the spike protein of SARS-CoV-2
(adapted with permission from ref. [57]). Copyright 2021 Elsevier. (e) Schematic of the fabrication
of ZnO nanowires-modified paper electrode for EIS-based IgG antibody sensing (adapted with
permission from ref. [58]). Copyright 2021 Elsevier. (f) Schematic representation of the fabrication
of polygluteraldehyde-modified SPE for the label-based detection of IgG antibody along with the
electrochemical responses (adapted with permission from ref. [59]). Copyright 2022 MDPI.

The SPE electrode was functionalized with a B-cell epitope (EP) specific to the SARS-
CoV-2 SP. After the binding of EP, the anti-SARS-CoV-2 IgG antibody (primary antibody)
obtained from COVID-19 patient serum samples was anchored onto the sensor surface.
Subsequently, a secondary antibody labeled with alkaline phosphatase (AP) was attached to
the primary antibody. This AP label induces the electrocatalytic oxidation of hydroquinone
(HQ) diphosphate to HQ, and the corresponding oxidation current is proportional to the
concertation of IgG antibodies. This label-based platform was found to diagnose COVID-19
infection with 93% selectivity and 100% specificity.
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Along with IgG antibodies, the detection of anti-IgM is also significantly important
for the early diagnosis of COVID-19 infection (between 4 and 10 days). To the best of
the author’s knowledge, no reports are available for the electrochemical detection of IgM
antibodies only for diagnosing COVID-19 infection. However, reports are available for
detecting both IgG and IgM antibodies. Torrente-Rodrı’guez et al. developed a SARS-CoV-2
portable rapidPlex for the ultrasensitive detection of SARS-CoV-2 NP, anti-IgG, anti-IgM,
and inflammatory biomarker C-reactive protein (CRP) (Figure 4a) [62].
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inflammatory biomarker C-reactive protein (CRP), the photograph of mass-producible sensor arrays,
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printed circuit board (adapted with permission from ref. [62]). Copyright 2020 Elsevier. (b) Schematic
illustration of the (i) design of portable and rapid electrochemical detection of IgG and IgM antibodies
against SARS-CoV-2 spike glycoprotein, (ii) surface functionalization of the carbon-based working
electrode with biotinylated receptor-binding domain protein, (iii) binding of IgG or IgM antibodies on
the sensor probe and subsequent labeling with alkaline phosphatase-conjugated detection antibody,
and (iv) reaction mechanism for the electrochemical oxidation of p-aminophenyl phosphate substrate
(adapted with permission from ref. [63]). Copyright 2022 Elsevier.
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This ultra-rapid detection platform was developed using a laser engraved 1-pyrenebutyric
acid (PBA) functionalized graphene electrodes. This multiplexed sensor, specifically, for
the detection of IgG and IgM antibodies was modified with SARS-CoV-2 SP for their
specific binding of them via EDC and NHS chemistry. Upon anchoring the IgG and IgM
antibodies onto the corresponding immunosensor probe, the electrochemical redox activity
of K4[Fe(CN)6]/K3[Fe(CN)6] was varied with the concentration of IgG and IgM.

This induces the ultrasensitive, highly selective, and rapid electrochemical detection
of antibodies in human blood and saliva samples, which can be monitored remotely. In
another report, Peng et al. prepared a portable and label-based detection platform for
the detection of IgG and IgM antibodies specific for SARS-CoV-2 SP in human serum
samples (Figure 4b) [63]. This sensing platform is based on a screen-printed electrode,
which sequentially underwent a series of surface functionalization steps including (i) elec-
trochemical activation, (ii) immobilization of streptavidin, (iii) hybridization of biotinylated
SARS-CoV-2 SP RBD.

Then, the target primary IgG/IgM antibodies specific for SARS-CoV-2 SP, in the
human serum sample, was anchored with the SARS-CoV-2 SP RBD. Subsequently, an
AP labelled secondary anti-human antibody specific to IgG/IgM antibodies was bound
with the IgG/IgM antibodies. This AP labeled secondary antibody catalyzes the redox
reaction of p-aminophenyl during chronoamperometry (CA) with the production of the
current signal.

This variation of the corresponding current responses with the variation of the
concentration of IgG/IgM antibodies enables the detection of them in the range of
10.1 ng/mL–60 µg/mL and 1.64 ng/mL–50 µg/mL, respectively, with an assay time of
13 min. Some other researchers developed IgG/IgM sensing platforms based on DNA-
assisted nanopore, SARS-CoV-2 SP-modified Ni(OH)2 NPs bio-conjugate, and SARS-CoV-2
SP/GO-modified paper electrode [54,64,65]. The corresponding analytical performance of
these biosensors are summarized in Table 2.

Table 2. Analytical performance of recently developed electrochemical biosensors for the detection of
SARS-CoV-2 antibodies.

Electrode Detection Method Target Antibodies LOD Linear Range Ref.

Paper-based ePAD SWV IgG/IgM 0.96/0.14 ng/mL 1–1000 ng/mL [54]

AuNPs/rGO EIS IgG 13 fm 100 fm–1 nM [55]

Au micropillar/rGO EIS IgG 2.8 fm - [56]

Paper-based µPADs EIS IgG 0.4 pg/mL 10–1000 ng/mL [58]

Au electrode EIS IgG 1.99 nM 30 nM–150 nM [60]

Au based well plate EIS IgG - - [61]

SPE CA IgG/IgM 10.1/1.64 ng/mL
10.1 ng/mL–60 µg/mL

and
1.64 ng/mL–50 µg/mL

[63]

Ni(OH)2/SPE DPV IgG/IgM 0.3 fg/mL 1 fg/mL–1 µg/mL [65]

Note: SWV = square wave voltammetry, DPV = differential pulse voltammetry.

4.2. Electrochemical Antigen-Based Detection of SARS-CoV-2 Virus

The detection of the SARS-CoV-2 virus protein antigens, including SP, NP, and whole
virus, providing the possibility of early diagnosis of COVID-19. Accordingly, various
strategies have recently been developed, and many of them are now commercially available
for the early diagnosis of COVID-19 [66]. This section of the review discusses the recently
developed antigen-based electrochemical sensors/biosensors for COVID-19 diagnosis by
dividing into three subsections, namely the detection of SP, detection of NP, and detection
of whole virus or virus particles.
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4.2.1. Detection of Spike Proteins

The SP is the key trans-membrane protein of the SARS-CoV-2 virus with diverse amino
acid sequences providing the precise diagnosis of COVID-19 infection [67,68]. Therefore,
intensive efforts have been made for the development of electrochemical SP sensors by
developing novel chemistry, electrode materials, and capture probe (e.g., antibody, aptamer,
and angiotensin-converting enzyme).

Antibody capture probe-based electrochemical biosensors or immunosensors display
high specificity and reliability for the detection of target biomolecules [43]. Accordingly,
anti-SARS-CoV-2 capture probe-based immunosensors have received potential interest
for screening SARS-CoV-2 protein antigens. Adeel et al. developed an ultrasensitive and
label-free electrochemical SP sensing platform based on a functionalized self-supported
graphitic carbon foil electrode (Figure 5a) [69].

The electrode was prepared by mild acidic treatment with partial oxidation and exfoli-
ation of graphitic carbon foil electrode. The subsequent ethylenediamine functionalization
of the electrode provided a suitable platform for the covalent attachment of the anti-SARS-
CoV-2 SP capture probe. Upon the binding of specific SARS-CoV-2 SP onto the sensor
probe, the electrochemical redox activity of the [Fe(CN)6]3−/4− redox couple was varied
with the concentration of SP.

This enabled the detection of SP within the concentration range from 0.2–100 ng/mL
with a LOD (27 pg/mL) in diluted blood plasma. A similar antibody-capture probe-
based field-effect transistor (FET) was developed by Seo et al. to detect SARS-CoV-2
SP in COVID-19 infected patients’ samples [70]. This graphene-based FET device was
coated with anti-SARS-CoV-2 SP against the SARS-CoV-2 SP using the 1-pyrenebutyric
acid N-hydroxysuccinimide ester.

The effectiveness of the FET device for binding SARS-CoV-2 SP and SARS-CoV-2 was
tested using a cultivated virus, viral antigen, and nasopharyngeal swab samples. The
biosensor could detect SARS-CoV-2 SP at a concentration of 100 fg/mL clinical transport
medium. Similar antibody capture probe-based SARS-CoV-2 SP detection platform was
developed by Malla et al. [71]. This label-based and POC biosensor is prepared using an
SPE electrode modified with antibody-peroxidase-loaded magnetic beads (MBs) that could
detect SARS-CoV-2 SP in the range from 3.12–200 ng/mL with the LOD of 0.20, 0.31, and
0.54 ng/mL in human saliva, urine, and serum, respectively.

Even if antibody capture probes exhibit high specificity, several limitations of anti-
bodies, such as low stability, high cost, short shelf-life, and immunogenicity prompted to
use of alternative capture probes for the development of biosensors and other biological
applications [43,51]. The aptamer is one of the suitable alternatives to antibodies that can
overcome the intrinsic limitations of immunosensors. Aptamers are peptide or NA (DNA
or RNA) molecules with high stability, specificity, long-shelf-life, low immunogenicity, and
easy synthesis and functionalization [52].

Thus, aptamers have attracted wide interest in developing electrochemical biosen-
sors to detect various target biomolecules [43,51,52]. Idili et al. prepared a label-based
electrochemical aptasensor for the detection of SARS-CoV-2 SP that is based on an Au
electrode modified with methylene blue derivative (MB2) labeled aptamer (Figure 5b) [72].
The binding event of SARS-CoV-2 SP with the aptamer induces the variation of aptamer
conformation, which in turn varies the position of the redox label MB2. This generated
a quantitative electrochemical signal related to the variation of the concertation of SARS-
CoV-2 SP.

The aptasensor could detect the picomolar level of SP with high specificity. In another
report, Curti et al. reported another label-based aptasensor based on single-walled carbon
nanotube screen-printed electrodes (SWCNT-SPEs) functionalized with a redox-tagged
DNA aptamer [73]. The selective binding of SARS-CoV-2 SP folded the DNA aptamer
which reduces the efficiency of the electron transfer between the AttoMB2 redox label and
the electrode surface. Thus, the redox signal of the redox tag is suppressed by increasing
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the concertation of SARS-CoV-2 SP and forms the basis of SP quantification. The aptasensor
exhibited high selectivity and specificity with the LOD of 7 nM.

ACE2 is another potential and selective receptor for binding SARS-CoV-2 SP with
nanomolar range affinity [74]. Furthermore, the active site of the ACE2 is located away from
the SARS-CoV-2 binding site, thus, resulting in an effect on the electrochemical signal upon
binding with SARS-CoV-2. Inspired by this advantage of ACE2, Vezza et al. developed an
accurate and rapid diagnostic device for the detection of SARS-CoV-2 SP that is based on a
printed circuit board (PCB) electrode (Figure 5c) [75].

For the fabrication of the sensing platform, the PCB electrode was modified with
1H,1H,2H,2H-perfluorodecanethiol (PFDT) followed by the ACE2 functionalization via
physisorption. The selective binding of SARS-CoV-2 SP onto the sensor probe induces to
decrease in the redox activity of [Fe(CN)6]3−/4− and increases the Rct in EIS measurement
by increasing the concentration of SP. This enabled the detection of SARS-CoV-2 SP with
the LOD of 1.68 ng/mL. Similarly, another SP sensing platform was developed that is based
on MBs and AuNPs conjugated to ACE2 for the capturing and detection of SARS-CoV-2
SP [76].

This magneto-assay modified SPE exhibited 93.7% specificity for SARS-CoV-2 SP with
the LOD of 0.35 ag/mL. In another report, Lima et al. prepared a low-cost advanced
diagnostic device based on AuNP-modified graphite leads. The cysteamine modification
of AuNPs enabled the covalent immobilization of ACE2. The subsequent binding of
SARS-CoV-2 SP to the ACE2 receptor induces a decrease in the electron transfer kinetics
of [Fe(CN)6]3−/4− redox probe and decreases the oxidation current by increasing the
concentration of SP. This label-free approach is capable of detecting SP in clinical saliva and
nasopharyngeal/oropharyngeal with excellent sensitivity, specificity, and accuracy. This
research further demonstrated that ACE2 is an effective, specific, and selective receptor for
anchoring SARS-CoV-2 SP.

In the quest of replacing the labile and expensive biological receptor, recently, synthetic
receptor or plastic antibodies, such as molecularly imprinted polymer (MIP) have received
potential interest for biosensors, bioanalyses, drug delivery, and disease diagnosis [77]. In
particular, MIP has attracted significant interest as a receptor for biosensors development,
mainly due to its antibody-like ability to bind and discriminate between molecules, excellent
chemical and thermal stability, and low cost [78]. Taking the advantages of MIPs, Ayankojo
et al. developed an electrochemical biosensor for the detection of SARS-CoV-2 SP that is
based on disposable Au-based thin-film electrodes (Au-TFME) chip modified with MIP
film (Figure 5d) [79].

The selectivity of the MIP towards SARS-CoV-2 SP was achieved by harnessing the
covalent imprinting approach between 1,2-diols moieties of SARS-CoV-2 SP and boronic
acid groups of 3-aminophenyl boronic acid (APBA). The operation principle of the sensor
is based on the variation of the charge transfer between the Au-TFME and [Fe(CN)6]3−/4−

redox probe, through the imprinted pathways generated within SARS-CoV-2 SP-MIP film.
Upon the rebinding of the SARS-CoV-2 SP presence in the analyte solution, the charge

transfer kinetics of the redox probe is hindered, leading to a decrease in the peak current
proportional to the concentration of the SARS-CoV-2 SP. Accordingly, the sensor could
detect SP within 15 min with a LOD of 64 fM in COVID-19 patient’s nasopharyngeal
samples. Other works related to the use of antibodies, aptamers, ACE2, and MIPs as
receptors for electrochemical detection of SARS-CoV-2 SP [80–86] and their analytical
performances are summarized in Table 3.
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Table 3. Analytical performance of recently developed electrochemical biosensors for detecting
SARS-CoV-2 SP.

Materials/Electrode Detection
Method Receptors Detection

Medium LOD Linear Range Ref.

Functionalized graphitic
carbon foil DPV antibody blood plasma 27 pg/mL 0.2–100 ng/mL [69]

Graphene FET antibody nasopharyngeal
samples 100 fg/mL - [70]
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Table 3. Cont.

Materials/Electrode Detection
Method Receptors Detection

Medium LOD Linear Range Ref.

MB/APBA/Antibody-
HRP/GLU/SPE SWV antibody human saliva 0.20 ng/mL 3.12–200 ng/mL [71]

Au SWV aptamer serum and
artificial saliva - - [72]

SWCNT-SPE DPV aptamer PBS 7 nM 20–100 nM [73]

PFDT/PCB EIS ACE2 human saliva 38.6 copies/mL - [75]

MB/AuNPs/SPE DPV ACE2 PBS 0.35 ag/mL 0.0009–360 fg/mL [76]

Au-TFME SWV MIP nasopharyngeal
samples 64 fM 0–400 fM [79]

CMCt/Au IDE EIS antibody PBS 0.179 fg/mL 10−20–10−14 g/mL [80]

Au EIS antibody PBS 2.78 nM 30–150 nM [81]

Cu2O NCs/SPCE EIS antibody PBS 0.04 fg/mL 0.25 fg/mL–1 µg/mL [82]

Thin-film Au electrodes EIS aptamer nasopharyngeal
samples - - [83]

AuNPs/SPCE EIS aptamer PBS 1.30 pM (66
pg/mL) 10 pM–25 nM [84]

CNF/AuNP/SPE EIS aptamer PBS 7.0 pM 0.01–64.0 nM [85]

MIP-poly(pyrrole)/Pt Amperometry MIP PBS - 0–25 µg/mL [86]

Note: GLU = glucose, HRP = horseradish peroxidase, antibody, TFME = thin-film metal electrodes, CMCt =
carboxymethylchitosan, IDE = interdigitated electrode, and NCs = nanocubes.

4.2.2. Detection of Nucleocapsid Protein

The NP of SARS-CoV-2 is a potential antigen biomarker for diagnosing COVID-19
infection since it can be available in the nasal swab, serum, and gargle solution samples of
individuals after the first two weeks of COVID-19 infection [87,88].

Therefore, attempts were made to develop highly sensitive electrochemical biosensing
systems based on an antibody, aptamer, and MIP receptors for detecting SARS-CoV-2 NP.
Samper et al. developed a highly sensitive and label-based electrochemical immunoassay
for quantitatively detection of SARS-CoV-2 NP using stencil-printed carbon electrodes
(SPCEs) (Figure 6a) [89]. The abundant carboxyl groups (-COOH) on the SPCEs enabled
the immobilization of anti-SARS-CoV-2 NP via EDC/NHS coupling. Subsequently, the
target SARS-CoV-2 NP was attached to the surface of the sensor via an antibody-antigen
key-lock system flowed the anchoring of HRP labeled anti-SARS-CoV-2 NP.

The HRP-labeled detection antibodies catalyzed the electrochemical oxidation of
3,3′5,5′-tetramethylbenzidine (TMB), creating a current signal that is used for the quantita-
tive detection of SARS-CoV-2 NP. This immunosensor could successfully detect NP with the
LOD of 50 plaque-forming units/mL (PFU/mL) and specificity of 100% in nasopharyngeal
samples. In another report, Białobrzeska et al. investigated the label-free SARS-CoV-2 NP
immunosensing performance based on a series of substrates, including Au, glassy carbon
(GC), and boron-doped diamond electrode (BDD) (Figure 6b) [90].

For the immobilization of anti-SARS-CoV-2 NP, the Au electrode was modified with 4-
aminothiophenol and glutaraldehyde, while both GC and BDD were sequentially modified
with aryldiazonium and protein A-agarose affinity matrix. Thus, the anti-SARS-CoV-2 NP
functionalized electrodes can selectively bind SARS-CoV-2 NP, which induces the variation
in EIS responses for [Fe(CN)6]3−/4− redox probe with the variation of NP concentration.

The immunosensors enabled a fast detection of (less than 10 min) NP with the LOD
of 0.227, 0.334, and 0.362 ng/mL for GC, BDD, and Au electrodes, respectively. Some
other researcher utilized functionalized graphene, BiWO6/Bi2S3/GCE, AuNPs/SCPE,
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AuNPs/poly(aldehyde substituted thiophene) (Pthi-Ald)/indium-tin-oxide (ITO), Au
nanostructured/SPCE, and screen-printed gold (SPG) electrodes for the effective immobi-
lization of anti-SARS-CoV-2 NP and the subsequent binding of SARS-CoV-2 NP [62,91–95].
The corresponding analytical performance of these immunosensors is summarized in
Table 4.

Table 4. Analytical performance of recently developed electrochemical biosensors for detecting
SARS-CoV-2 NP.

Materials/Electrode Detection
Method Receptors Detection

Medium LOD Linear Range Ref.

Graphene DPV antibody blood and
saliva samples - - [62]

COOH-SPCE CA antibody PBS 50 PFU/mL - [89]

Au, GC, and BDD EIS antibody PBS
0.227, 0.334, and

0.362 ng/mL,
respectively

4.4 ng/mL–4.4 pg/mL [90]

BiWO6/Bi2S3/GC DPV antibody PBS 3.00 fg/mL 0.01–1.00 pg/mL [91]

AuNPs/SCPE SWV antibody PBS 0.4 pg/mL 1.0 pg/mL–100 ng/mL [92]

AuNPs/Pthi-
Ald/ITO EIS antibody PBS 0.48 fg/mL 0.0015 pg/mL–150 pg/mL [93]

Au nanostruc-
tured/SPCE EIS antibody PBS diluted

saliva 6 pg/mL 0.01–100 ng/mL [94]

SPG CA antibody wholeserum 50 pg/mL 0–10 ng/mL [95]

Au DPV aptamer PBS 8.33 pg/mL 0–50 ng/mL [96]

MEA EIS aptamer PBS fg/mL level 10−5–10−2 ng/mL [97]

Au IDE EIS aptamer PBS 0.389 fM 1 fM–100 pM [98]

Au DPV aptamer PBS 16.5 pg/mL 0.05–100 ng/mL [99]

Au-TFE DPV MIP nasopharyngeal 27 fM 0.22–333 fM. [100]

Au/graphene/SPCE DPV MIP PBS 3.0 fM 10.0–200.0 fM [101]

Similar to the development of electrochemical aptasensors for the detection of SARS-
CoV-2 SP, aptamers were also used as a receptor for detecting SARS-CoV-2 NP. Tian
et al. constructed a label-based electrochemical dual-aptamer sensor for SARS-CoV-2
NP biosensing, in which metal-organic frameworks (MIL-53(Al)) decorated with Au@Pt
NPs, HRP, dual-aptamer, and hemin/G-quadruplex DNAzymes (GQH DNAzyme/dual-
aptamer/HRP/Au@Pt/MIL-53) served as a nanoprobe for signal amplification (Figure 6c) [96].
The aptasensor was fabricated by the attachment of SARS-CoV-2 NP target-specific SH-
functionalized dual aptamers onto an Au electrode surface via a self-assembled monolayer
(SAM) mechanism.

Then, SARS-CoV-2 NP was anchored with the dual aptamer’s follower by anchoring
SARS-CoV-2 NP with GQH DNAzyme/dual-aptamer/HRP/Au@Pt/MIL-53 nanoprobe to
form a sandwich-type assay. This labeled nanoprobe induced the electrocatalytic oxidation
of HQ in the presence of H2O2 and formed the basis of SARS-CoV-2 NP detection. The
biosensor could selectively detect NP in a wide linear range with a low LOD (8.33 pg/mL).

Qi et al. reported another simple and ultra-trace NP aptasensor using a low-cost
microelectrode array (MEA) chip [97]. This aptamer-modified MEA induced a variation of
capacitance in the solid–liquid interface upon SARS-CoV-2 NP binding with a sensitivity of
pM level. When integrated with an efficient microfluidic enrichment, the sensor could detect
NP within 15 s in a wide linear range (10−5 to 10−2 ng/mL) and low LOD (fg/mL level).
Table 4 summarizes the analytical performance of some other reported electrochemical
aptasensors for the detection of SARS-CoV-2 NP.
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MIP is also used for the electrochemical detection of SARS-CoV-2 NP. In this process, a
functional monomer is polymerized along with the target molecules and acts as a template.
The subsequent removal of the target molecules from the template leaves behind the
polymer along with binding sites of the same target molecule. Raziq et al. reported a
portable poly-m-phenylenediamine (PmPD) based MIP for the detection of SARS-CoV-2
NP (Figure 6d) [100].

For the fabrication of the sensor, PmPD was electrochemically polymerized onto an
Au-thin film electrode (Au-TFE). After imprinting the SARS-CoV-2 NP into the polymer
matrix, the NP was removed from the SARS-CoV-2 NP-PmPD using 2-mercaptoethanol
(2-ME) and 3,3′ -dithiobis [sulfosuccinimidyl propionate]. This facilitates the rebounding
of SARS-CoV-2 NP from the target solution and enables the label-free electrochemical
detection of NP. The as-prepared sensor showed the capabilities of NP detection with a
detection and quantification limit of 15 and 50 fM, respectively, in PBS.

Another MIP-based SARS-CoV-2 NP detection platform was developed by Zhang
et al., in which poly-arginine (P-Arg) is used for the preparation of the SARS-CoV-2 NP-
P-Arg MIP complex [101]. The sensor was fabricated by the immobilization of NP onto
an Au/graphene/SPCE electrode followed by the electrochemical polymerization of Arg.
This produced the SARS-CoV-2 NP- P-Arg MIP complex. Then, NP was removed from
the MIP matrix for the selective binding of SARS-CoV-2 NP from the target analytes. The
sensor could discriminate the redox responses of [Fe(CN)6]3−/4− by selectively binding
NP with high sensitivity and low LOD (Table 4).
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4.2.3. Detection of Whole Virus or Virus Particles

The biosensing of the SARS-CoV-2 virus using specific proteins requires external
reagents and pre-/post-sample treatment, which can increase the detection cost and time.
The development of POC detection systems for whole viral particles in biological samples
with high sensitivity, selectivity, and accuracy is needed considering the high frequency
of SARS-CoV-2 virus infections. Accordingly, few researchers have attempted to develop
electrochemical biosensors for detecting whole viral particles. Seo et al. utilized a graphene-
based FET immunoassay platform for screening SARS-CoV-2 viral particles based on the
variation of current-voltage signals induced by the interaction between the anti-SARS-CoV-
2 SP and viral particles (Figure 7a) [70].

The anti-SARS-CoV-2 SP functionalized graphene-based FET could selectively detect
viral particles in culture medium and clinical samples with the LOD of 1.6 × 101 pfu/mL
and 2.42 × 102 copies/mL, respectively. Recently, Yousefi et al. constructed a reagent-
free electrochemical sensor for whole virus detection using a standalone electrode chip
(Figure 7b) [102]. The Au-based sensor chip was modified with a negatively-charged fer-
rocene redox labeled DNA. This functionalized sensor having an analyte-binding antibody
could effectively bind the viral particles and form the complex.

Upon applying a positive potential to the sensor surface, the complex is attracted
electrostatically to the electrode surface due to the negative charges of the DNA linker. This
facilitates the ferrocene label to come into close contact with the electrode, thus, electron
transfer occurs, and ferrocene is oxidized. The electron transfer kinetic response of ferrocene
oxidation was determined via chrono-amperometry to analyze the sensing performance.

The sensor is capable of screening SARS-CoV-2 virus particles within 5 min in un-
processed patient saliva samples with high specificity and selectivity. In another report,
Sukjee et al. constructed an electrochemical MIP-based biosensor for detecting SARS-CoV-2
virus particles in the environmental samples (Figure 7c) [103]. The MIP for capturing
virus particles was constructed using polymer-GO composite, which was used to prepare
MIP-SARS-CoV-2 complexes. Upon removing the SARS-CoV-2 viral particles from the
complex using HCl, the MIP was used to modify SPCE for the label-free electrochemical
detection of virus particles. The rebinding of viral particles onto the sensor surface showed
a low LOD (0.1 fM) in buffer solution and wastewater spiked with SARS-CoV-2.

4.3. Electrochemical Nucleic Acid-Based Detection of SARS-CoV-2 Virus

Electrochemical biosensing for the diagnosis of COVID-19 infection is mainly based on
the serological test, which detects the presence of antibodies and antigens (viral structural
proteins and whole viral particles). The clinical efficacy of antibody-based biosensors for
detecting SARS-CoV-2 is restricted due to the possibility of false-negative results at the early
stage of infection. This can be attributed that antibody generation in human body fluids
may take several days to weeks to develop a detectable response in COVID-19 patients
after starting to show the symptoms. Rapid antigen tests for SARS-CoV-2 are generally less
sensitive than NA-based tests.

Therefore, for the accurate diagnosis of COVID-19 infection, NA testing is the most
reliable method. Considering these issues and limitations of the RT-PCR method, elec-
trochemical biosensors for screening SARS-CoV-2 NA were also developed to improve
the clinical efficacy and reliability of COVID-19 diagnosis [104–107]. Kong et al. con-
structed a NA assay using a Y-shaped dual DNA probe-modified graphene FET that could
simultaneously target ORF1ab and N genes of SARS-CoV-2 NA (Figure 8a) [105].
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permission from ref. [103]). Copyright 2022 Elsevier.
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operation principle of SARS-CoV-2 NA monitoring by combining the signal amplification strategy
(reproduced from ref. [106]). Copyright 2021 Elsevier. (c) Schematic of the fabrication of interdigitated
platinum/titanium electrodes treated with APTES followed by probe DNA immobilization and
the hybridization of target complementary DNA for SARS-CoV-2 NA detection (reproduced from
ref. [107]). Copyright 2021 Elsevier.

The simultaneous binding of the ORF1ab and N gene at the sensor probe induced
a higher recognition ratio with the LOD down to 3 copies in 100 µL of testing solution.
The biosensor was also capable to detect NA within ~1 min without the necessity of NA
extraction and amplification, and thus could be used as a comprehensive testing method
for COVID-19 screening.

Peng et al. constructed a SARS-CoV-2 RNA biosensor based on a hairpin probe
(oligonucleotide sequence) modified Au electrode (Figure 8b) [106]. The introduction of
SARS-CoV-2 RNA triggers the catalytic hairpin assembly circuit and initiates terminal
deoxynucleotidyl transferase (dNTP)-mediated DNA polymerization with a large number
of long single-stranded DNA products. This negatively charged DNA polymer electro-
statically binds the positively charged Ru(NH3)6

3+ redox probe and forms the basis of
electrochemical SARS-CoV-2 RNA detection.

The sensor showed excellent capabilities of SARS-CoV-2 RNA detection with a LOD of
26 fM. In another report, Hwang et al. prepared an interdigitated Pt/Ti electrode on the glass
substrate for detecting SARS-CoV-2 NA (Figure 8c) [107]. The 3-aminopropyltriethoxysilane
(APTES)-modified glass substrate based interdigitated Pt/Ti electrode was used to im-
mobilize probe DNA via phosphoramidate linkage. The hybridization of complementary
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SARS-CoV-2 cDNA induced the change in capacitance and enabled the detection of SARS-
CoV-2 NA with high sensitivity (0.843 nF/nM).

5. Conclusions, Challenges, and Future Perspectives

This review comprehensively discussed the advances in the development of elec-
trochemical biosensors and immuno-sensors for detecting the SARS-CoV-2 virus. This
includes the detection of SARS-CoV-2 structural proteins (spike protein and nucleocapsid
protein), nucleic acid, and antibodies generated after COVID-19 infection. Both label-free
and label-based electrochemical detection strategies were described by developing novel
electrode materials and bio-receptors, such as antibodies, aptamers, molecularly imprinted
polymers, and angiotensin-converting enzyme 2. This review also briefly highlighted the
structure of the SARS-CoV-2 virus along with the functions of structural proteins and the
strategies for the detection of this virus.

During the preparation of this review, the author found that researchers, scientists,
and academicians from different countries of the world have made substantial efforts
to construct electrochemical biosensors for COVID-19 infection diagnosis by developing
novel strategies, detection methods, electrode materials, and electrode fabrication processes.
Accordingly, rapid, sensitive, selective, and low-cost electrochemical biosensors for SARS-
CoV-2 screening were successfully achieved within a short time.

However, some challenges still exist for the electrochemical biosensing of COVID-19
with high accuracy and reliability due to the commonly observed false positive/negative
signals. This is because most of the developed electrochemical biosensors for COVID-19
diagnosis are based on single biomarker (antigen, antibody, and nucleic acid) monitor-
ing, which can be combined into a multiplexed detection system for targeting multiple
biomarkers for the reliable and accurate diagnosis of COVID-19.

The other common challenges for the commercialization of electrochemical SARS-
CoV-2 biosensors are the low stability and the signal reproducibility within the error range.
This can be achieved by developing novel and stable signal amplifications materials and
receptors, such as phage display antibodies instead of conventional monoclonal antibodies
and nanomaterial-based receptors. It is noteworthy that some researchers developed MIP-
type nanomaterials for electrochemical SARS-CoV-2 detection with high stability and low
LOD (fM) compared to the protein-based sensors [100,101].

Since SARS-CoV-2 is highly contagious, to minimize the rate of virus infection and
its associated fatality, it is desirable to diagnose COVID-19 by developing electrochemical
biosensors other than for structural proteins, nucleic acid, and the whole virus. COVID-19
infection can release reactive oxygen species (ROS) from damaged mitochondria [108] and
significantly increase the concentration of CRP, procalcitonin, and ferritin in the biological
fluids of patients [109]. Thus, it is desirable to develop electrochemical sensors/biosensors
for detecting ROS, CRP, procalcitonin, and ferritin to diagnose COVID-19 infection.

Finally, the high infection and fatality rate of the SARS-CoV-2 virus pushes researchers,
scientists, and industrialists to develop a reliable and effective electrochemical biosensor.
Accordingly, the research for the development of electrochemical biosensors to diagnose
COVID-19 is advancing at an unparalleled pace. Soon, we might observe the commercial
electrochemical biosensors with low-cost, POC and PON testing ability, and high reliability,
along with the remote sensing capacity for diagnosing COVID-19 to serve mankind in
overcoming the difficult situation that the world is currently facing.
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