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Abstract: The ability to measure and monitor the concentration of specific chemical and/or gaseous
species (i.e., “analytes”) is the main requirement in many fields, including industrial processes,
medical applications, and workplace safety management. As a consequence, several kinds of sensors
have been developed in the modern era according to some practical guidelines that regard the charac-
teristics of the active (sensing) materials on which the sensor devices are based. These characteristics
include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material
stability, and the possibility of exploiting them for low-cost and portable devices. Consequently,
many gas sensors employ well-defined transduction methods, the most popular being the oxidation
(or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive
responses to gas adsorption. In recent years, many of the efforts devoted to improving these methods
have been directed towards the use of certain classes of specific materials. In particular, ionic liquids
have been employed as electrolytes of exceptional properties for the preparation of amperometric gas
sensors, while metal–organic frameworks (MOFs) are used as highly porous and reactive materials
which can be employed, in pure form or as a component of MOF-based functional composites, as
active materials of chemiresistive or optical sensors. Here, we report on the most recent developments
relative to the use of these classes of materials in chemical sensing. We discuss the main features of
these materials and the reasons why they are considered interesting in the field of chemical sensors.
Subsequently, we review some of the technological and scientific results published in the span of
the last six years that we consider among the most interesting and useful ones for expanding the
awareness on future trends in chemical sensing. Finally, we discuss the prospects for the use of these
materials and the factors involved in their possible use for new generations of sensor devices.

Keywords: gas sensors; ionic liquids; metal–organic frameworks; MOF-based composites; optical
sensors; chemiresistors; electrochemical sensors; oxygen; hydrogen; chemical sensing

1. Introduction

It is widely recognized that the development of technologies suitable for the identifica-
tion and measurement of concentration of gaseous species is of great significance in many
fields, including, for example, public health and safety, energy, climate, and environmental
risk assessment. While it is clear that useful sensing devices (also referred to as “sensors”)
must fulfill analytical standards, it is important to underline that other additional require-
ments exist, whose relative importance may vary depending on the specific application.
Here, we can mention, for example: low production and consumption costs, small sizes,
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device portability for in-field measurements, possibility to transmit the data remotely,
and so forth. A couple of examples of public documents available on the web are given
here [1,2] as references for the economic figures involved.

The need to monitor the concentration of several kinds of gases (“analytes”) is recur-
ring or, more appropriately, constantly present in many industrial processes, medical activi-
ties and everyday life activities. Due to this, several kinds of gas-sensing devices—based
on different technologies and on different gas-sensitive materials—have been developed in
the modern era [3–9]. Hence, a review on gas sensors and on the related technologies can
be organized in different ways, such as by focusing on the transduction technology, on the
specific application in which given sensors are employed, on the analyte to be revealed or,
finally, on the active materials which allow sensing the gas molecules.

The present review is organized according to the latter criterion and is structured
in sections dedicated to different typologies of materials. In particular, we review here
some more recent developments in the use of ionic liquids and metal–organic frameworks
(MOFs) in chemical sensing. Regarding the latter class of materials, the present review
considers both MOFs used in pure form and, more extensively, composite materials in
which a MOF is a component of the active sensing materials. In more detail, we will discuss
hybrid materials in which MOFs are integrated with metal oxides, carbon-based materials,
metal nanoparticles, and conducting polymers.

For the sake of clarity, we will first spend the first part of this introduction by pointing
out (i) some of the applications requiring the use of chemical sensors and gas sensors,
(ii) some of the most important analytes which are extensively considered in the present
review, and (iii) the physical/chemical mechanisms for the detection and concentration
measurements of the gaseous species which are at the basis of the kind of sensors considered
in this work.

Among the most important fields that involve or require gas sensing and concentration
measurements, we shall mention at least: (i) environmental monitoring, which includes,
for example, the control of indoor air quality [6,10,11] and the analysis of air pollution
caused by vehicular traffic [12,13]; (ii) human safety, including the detection of harmful
and/or explosive gases [14–17]; and (iii) medical application and diagnoses, such as breath
and blood analysis [18,19]. A large variety of applications exist in reference to these fields,
whose review is below the scope of the present work. It is worth mentioning that almost any
(if not, any) monitoring activity has to be performed on-site and that measurements shall be
collected in real time for various reasons (consider, for example, the case in which sensors
have to monitor an industrial process or the leakage of some toxic species in an enclosed
area). Moreover, prolonged monitoring is very often also needed, so the cost-effectiveness
of running the sensor device is also an issue. This variety of applications and requirements
explains why a wide array of sensing devices have been developed in recent decades [3–26].

The development of gas-sensing devices is in many cases focused on the detection
of toxic or harmful gases generated by industrial processes or automobiles, such as NO
and NO2 (NOx), CO, CO2, SO2, O3, and NH3. Other species to be mentioned are volatile
organic compounds (VOCs), namely, organic compounds of small molecular mass which
vaporize easily at room temperature such as acetone (CH3CH3CO), formaldehyde (HCHO),
ethanol (CH3CH2OH), benzene (C6H6), toluene (C7H8), and others [16].

Molecular oxygen (O2) is another analyte of importance. The possibility to detect
it and to measure its partial pressure in air or, in most cases, when dissolved in some
liquid medium (e.g., water or blood) is of paramount importance for many applications,
such as medicine (e.g., the measurement of O2 concentration in blood or in breath for
medical diagnoses), plant biology, marine and freshwater research, and food technology
and packaging. Several examples on the applications of O2 sensing and extended references
on the methods to achieve it are reported in excellent reviews [27–29].

The different physical/chemical mechanisms for the detection and concentration
measurements of the gaseous species correspond, of course, to different classes/families
of materials. However, gas-sensing materials shall ideally share some key characteristics,
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regardless of the transduction mechanism, the main and most obvious one being a large
specific surface area (SSA). An exhaustive (although incomplete) list of possible approaches
to gas sensing can be summarized as in Table 1.

Table 1. Types of sensor devices and their principle of operation.

Sensor Type Examples Principle of Operation

Electrochemical Amperometric,
ChemFET

Analyte molecules are involved in the redox reaction at the working electrode
of an electrochemical cell, modulating the electrical current.

Electrical Chemoresistors
Adsorbed molecules of the target gas interact with oxygen species adsorbed on

the surface of a nanoparticulated semiconductor, modifying its charge
depletion regions and its electrical conductivity.

Gravimetric Surface acoustic waves,
piezoelectric

A vibration resonance frequency is modified due to the adsorption of the target
analyte. The shift in resonance frequency quantifies the analyte concentration.

Thermochemical Catalytic bead sensors
The target gas is burnt, causing a temperature rise that changes the resistance

of the detecting element of the sensor proportional to the concentration of
combusted gas.

Optical
Absorptive
Reflective

Fluorescence-based

Adsorbed molecules of the target gas modify in several ways the optical
properties of the sensing material (e.g., reflectivity, optical transmission,

fluorescence spectrum and/or lifetime, etc.).

As the gas sensors represented in Table 1 operate on different principles, the physical
and chemical characteristics of the materials on which they are based are also different. In
this work, we mainly deal with functional and composite materials operating via electro-
chemical, electrical, or optical mechanisms, so we will briefly discuss only them.

As mentioned, we will review recent developments in the use of ionic liquids (ILs)
and metal–organic frameworks (MOFs) in gas sensing. Section 2 gives a brief discussion on
the basic mechanisms for gas sensing which are employed in the sensing devices by use of
the materials reviewed here, while Sections 3 and 4 review some recent literature results
(mostly from 2016 to 2021) on the use of the mentioned class of materials for gas sensing.
The main role of ILs is played in the context of sensor devices based on electrochemical
cells, also known as amperometric gas sensors. Regarding MOFs, a major part of the
references reviewed here deal with their use in MOF-based chemiresistive composites,
although the versatility of MOFs allows their use also as stand-alone sensing materials
based on other kind of responses (e.g., luminescence response, chemicapacitive response,
mechanical response, magnetic response, and others).

2. Sensing Methods: Amperometric Sensors, Fluorescence-Based Sensors,
and Chemiresistors

As the goal of the present work is to review recent developments of some spe-
cific classes of materials and systems, we will only consider a few of the possible ap-
proaches/methods for gas sensing reported in Table 1. Ionic liquids are mostly used in the
context of electrochemical gas sensors, in particular to provide specific and advantageous
characteristics to the electrolyte medium. MOFs are involved mostly as fluorescence-based
(optical) gas sensors, while a substantial number of examples exist in which they are in-
volved as sensing elements in chemiresistors. These are thus the methods summarized here.

2.1. Amperometric Electrochemical Gas Sensors

As indicated by the name itself, an amperometric gas sensor (AGS) operates by
correlating a local concentration of gas with the amplitude of an electric current. This kind
of transduction scheme (i.e., gas concentration to electrical current) has several advantages
and is quite popular due to its low cost, good sensitivity, possibility to miniaturize the
devices, and low power consumptions.
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The precise mechanism over which an AGS operates is based on a redox reaction of the
gas analyte once it is adsorbed on a suitably polarized working electrode that operates in
an electrochemical cell. The reaction can be an oxidation or a reduction, which, respectively,
confer an electron or a hole to the working electrode, causing an electrical current to run
into the electrochemical circuit. The amplitude of such a current is proportional to the
concentration of the gas analyte.

The first amperometric gas sensors were reported by Leyland Clark et al. [30,31] for
the purpose of measuring the oxygen partial pressure in blood. The schematic design of a
Clark-type gas sensor is reported in Figure 1, showing the main components of the device,
i.e., a membrane that keeps the undesired chemicals separated from the electrochemical cell
and allows the diffusion of the gas analyte, an electrolyte that solvates the gas molecules
and diffuses them toward electrodes. The solvated molecules that diffuse toward an ap-
propriately polarized electrode (“working electrode” in Figure 1) where they are subjected
to an electrochemical oxidation or reduction (“redox”, in short) reaction. The role of the
counter electrode (CE) is to counter the half-reaction guaranteeing the conservation of
charge and allowing the current flow, while the reference electrode allows setting a precise
reference for the voltages of the WE and the CE.
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Figure 1. Basic design of a three-electrode Clark-type amperometric gas sensor. The gas flowing 
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Figure 1. Basic design of a three-electrode Clark-type amperometric gas sensor. The gas flowing
from the environment toward the electrochemical cell is filtered by a membrane. As the analyte
molecules enter the electrochemical cell, they are solvated by the electrolyte and diffuse into the
medium. The solvated molecules that are adsorbed on the working electrode and that pass an
additional liquid-phase barrier react with a suitably polarized working electrode and react with it
via oxidation or reduction. The counter reaction occurs at the counter electrode, allowing the charge
conservation and the flow of current. A third electrode is usually employed as a potential reference.

The current density provided by the redox reaction is proportional to the analyte
concentration according to the following equality:

I =
(

De f f /Le f f

)
nFA · C (1)

where De f f and Le f f indicate, respectively, the effective diffusion coefficient and the dif-
fusion path of the analyte molecules from the surrounding sensor to the surface of the
working electrode, A is the SSA of the electrode, F is the Faraday constant, n is the number
of electrons exchanged by the gas molecule in the redox reaction and, finally, C is the
concentration of the analyte, i.e., the quantity that has to be determined. Therefore, the
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equation indicates that the sensitivity of the apparatus mainly depends on two factors: the
SSA of the electrode and the effective diffusion length of the gas molecule in the cell.

The AGSs based on the scheme in Figure 1 are very popular in many applications and,
as a matter of fact, there are commercially available devices based on them [9,32]. Neverthe-
less, Clark-type sensors based on the simplest design have some peculiar drawbacks. The
main issue is related to the limit of detection of the devices, which is discussed later. An-
other one is the fact that the average lifetimes of such devices are limited by the evaporation
of the solvent, making their use in very dry and/or hot environments unsuitable. This last
issue is one of the main reasons why the use of ionic liquids as electrolytes was introduced.

As mentioned, the sensitivity of standard Clark-type sensors using noble metals (e.g., Pt)
as electrodes is an issue for applications that require low values for the limit of detection
(LOD). While the first devices were adequate for the measurement of blood oxygenation,
the device sensitivities associated with the use of standard electrodes are usually not
sufficient to measure gas concentrations of the order of a few parts per million (ppm) which
are required to detect alarming concentrations of toxic/polluting gases.

LODs in the range of alarm levels for toxic gases are achieved without special effort
with chemiresistive sensors, as a consequence of the nanostructured and microporous
morphology of thick, polycrystalline, metal oxide films used in these devices. Therefore,
it can be deduced that an increase in the LOD of AGS has to be pursued by increasing
the surface area of the working electrode. Such an increase is difficult to achieve by using
simple noble-metal electrodes, due to their intrinsic cost.

Hence, the practical way to improve the performance of AGS is to modify the electrode
morphology. To this aim, new approaches have been developed. An important one con-
sisted of substituting the porous membrane shown in Figure 1 with a porous gas diffusion
electrode (GDE), consisting of polymer membranes made of a porous polymer (usually
PTFE), which embed fine grains of some metal [33]. This modification is technically very
significant, as it allows both decreasing the diffusion path of the gas analyte and enhancing
the surface area of the working electrode. Another improvement in the performance of AGS
devices is in their use as membranes of solid polymer electrolytes (SPEs), i.e., membranes
made of polymers (e.g., Nafion) that allow ionic conduction. Such SPEs act not only as
membranes but also as solid electrolytes.

The idea of using ionic liquids (ILs) as the electrolyte for an AGS is the topic of the next
section: it was firstly proposed and investigated in 2004 [34] and is currently adopted in
many devices [35]. In this work, we will focus on recent developments in this field, mostly
covering works in the years from 2016 to 2021.

2.2. Chemiresistive Gas Sensors

Chemiresistors transduce the chemical signal (i.e., gas concentration) into an electrical
signal (i.e., conductivity). This is obtained via the chemiresistive effect, which requires
a semiconductor material as the gas-sensitive element. Gas molecules adsorbed on the
semiconductor surface modulate (via several mechanisms) the spatial width of charge-
depleted regions, affecting the electrical conductivity of the material. While the effect can
be negligible for bulky single crystals, it becomes much more relevant when occurring in
isolated nanostructures (e.g., nanorods) or in nanoparticle films because in these cases, any
enlargement of the depletion region hinders very effectively the transport of charge carriers.
This underlines the importance of preparing semiconductor materials with a large specific
surface area.

The materials mostly employed in electrical gas sensors belong to the class of metal
oxides, thanks to their large chemiresistive effect [3,4] and to the availability of many
physical [36–41] and chemical [42–44] preparation methods that allow obtaining thick-film
sensors with large specific surface areas. However, the use of chemiresistors is by no means
limited to metal oxides. Other functional materials have been employed as the active (gas-
sensing) element of chemiresistors, among which carbon nanotubes [45] and graphene [46]
deserve a special mention, along with, particularly in recent years, 2D materials [47] and
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MOFs [48,49]. For the sake of this review, chemiresistors using this last class of materials as
a key component of the sensing element are considered.

2.3. Optochemical and Photoluminescence-Based Sensors

Fluorescence-based gas sensors belong to the class of optochemical sensors, a term that
indicates devices able to determine the concentration of given analytes by changes in some
of the optical parameters of the sensing elements. Hence, this class of devices is based on
phenomena that characterize the radiation–matter interaction and/or the light propagation.
Examples of such phenomena and of corresponding devices include: optical absorbance and
reflection (e.g., devices based on laser spectroscopy), optical refraction (e.g., devices based
on optical fibers), light-induced temperature changes (e.g., photothermal detection), light-
induced mechanical vibration (e.g., photoacoustic detection), surface waves (e.g., devices
based on shifts in surface plasmon resonances), or photoluminescence. The latter case is
among the most employed ones and is dominant among the optochemical methods in
which metal–organic frameworks are used for gas sensing.

Optochemical sensing exhibits peculiarities and, possibly, advantages over conven-
tional electricity-based sensors. Some advantages of optical gas sensors include: the
compatibility and possibility of integration in optical circuits and/or devices based on
optical fibers; the low sensitivity to electromagnetic noise; and the possibility to employ
more than one physical parameter. This latter point deserves special attention: devices
such as chemiresistors are based on changes in a single physical quantity (i.e., the electrical
conductivity), while optochemical gas sensors can bring into play and involve various
parameters, such as wavelength, polarization, phase, and intensity. Hence, optochem-
ical sensors are inherently multiparameter devices [50]; this circumstance can favor or
improve the selectivity of the gas sensors [28,51–53], which is often a major drawback
of chemiresistors.

For the sake of this review, we will only consider photoluminescence-based gas
sensing, which is based on the changes in photoluminescence (PL) intensity and/or lifetime
caused by the interaction between the analyte and the luminescent material. Such a
phenomenology can occur via different mechanisms, most of them classified in the class of
“photoluminescence quenching” (PLQ) mechanisms.

In many cases, the PLQ in luminescent organic molecules occurs in terms of “col-
lisional quenching” (also often named “dynamic quenching”) and is described by the
Stern–Volmer equation:

I
I0

= 1 + kqτ0[Q] (2)

where I and I0 indicate the PL intensity in presence of the “quencher” (see below for the
meaning of this term), kq is a constant dependent on the specific fluorophore-quencher
interaction, τ0 is the PL lifetime in the absence of the quencher, and [Q] is the quencher
concentration, i.e., the quantity that has to be determined via PL measurements.

Equation (2) describes the quenching of photoluminescence caused by one (or more)
intramolecular deactivation processes, in which a “quencher” molecule Q (which represents
the analyte in PLQ-based gas sensors) affects/accelerates the decay rate of the fluorophore
in its excited state. Different deactivation processes can be involved, including intersys-
tem crossing, Dexter electron transfer, and Dexter energy transfer. Due to the intrinsic
limitations of this work, these mechanisms cannot be discussed here; for a comprehensive
review on the subject, we recommend the classical book by Lakowicz on fluorescence
spectroscopy [54]. In any event, the details of these mechanisms are not extremely relevant
from a practical point of view, as they all lead to a phenomenological law well described
by Equation (2), which can be used to calibrate the actual concentration of the quenching
analyte via the measurement of PL intensity.

As already mentioned previously, collisional quenching affects the decay rate, so
that both the values of PL intensity and the luminescence lifetimes change during the
interaction between the fluorophore and the analyte. From a technical point of view, this
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is an important point as measurements based on lifetimes are usually more reliable than
those based on intensity. Actual commercial devices, in fact, are based on lifetime changes.

The collisional quenching is mostly involved for dioxygen (O2) optical sensors, which
are mainly based on metal–ligand complexes that undergo collisional quenching (via in-
tersystem crossing) interacting with O2 [27,55–57]. Frequently investigated O2-sensitive
fluorescent molecules (also referred to as O2 indicators) are coordination complexes con-
taining platinum (Pt) or ruthenium (Ru) atoms, such as platinum(II) octaethyl-porphyrin
(PtOEP) [58–60], platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin (Pt-
TFPP) [61–63], and tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride complex
(Ru(dpp)) [64,65]. However, it is worth mentioning that also some metal oxides, including
ZnO [66–68], TiO2 [69], MgO [70], and SnO2 [71,72], have been shown to act in a manner
very similar to a collisional quencher, although some targeted investigations [73,74] sug-
gest that the mechanisms active for these cases are slightly different and involve “static”
quenching, i.e., a modification of intensity, only not accompanied by changes in the lifetime.
This point is still not completely investigated and might be relevant for the future investi-
gation of inorganic photoluminescent indicators. It is also worth noting that the study of
gas-induced PL modifications in metal oxides or in metal-oxide-based heterostructures can
be relevant in terms of the study of basic charge-carrier-recombination mechanisms. Their
precise understanding is crucial when the material also exhibits photocatalytic properties,
as in the case of TiO2 [75,76].

3. Ionic Liquids in Amperometric Gas Sensing—Recent Developments

Ionic liquids (ILs) are among the materials of interest for the development of improved
amperometric gas sensors. Among their main characteristics, it is worth emphasizing their
versatility, intended in reference to the broad range of the properties that they share [77–79].

Before discussing their applications, it is useful to sketch a general description of ILs.
Generally speaking, ionic liquids are salts at the liquid state. However, the commonly used
terminology restricts this definition, making a distinction between “room-temperature
ILs” (also RTILs) which are liquid at room temperature and proper ILs, which are solid
at room temperature but whose melting point is below 100 ◦C [80] or below some other
conventional temperature larger than the room temperature. As evidenced by the name
itself, ionic liquids are mostly made by ions, typically a small anion (either organic or
inorganic) and a large organic cation. The type and the size of each of the ions determine
the properties of a given ionic liquid. It can be generally stated that the cation affects the
physical properties of the salt, while the anion affects its reactivity and chemical behavior.
Some of these properties are specifically relevant for the case of interest, i.e., the use of ILs
in amperometric sensing.

To begin with, we mentioned before that one major drawback of gas sensors based
on electrochemical cells is that their usage is limited by the evaporation of the liquid
electrolyte. This fact is one of the main drivers towards the use of ILs, as they are extremely
nonvolatile. Other advantages of ILs include their intrinsic conductivity, high chemical
stability, high viscosity, and wide electrochemical window. It is worth briefly discussing
some of these properties.

Electrical conductivity and viscosity: The room temperature electrical conductivity
of an ionic liquid is typically in the range of (about) 0.1–20 mS cm−1. These conductivity
values are smaller than those of common aqueous electrolyte solutions. This fact can be seen
as a consequence of the relationship between the viscosity (η) and electrical conductivity
(Λ) of an electrolyte solution, known as empirical Walden’s rule, stating that their product
is constant at a given temperature, i.e., Λη = const. As this relation is empirically obeyed
by both regular electrolyte solutions and ionic liquids [81], the viscosity is typically much
larger in the latter with respect to the former. Typical values for η at room temperature
range from 10 to 105 cP (centipoise) in ionic liquids, while values ranging from 0.1 to 10 cP
are common for standard solvents. Considering the Walden’s rule, the mentioned electrical
conductivity values lower than those typical for aqueous solutions of standard electrolytes
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are explained. This point represents a major obstacle for applications, as the lesser electrical
conductivity is accompanied by a lesser diffusion rate and by a decrease in the rate of
reaction and separation processes.

Electrochemical window: The electrochemical window of a substance (e.g., a solvent)
is, by definition, the electrode electric potential range between which the substance is
neither oxidized nor reduced. It is important to determine the value of this quantity for both
solvents and electrolytes when solutions are used in electrochemical applications. Large
electrochemical windows of liquid solvents are favorable, as they allow the development
of reactions involving solute molecules instead of unwanted reactions of the solvent. In the
case of aqueous solution, the electrochemical window is about 1.23 eV, outside of which
the electrolysis of water occurs. This value is regarded as relatively small. Conversely,
the electrochemical window of ionic liquids is much larger, ranging from 4 to 5 volts
typically, although higher values have been reported [82]. It is worth mentioning that the
electrochemical window is sensibly affected by impurities in the ionic liquid, which have
to be kept in control to avoid affecting the stability of the electrochemical cell.

The following Table 2 reports some references on AGS using ILs as solvents, starting
from the year 2016 and ordered by analyte.

Table 2. References on AGS using ionic liquids (ILs) as solvents, ordered by analyte.

Analyte Ionic Liquid Electrode Analyte Concentration Ref.

O2
[C4mpyrr][NTf2] Clark-type sensor with polycrystalline Pt gauze 1–20% [83]

[C2mim][NTf2] and
[C4mpyrr][NTf2] Screen-printed (SP) electrodes 10–100% and 0.1–5% [84]

[N8,2,2,2][NTf2] Pt MATFE 10–100% [85]

[C2mim][NTf2] Pt microdisk and Pt MATFE 0.1–100% [86]

[MOmim][PF6] Au microchannel
electrode 5000–25,000 ppm [87]

[Bmim][BF4] Au interdigitated electrodes 20–100% [88]

[C4mpyrr][NTf2] Au on porous PTFE substrate 5–20% [89]

[C2mim][NTf2] and
[C4mim][PF6] SP electrodes (graphite) 0.1–20% and 100% [90]

[C4mpyrr][NTf2] Au microchannel electrode 50–400 ppm and
2000–5000 ppm [91]

[C4mpyrr][NTf2] Clark-type sensor with polycrystalline Pt gauze 5–20% [92]

[C4mpyrr][NTf2] Interdigitated electrodes 1400–4800 ppm [93]

[C4mim][PF6],
[C2mim][PF6] and

[C5mim][PF6]
Pt interdigitated electrodes 0–100% [94]

[C4mim][BF4] Planar electrodes 20–100% [95]

[Bmim][BF6] Pt planar electrodes modified by
NiCo2O4/rGO/[Bmim][BF6] composite 20–100% [96]

[C4mpn][Br] Pt microelectrodes, 1% Ag-coated chitosan added to the IL 20–100% [97]

[Bmim][BF4] SPE, solid polymer electrolyte (PTFE/Carbon
nanotubes/IL) 2.1–12.6% [98]

[Emmim][TFSI]
and

[Bmim][TFSI]

Pt electrodes, IL + reduced graphene (rGO) + α-Fe2O3
electrolyte 20–100% [99]

[C2mim][NTf2] IL membrane on Au-TFE 20–100% [100]
[C2mim][NTf2] added

with
Poly[DADMA][NTf2]

IL/poly(IL) membrane on Au-TFE 20–100% [100]

O2 and NH3

[C2mim][BF4]
and

[C4mim][BF4]

Gel polymer electrolyte (ILs in PVDF) between planar
electrodes

1–20% for O2; 1–10 ppm
for NH3

[101]

O2 and H2 [Bmpy][NTf2] Planar Pt-Ni alloy electrodes 500–5000 ppm for O2;
500–6250 ppm for H2

[102]
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Table 2. Cont.

Analyte Ionic Liquid Electrode Analyte Concentration Ref.

H2
[C4mim][NTf2] and

[C4mpyrr][NTf2]
Clark-type sensor with polycrystalline Pt

gauze 0.05–1.25% [103]

[C4mim]Cl Pd deposited on carbon gas diffusion electrode 1–5% [104]

[Bmpy][NTf2] [Bmpy][NTf2] on Pt/C/Nafion screen-printed electrode 2000–10,000 ppm [105]

[C2mim][NTf2] Au microchannel electrodes with electrodeposited Pt
nanoparticles 0.1–10% [106]

NH3
[C2mim][NTf2] Pt SPE, TFE, MATFE, and microdisk 10–100 ppm [107]

[C2mim][NTf2] SP electrode, thin-film electrode (TFE), microarray thin-film
electrode (MATFE), and microdisk. 10–100 ppm [108]

[C2mim][NTf2] Pt MATFE 10–100 ppm [109]

[C2mim][NTf2] Pt-based MATFE (with different morphologies)
1–2 ppm LODs

(depending on the
morphology)

[109]

NH3 and HCl [C2mim][NTf2] and
[C4mpyrr][NTf2] Au microchannel electrodes 20–100 ppm [110]

VOC (in air) [C4mpyrr][NTf2] Clark-type sensor with polycrystalline Pt gauze 200–3000 ppm of
acetaldehyde [111]

CO2 [Bmpy][NTf2] Au microchannel electrodes with electrodeposited Cu
nanoparticles 0.14–11% [112]

Hexanaldehyde (HA) [Bmim][OH] Pt microelectrodes 2–300 ppm (HA in
squalene) [113]

C6H6 and HCHO [C2mim][EtSO4] IL and ionogel (IL in poly(N-isopropylacrylamide))
between interdigitated electrodes 10–50 ppm [114]

SO2 [C4mpyrr][NTf2] TFEs and MATFEs 1–10 ppm [115]

H2O (humidity) [Bmim][DCA] IL incorporated in gels on interdigitated electrodes 30–70% RH [116]

Ethanol [Bmim][HSO4] IL on Au screen-printed electrode 1–10% [117]

NO2 [Bmim][NTf2] Solid polymer electrolyte (PVDF + IL) on screen-printed
electrodes 1–10 ppm [118]

[Bmim][BF4] Solid polymer electrolyte (ionic liquid (IL), carbon
nanotubes + polyaniline + IL) on SP electrodes 0–700 ppm [119]

Ethylene (C2H4) [Bmim][NTf2] Solid polymer electrolyte (PVDF + IL) on SP electrodes 100–500 ppm [120]

Ionic liquids reported in table: [C2mim][PF6]: 1-ethyl-3-methylimidazolium hexafluorophosphate;
[C2mim][NTf2]: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [C4mpyrr][NTf2]: 1-
butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide; [N8,2,2,2][NTf2]: triethyloctylammonium
bis(trifluoromethylsulfonyl)imide; [C4mim][Cl]: 1-butyl-3-methylimidazolium chloride; [C4mim][BF4]:
1-butyl-3-methylimidazolium tetrafluoroborate. [C4mim][PF6]: 1-butyl-3-methylimidazolium hex-
afluorophosphate; [C4mim][NTf2]: 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide;
[C5mim][PF6]: 1-pentyl-3-methylimidazolium hexafluorophosphate; [MOmim][PF6]: 1-[8-mercaptooctyl]-
3-methylimidazolium hexafluorophosphate; [Bmim][BF4]: 1-Butyl-3-methyl-imidazolium-tetrafluoroborate;
[Bmim][NTf2]: 1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide; [Emmim][TFSI]: 1-Ethyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [Bmim][NTf2]: 1-Butyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide; Poly[DADMA][NTf2]: poly(diallyldimethylammonium
bis(trifluoromethylsulfonyl)imide).

It is easily seen that the most represented analyte in Table 2 is the (dissolved) oxygen O2,
according to what we already mentioned previously. In many cases, the O2 concentration
entering into the detection cell varied over the entire possible range (i.e., from a few %
to 100%). Some of the references reported above also give interesting results on lower
concentrations and on the achieved values for the limit of detection (LOD). For example,
Lee and coworkers [84] explored ranges of 10–100% (volume concentrations) O2 by cyclic
voltammetry, and of 0.1–5% by long-term chronoamperometry in their work centered on
demonstrating that significant improvements in the sensor performances can be achieved
via the mechanical polishing of Pt screen-printed electrodes. In particular, the authors
reported significant improvements in the LODs for O2 after electrode polishing, with values
as low as 0.1% vol O2 achieved via long-term chronoamperometry using [C4mpyrr][NTf2].

Lower O2 concentrations were examined in a work by Gondosiwanto and coau-
thors [91], who explored the range of 40–500 ppm by using as electrodes microstrips of
[BMP][Ntf2] loaded with magnetic CoFe2O4—used as nanostirrers for favoring the gas
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diffusion—obtaining values between 9 and 11 ppm as the lowest LODs for O2 (depending
on the electrode preparation).

Apart from O2, investigations are reported for H2, NO2, NH3, and other species.
Concerning the last of the three, interesting LOD(NH3) values between 1 and 2 ppm have
been reported by Hussein and coworkers using highly porous 3D-structured (“cauliflower-
shaped”) Pt electrodes prepared via electrodeposition [109].

Among the possibilities that have been explored in the various works listed in Table 2
in order to improve the sensing performance, a major one regards the design of the working
electrode (WE). As mentioned previously, it is possible to employ porous WE as the initial
element encountered by the flowing gas molecules. Alternatively, it is possible to employ
a device design in which the gas molecules first partition into the liquid phase and next
diffuse towards the WE. An evident advantage of the first design is to improve (shorten)
the response time of the device, as the diffusion of gas molecules is usually slow in IL layers.
Examples of devices employing a porous WE in Clark-type cell are Refs. [83,92,103,111].
Sensing electrodes are usually in the form polycrystalline Pt gauze materials, while in
some cases, these have been functionalized with Pd nanoparticles in order to enhance the
reactivity toward the analyte (e.g., [83,104]).

Designs in which the gas first diffuses into the liquid have the advantage (with
respect to the previous one) of allowing closer positioning of the electrodes. This allows
producing small cells using miniaturized, low-cost electrode geometries, such as screen-
printed electrodes (SPEs) or interdigitated electrodes. In such cases, the use of ILs provides
a definite advantage over that of conventional electrolytes, as the virtually null volatility
of an IL allows the use of small volumes (e.g., [84,90,108]). Similarly, thin-film electrodes
(TFEs), interdigitated electrodes, and microarray thin-film electrodes (MATFEs) have been
explored in various applications, with many of the most recent ones listed in Table 2.

Another new trend in AGS-based research might be opened by the use of the so-
called polyionic liquids, also named as poly(IL)s, which are polyelectrolytes combining
the peculiar properties of ILs with the physicochemical robustness/stability of polymers.
Poly-ILs have been used in other applications (see Ref. [121] for a review on the subject),
but only recently have they been explored as electrolytes of AGS devices in a work by
Doblinger and coworkers, who demonstrated the possibility of monitoring the oxidation
of NH3 and the reduction of SO2 and O2 using ILs/poly(ILs) membranes on an Au-TFE
working electrode [100]. The results suggest that the use of poly(ILs) might be one of the
future trends in the exploration of electrochemical gas sensors.

Presently, it is quite established that the use of ionic liquids in AGSs has large poten-
tialities, while room for further increases in the sensitivity of the sensors exists, achievable
through suitable combinations of the IL ions, the electrode materials/design, and the kind
of electrochemical measurements employed; for a further discussion on this topic and
sketches of some perspectives, see Ref. [122].

4. Metal–Organic-Framework-Based Composites in Gas Sensing—Recent Developments
4.1. General Properties of Metal–Organic Frameworks

Metal–organic frameworks (MOFs) are solid porous materials which, according to
the terminology officially adopted by IUPAC in 2013, are classified as a subclass of coordi-
nation networks which are a subclass of coordination polymers [123]. The MOF network
(one-dimensional, two-dimensional, or three-dimensional) arises from the strong coordi-
nation bonds between metal nodes (metal ions, metal centers, or metal clusters [124]) and
the organic linkers. Usually, transition metal ions, especially those of the first row, lan-
thanides, and some alkaline earth metals are used as metal nodes because of their variable
coordination numbers, geometries, and oxidation states [123,125,126]. Organic molecules
containing one or more N-donor or O-donor atoms are mostly used as organic linkers, es-
pecially carboxylates (either aliphatic or aromatic containing one or more condensed rings),
pyridyl (e.g., pyridine, pyrazine and bipyridyl derivatives), cyano compounds, polyamines,



Chemosensors 2022, 10, 290 11 of 39

and imidazole derivatives; in addition, oxalic acid, phosphonates, sulfonates, and crown
ethers are other possible ligands [123,125].

The main distinctive structural features of MOFs are the high porosity, the large
volume of the pores (up to 90% of the crystalline volume or more), the large specific
surface area (above 5000 m2 g−1), and the good thermal stability (250–500 ◦C) due to
the presence of strong bonds (e.g., C–C, C–H, C–O, and M–O) [123,125]. Many of these
properties are determined by the mutual interaction between specific metal ions and
linkers; as a consequence, MOFs’ characteristics can be tuned by judiciously selecting metal
nodes and linkers to have the desired pore size, structure, and functionality for specific
applications [127]. MOFs’ 3D structure displays cavities and inner surfaces, which are
occupied by counterions, solvate molecules and/or guest molecules. The guest species can
significantly extend the designed applications of MOFs [127].

MOF synthesis is performed mainly in the liquid phase by mixing solutions of the
ligand and metal salts under solvothermal/hydrothermal conditions at a high tempera-
ture and pressure. Other alternative and consolidated synthetic strategies are based on
mechanochemical, electrochemical (for large-scale synthesis), microwave, and sonochemi-
cal methods. The most recently proposed methods are: ionothermal synthesis [123,128], the
slow evaporation method [123], the diffusion method [123,129], the use of a microfluidic
device [128], dry-gel conversion (DGC) [128] and microemulsion [123].

MOFs are versatile materials which are attracting great interest for application in
environmental and biomedical areas as catalysts, as absorbers for toxic gases and metal ions,
as materials for electrochemical devices, as drug carriers, as bioimaging agents and also
therapeutic agents [130,131]. Recently, MOFs have been used also as sacrificial templates
for the production of metal oxides or metal oxide–carbon hybrids [132] with promising
morphological and textural properties to be exploited in sensing and electrochemical
applications [133,134]. MOFs also are emerging as novel sensing materials because of their
high surface area which enhances detective sensitivity, their specific structural features
(open metal sites, tunable pore sizes, etc.) which promote host–guest interactions and
selectivity, and flexible porosity which enables the reversible release and uptake of small
target molecules [131,135,136].

Presently, the exploitation of MOFs’ potentiality in gas sensing is affected by some
limitations [135,137]: (1) Most pure MOFs are not stable under extreme conditions (high
temperature and high humidity levels). (2) The types of gases detectable by MOFs are
limited. (3) The inherent electrical conductivity of MOFs is low and this limits their use
in the development of electronic sensors. (4) The interaction mechanism between MOFs
and the analyte is poorly understood. (5) MOFs are generally produced as powders
with a generally low mechanical strength and poor processability. This last limitation is
particularly relevant since the sensitivity of gas sensors obtained from powders is low and
poses the need for a post-process of MOFs as thin films or membranes.

To ensure the potential use of MOFs in sensing applications, most of these concerns
must be addressed and, to this aim, the development of new MOF–based materials which
have better properties (including processability in harsh conditions) than pure MOFs
is gaining a lot of attention [137,138]. Research efforts have been focused on different
strategies, including: (i) post-synthetic modifications [139]; (ii) linker change or functional-
ization; (iii) ion exchange; (iv) active groups grafting; (v) impregnation with suitable active
materials; (vi) production of MOF-based hybrids/composites [126,138–140].

Among the different possibilities, the common adapted solutions are post-synthetic
modifications and the production of hybrids/composites integrating MOFs and functional
materials. Post-synthetic modifications involve the introduction of desired functional
groups into the MOFs after their synthesis [126,139]. The modification can involve: the
heterogeneous exchange of ligands or metal ions by breaking and forming chemical bonds
within the original MOF, solvent-assisted ligand exchange, and replacement of the non-
bridging ligands and metal nodes [123,139,141]. Mixed-metal MOFs, containing at least
two metal ions in their framework, can be prepared under post-synthetic methods and



Chemosensors 2022, 10, 290 12 of 39

possess new properties and activities due to the presence of the second metal ion. This
approach is frequently used to produce MOF-based materials exhibiting improved fluores-
cent/luminescent properties [139,141].

By combining MOFs with suitable materials, the functionality and the textural/thermal/
magnetic/electric properties can be improved to meet specific requirements. In some cases,
the hybrid/composite materials exhibit new properties that are superior to those of the
individual components since they combine the advantages of both parent materials. Metal
oxides [142], polymers [143], metal nanoparticles [144], silica [145], carbon nanotubes [146],
graphene-related materials (GRMs) [140,147,148] and quantum dots [149] have been used
for the production of MOF-based hybrids and composites [137,138].

A wide variety of methods have been applied for the preparation of MOF compos-
ites. The in situ growth approach involves the growth of MOF crystals under solvother-
mal/hydrothermal conditions in the presence of another functional material [138]. In
this type of synthesis, the MOF structure is built from the precursors around and even-
tually inside the other composite component. This method has been mainly used for the
preparation of MOF composites with carbon-based materials [140], metal oxides [150] or
with metal nanoparticles [144,150]. During the synthesis, the second material can act also
as a templating agent, leading to oriented growth of MOF crystals, and graphene is one
such example [151]. In the encapsulation method, the MOF composite is formed starting
from the second component precursors and the preformed MOF; namely, the second com-
ponent forms inside the cages of the MOF and at the end of the synthesis, the particles
stay stable inside the cages without directly bonding to the MOF structure [138]. This is
the method primarily used for the production of MOF/polymer and MOF/NPs compos-
ites [138,143]. Solid grinding and impregnation are other strategies to incorporate NPs
in MOFs [152,153]. The electrospinning and solution-blending methods are two possible
approaches for the preparation of MOF/polymer membranes [150]. MOF composites for
biomedical applications have been also produced by coating the MOF structure with silica
or a specific polymer with the aim of reducing their cytotoxicity and intrinsic instability
under physiological conditions [150].

The huge and wide variability in pore size distribution of MOFs allows different guest
molecules with different characteristics (size, acid–base behavior, polarization, etc.) to
easily access the cavity and interact with the pore surface due to the presence of unsat-
urated metal sites and Lewis acidic/basic sites [136,154]. In such a way, specific MOF
properties can be influenced, and changes in optical, electrical, and mechanical MOF
properties can occur [135,155]. On this basis, various MOFs have been developed for
possible use as chemiresistive, magnetic, ferroelectric, colorimetric, as well as luminescent
sensors [135,156,157]; many examples are reviewed in this section. The high porosity of
MOFs and the easy reversibility of the interaction with the target guest molecule are valid
prerequisites to achieve repeatability, regeneration and robust operability under repeated
detection cycles. On the other side, signal transduction is a major challenge for the efficient
utilization of MOFs in chemical sensing [136].

The sensitivity of MOF-based detection largely depends on the sensing method used
for signal transduction. MOFs are generally coupled with such several signal transduc-
tion techniques and tools as chemiresistors, interferometry, quartz crystal microbalance
(QCM), surface acoustic wave (SAW), and microcantilevers (MCLs). MOF-based thin-film
techniques have hence been very recently suggested as a valid advantage for develop-
ing next-generation chemical sensors [157]. Moreover, recently, conductive MOFs have
been synthesized by using proper organic ligands or doping with conductive materials
to form hybrids and composites with the aim of generating detectable changes in resis-
tance/capacitance upon guest-molecule exposure [158].

An overview of several different sensing mechanisms involving MOFs and the mainly
detected gas types is provided in Figure 2 and detailed in the following sections.
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4.2. MOFs in Optical Gas Sensing

When an analyte is adsorbed into the pores of a MOF, the interactions between
guest and host may alter the charge transfer process between the ground and excited
electronic states of the MOF constituents, in turn affecting their optical properties. In
particular, changes in the material’s color (i.e., changes in the absorption spectrum), in the
luminescence intensity and/or spectrum and in the material’s refractive index can occur
due to interaction with the adsorbed gas. These changes can be used for gas sensing. We
now consider some specific mechanisms upon which optical gas sensing by MOFs can
be achieved:

4.2.1. Vapochromism

Vapochromism is based on shifts in the absorption spectrum caused by the electronic
transition from the ground to the excited state of MOF chromophore components interacting
with guest molecules. In some cases, when MOFs are exposed to gases or vapors with
a strong coordination property, changes in the coordination environment of MOF metal
centers can also result in a large absorption-spectrum shift. This type of signal transduction
is of high significance because it is fast and facile and there is no need for instrumentation
if the color change can be achieved selectively.

For example, Razavi et al. [159] (see Figure 3) proposed the MOF TMU-34 ([Zn(OBA)
(H2DPT)0.5]·DMF) as a chemoswitchable MOF to detect chloroform, since after exposure
to the chlorinated hydrocarbon, the dihydrotetrazine groups of the MOF conversed into
tetrazine groups, allowing the yellow crystals of TMU-34 to turn pink (the color of O-TMU-
34, namely the oxidized form).
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which reverts back to TMU-34 after regenerating with DMF. Reprinted with permission from Ref [159],
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4.2.2. Luminescence

Several kinds of MOFs exhibit a significant luminescence efficiency, based on mecha-
nisms which are schematically depicted in Figure 4 which mentions linker-based lumines-
cence (ligand-localized emission), ligand-to-metal charge transfer (LMCT), metal-to-ligand
charge transfer (MLCT), metal-based emission (including metal-to-metal charge transfer
(MMCT)), and several others [157]. As a consequence, luminescence-based transduction
is a scheme frequently employed in MOF-based chemical sensing. As previously men-
tioned, such a scheme relies on the amplification (enhancement) and/or quenching of
the luminescence intensity induced by interactions between the adsorbed analyte and the
luminophores of the MOF [136].
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The popularity of luminescence-based sensing resides in a combination of its technical
simplicity, achievability of molecule-specific recognition and, in many cases, low limits
of detection. It is also worth mentioning that the preparation of a luminescence-based
sensing setup uses few components (i.e., an excitation source, an optical detector and
optical components such as optical waveguides or optical fibers, allowing the propagation
of the optical signal from the sample to the detector). Hence, it is often possible to assemble
cost-effective and portable sensor devices [160].
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Lanthanide-based MOFs, d10 metal-based MOFs containing functional ligands, het-
erometal–organic frameworks and MOFs incorporating fluorescent organic linkers have
been tested for the detection of many analytes, including ions. Recent review articles have
summarized the results regarding the use of luminescent-MOF-based sensors both for the
detection of gaseous species and ions or molecules in solution [161–165].

4.2.3. Interferometry

The interferometry-based method measures the variations in the MOF refractive index
(RI) before and after guest adsorption. Because most of the MOF volume is composed of
initially vacant pores, the sorption of analytes inside these empty cavities leads to large
RI increases [166]. This measurement requires the MOFs to be in thin-film form, and the
reflective surfaces to be the front and back sides of the MOF film [136]. Another possibility
is the development of gas-sensing MOF-based optical fibers optical-fiber-MOF-based by
directly allowing the growth of a thin film of MOF on the surface of an optical fiber with
controlled film thickness and morphology [166].

One of the first interferometric gas sensors implementing a MOF is the waveguide-
based chemical-sensing platform based on ZIF-8-coated optical fiber for the detection of
H2, N2, O2, CO2, and CO proposed by Kim et al. [167]. The ZIF-8-based sensor showed a
high selectivity to CO2 gas relative to other small gases (H2, N2, O2, and CO) [167].

4.2.4. Localized Surface Plasmon Resonance (LSPR)

LSPR is a method similar to interferometry and detects analytes indirectly by measur-
ing spectroscopically the RI changes in MOFs as shifts in the visible extinction spectrum.
The sensor is based on a surface-sensitive measurement and, as a consequence, the thick-
ness of the MOF films is the most important parameter for the development of a plasmonic
sensor. MOF-based LSPR exhibits sensitivity and selectivity to different analytes since
MOFs can selectively adsorb and concentrate specific analytes.

One of the first applications of MOF in gas-LSPR-based sensing was proposed by
Kreno and coworkers [168]. They demonstrated amplifying the sensing signal by coating
the plasmonic substrate with a MOF. Cu(BTC) was used as MOF structure and a 14-fold
signal enhancement for CO2 sensing was achieved [168]. Recently, also He and coworkers
proposed the use of the same copper-based MOF in a tip-based fiber optic LSPR sensor for
the sensing of VOCs [169].

4.2.5. Infrared Spectroscopy

Optical gas sensors using infrared (IR) absorption spectroscopy are mainly based
on the modification of the intensity of transmitted and/or reflected light by the sensing
material caused by gas adsorption [155,156]. While measurements of the transmitted
wave determine the absorption coefficient of the sample, reflection-mode analysis can take
advantage, in some specific cases, of the total internal reflection phenomenon [136].

4.3. MOF-Based Sensors Using Gravimetric and Mechanical Methods

The easier approach for gas detection utilizing MOFs is the measurement of changes
in MOF mass as the material selectively adsorbs the target analyte. This can be performed
on a macroscale, bulk scale, or by using thin films deposited on a mechanical resonator. In
this last case, the change in mass of the resonator due to gas adsorption is translated into
an electrical signal [154].

In these mechanical methods, at first, an analyte is adsorbed into the pores of MOFs
grown on electromechanical devices and then the mass changes are converted into an electri-
cal signal through different transduction mechanisms (shifts in frequency or changes in the
work function) [154]. In this framework, an important aspect is related to the characteristics
of the MOF films: a tight contact between the MOF film and the electromechanical-device
surface is strictly required to obtain the suitable sensitivity.
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The main gravimetric and mechanical methods involving MOFs for gas-sensing appli-
cations are based on the following electromechanical devices:

4.3.1. Quartz Crystal Microbalance (QCM)-Based Sensors

In QCM-based sensing, a thin piezoelectric quartz crystal is the core component
of a QCM transducer [170]. After being electroplated, the thin slice oscillates when an
alternating current (AC) is applied. The mass increases upon the adsorption of analyzed
gas molecules, and the resonant frequency decreases (Figure 5) [170].
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QCM-based MOF gas sensors have been successful in sensing a wide range of analytes
using both reversible and irreversible interactions [155,171], even if little chemical identity
or selectivity information can be directly obtained. QCM-based MOF sensors have been
mainly proposed for humidity, VOC and hydrocarbon detection [155,171]. For example,
Ma et al. used a MOF-based QCM gas sensor to detect inert and nonpolar gases such as
BTEX (benzene, toluene, ethylbenzene, and xylene) [172]. To address the cross-sensitivity
issue, QCM sensor arrays based on the combination of different MOFs to detect the same
gas mixture have been recently proposed. Such a cross-sensitive sensor can be defined as
an electronic nose (e-nose) [136].

4.3.2. Surface Acoustic Wave Sensors (SAWS)

In surface acoustic wave sensors (SAWS), the gas adsorption is detected by measuring
the frequency shift of acoustic waves generated by a quartz oscillator vibrating and traveling
parallel to the surface [173]. The response of this device is reproducible and faster as
compared to the same coating on QCMs, but it is dependent on the film thickness: for
each device, an optimal thickness can be estimated, above which the sensor response
saturates [136]. Examples of MOF-based SAWS have been proposed by Paschke et al.
(MOF@SAW sensor based on MFU-4 for the detection of H2, N2, CO2) [174], Devkota et al.
(ZIF-8-coated SAW reflective-delay-line mass sensors for the sensitive detection of CO2 and
CH4 at ambient conditions) [175] and by Vanotti et al. (SAW device functionalized with
ZnTACN for CO2 detection) [176].
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4.3.3. Microcantilever-Based Sensors (MCLs)

Gas detection by microcantilever (MCLs) sensors are characterized by two transduc-
tion mechanisms: the changes in the cantilever oscillation frequency caused by mass uptake
and the strain-induced bending [177]. In the former mode, changes in the sensor oscillation
frequency are typically detected optically. In the latter mode, adsorption produces strain at
the coating’s MCL interface, causing deflection of the cantilever beam that can be detected
either optically or by using a built-in piezoresistive sensor. The structural flexibility of
MOFs is an advantage for chemical detection using static MCL, because even small changes
in the unit cell dimensions can result in large tensile or compressive stresses at the interface
between the cantilever and the MOF thin film [160]. However, MCL-based sensors are
scarce in practical applications, due to cross-sensitivity and poor selectivity; indeed, in
the case of exposure to a gas mixture with multiple components, all constituents can be
absorbed. Different kinds of MOFs have been proposed for the development of MCL-based
gas sensors: UiO-66 for toxic organophosphorus molecules [178]; MIL-53 (Al) for CO2, N2,
CO, and Ar [179]; and HKUST-1 for the detection of VOCs [180].

4.4. MOF-Based Sensors Using Electrical Methods

Electrical sensor devices based on MOFs detect a target gas by the changes in an
electrical property among resistance, capacitance, impedance or work function.

4.4.1. Chemoresistors

As already mentioned, the working principle of chemiresistive gas sensors is based
on the changes in electron conductivity (or resistance) of the sensitive layer/material as
a consequence of the interaction with the target gas [48]. The origin of the chemiresistive
effect in a MOF depends on its composition; redox reactions involving transition metals in
MOFs can affect their conductivity, and structural changes or volume changes in MOFs
upon gas adsorption modulate the number of electrons hopping between MOFs and thus
cause resistance changes (Figure 6).
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Figure 6. Chemiresistive—based MOF gas sensors sketch, reproduced from Ref. [181]. (A) the sensing
layer completes a circuit by bridging two electrodes. (B) baseline. (C) The analyte (green circle)
interacting with the sensing layer leads to a change in conductance coincident with analyte binding.
(D) Recovery phase.

MOF-based chemiresistive sensors have been widely studied, as they offer a simple
sensing mechanism, low-cost fabrication, facile integration with various electronic devices,
and ease of miniaturization [48,135]. In addition, because of the diversity and high com-
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patibility of MOFs and MOF derivatives with other materials, multiple principles can be
incorporated for MOF-based chemiresistors [48].

The first MOF-based chemiresistive sensor was proposed by Chen et al. The authors
constructed a Co-based ZIF-67 sensor for the detection of formaldehyde at concentrations
below 5 ppm [182]. After this, many other works reported the development of MOF-based
chemiresistive sensors implementing different kinds of MOFs and their results have been
summarized in different review articles [48,135,183].

4.4.2. Chemicapacitive Sensors

The sensors belonging to this class probe the adsorption of a certain amount of target
gas via changes in the relative permittivity (i.e., dielectric constant) of a sensing layer
(usually a porous material). As MOFs benefit from insulating effects, they can be applied
as dielectric layers in capacitance sensors [154].

Chemicapacitive sensors are mainly built up using two types of configurations—IDE
(interdigitated electrode configuration) and the parallel plate configuration—differing in
the geometry and in the positioning of the sensing layer (i.e., the MOF layer). In the former,
the MOF material is deposited onto the electrodes, while in the latter, the MOF layer is
collocated in a sandwich form between two metal substrates (usually copper plates), one
employed as a back electrode and another as an upper electrode [154,183].

The signals of MOF-based chemicapacitive sensors (linked to changes in the permittiv-
ity of the MOF) are influenced by many factors: (i) the polarity of target molecules; (ii) the
adsorbed amount of gas/vapor molecules on the sensing layer; (iii) structural features of
target molecules affecting the size-exclusion-based selectivity, such as molar mass, chain
length and kinetic diameter; (iv) the external environment conditions (temperature, relative
humidity (RH), and frequency of measuring circuit).

Different examples of chemicapacitive MOF-based sensors have been proposed:
(i) sensors with copper-based MOFs (HKUST-1 and Cu(bdc)xH2O) have been used for the
detection of humidity [184,185], (ii) sensors with yttrium-based MOFs have been used for
the detection of toxic gases (NH3 and H2S) [186,187]; (iii) a sensor with HKUST-1 nanopar-
ticles has been investigated for the detection of VOCs in a moderate environment [188].

4.4.3. Sensors Based on Changes in AC Impedance

The detection of changes in electrical impedance—namely, the quantity that gener-
alizes the concept of resistance in the case of alternating currents—upon gas exposure is
another approach for gas sensing. Since the electrical impedance changes as a function of
the frequency of an applied sinusoidal voltage, the use of sensitive materials characterized
by high conductivity is avoided and also highly resistive materials such as MOFs can be
used for the development of gas sensors. Impedance measurements involving MOF-based
systems depend on: (a) the uptake of the target analyte by the MOF-based sensing layer;
(b) how the interaction between the MOF structure and guest molecules (adsorbed gas)
facilitates efficient proton conduction; (c) the experimental conditions (temperature, RH,
frequency of measurement, and concentration of the target analyte).

A variety of MOFs, such as Al-BDC MOF, Cu-BTC MOF, Fe-BTC MOF, Fe-doped
Fe-BTC and Li-doped Fe-BTC MOFs, were tested for their impedimetric changes upon
exposure to gases such as O2, H2, NO, CO2, C3H8, ethanol and methanol [189]. Impedance-
based sensors of humidity based on MOFs have been also developed; Weiss and coworkers
proposed the use of different CAU-10 MOFs [190] while Y. Zhang et al. proposed the use of
(Ti)MIL-125-NH2 [191].

4.4.4. Sensors Based on Changes in the Work Function

The principle of work function readout exhibits potential for low-cost gas sensor
development. A Kelvin probe is the technique to monitor work function changes. The
changes in the work function are reflected as signal variation in the response of contact
potential difference (CPD, ∆ϕ) in the Kelvin probe transducer [192]. The surface electrode
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modified with MOF adsorbs and concentrates the gas/vapor molecules, amplifying the
response signal. The electrostatic interactions between gases and MOFs should lead to
detectable changes in the work function (∆Φ). The ability of MOFs for selective gas detec-
tion using work function readout (Kelvin probe measurements) has been demonstrated
by the research activities of Davydovskaya and coworkers. In particular, they tested the
use of Cu-BTC for aldehyde sensing [193], the suitability of different M–BTC-based MOFs
(M = Co, Cd, Ni, Al) for alcohol and alkane sensing [193], and Mg-MOF74 and Co-MOF74
for CO2 sensing [194].

4.5. Additional Methods

Additional transduction schemes for chemical detection which can involve ferroelectric
or magnetic properties are also briefly mentioned here.

4.5.1. Methods Involving Ferroelectric Properties

Ferroelectric properties can be involved when the positive and negative charge centers
of the MOF crystal do not coincide, so that an intrinsic electric dipole moment and a
spontaneous macroscopic polarization arise. The ferroelectric properties of MOFs mainly
derive from the hydrogen bond interactions of MOFs and polar guest molecules, which
endow them with ferroelectric properties [195]. MOFs can be used as ferroelectric switch
materials due to their sensitivity to external stimuli, but such an application is still in the
initial stage of development [135]. This limited development is because the MOFs used
as ferroelectric switches must meet two stringent conditions: (1) the space groups of the
MOF must belong to polar point groups; (2) the MOF should have a hydrophilic cavity. In
addition, the measurement of ferroelectric properties requires large-scale single crystals,
but MOFs are not easily produced as large-scale crystals.

4.5.2. Methods Involving Magnetic Properties

Magnetic-MOF-based sensing switches are mainly produced from two types of mag-
netic MOFs: (i) spin crossover (SCO) MOFs and (ii) single-molecule magnet/single-ion
magnet (SMMs/SIMs) MOFs [135]. Their magnetic behaviors (such as magnetic ordering,
magnetic susceptibility, hysteresis loop, spin crossover, etc.) can be easily modulated
through the single-crystal-to-single-crystal (SCSC) transformation, which occurs with the
exchange of the guest solvent molecules or cleavage and formation of chemical bonds, that
in turn modulates the magnetic properties. The metal centers of SCO MOFs are common
transition metal ions with d4–d7 electronic configurations, as these metal ions may exist in
high-spin (HS) and low-spin (LS) states, while SMMs/SIMs MOFs are composed of d- and
f-block (Mn2+, Fe2+, Dy3+, etc.) metal complexes [135].

MOF-based magnetic switches are still rare, particularly in combination with other
properties. As a first work on the topic, Han et al. proposed a magnetic-MOF-based oxygen
sensor based on Fe-MOF-74 to investigate the relationship between the O2 absorption and
MOF magnetic properties [196].

4.6. Recent Advances in Gas Sensing Based on MOF-Based Hybrid Organic–Inorganic Composites

The recent literature results regarding the use of MOF-based hybrid composites have
been analyzed and summarized in the following table. The reason why the Table focuses
only on MOF-based composites is twofold. First, the literature about gas-sensing applica-
tions of pure MOF structures is extremely vast, as can be seen by reading some recently
published, relevant review papers [197–200]. We hence decided to avoid discussing pure
MOFs and focused on a specific subclass. Moreover, and probably even more importantly,
the synthesis and application of MOF-based composites are nowadays considered hot
research topics, in which scientists and technologists are pursuing their goals by taking ad-
vantage of the combined functionality of both the metal–organic and the organic/inorganic
components of the composite.
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In Tables 3 and 4, we propose a vast survey of gas-sensing literature works centered
on the use of MOF-based composites and published in recent years (from 2016 to now).
As most of these composites are successfully employed as chemiresistors, we decided to
split the two separate approaches: Table 3 shows data regarding only the works where
the composite material is used as a chemiresistive sensor, while Table 4 deals with other
transduction approaches/mechanisms.

As can be guessed, a relevant class of materials suitable for the synthesis of gas-
sensitive composites based on MOFs are MOXs (metal oxides) which, as previously men-
tioned, exhibit several advantages but also some important drawbacks, such as poor
selectivity and cross-sensitivity to humidity. Moreover, metal oxide chemiresistors operate
at high temperatures (200–600 ◦C), which make them unsuitable for some real-life applica-
tions. Similar arguments can be made for carbon-based materials: they are interesting for
gas-sensing applications and exhibit a large specific surface area, but also have problems
with selectivity and often exhibit low reproducibility. To address these issues, the idea
of developing composite materials compounding these sensing materials with MOFs to
obtain a synergistic effect aimed at improving the overall gas-sensing performance has
been recently formulated [137].

MOFs-MOXs hybrid composites may offer physicochemical properties not achievable
by parent MOFs and are expected to exert outstanding advantages since the MOF compo-
nent typically retains most of its large surface area, high porosity, and property tunability,
gaining stability and conductivity thanks to the filler inclusion. In addition, the unique gas
storage and gas selectivity properties of MOFs can improve the selectivity of the resulting
composite. According to this trend, the use of MOF membranes on metal oxides is being
explored as an approach for enhancing the sensor selectivity [137].

Table 3. Literature results regarding use of MOF-based composites as chemiresistive gas sensors.
Response, as defined in the table, is mentioned when available for a specific value of the analyte
concentrations and/or for a range of values. Unless stated otherwise, the letters R, I and G are used
to indicate the electrical resistance, the current intensity and the conductance, while the suffix “0”
and “g” refer to the values of one of such quantities measured in air (i.e., without an analyte) and in
the presence of the gas analyte. ∆R = |Rg − R0|; ∆I and ∆G hence indicate the gas-induced change
in resistance, current intensity and electrical conductance, respectively.

Analyte Material T (◦C) Conc. Response Ref

H2
ZnO@ZIF-8 300 50 ppm 1.44 (R0/Rg) [201]
ZnO@ZIF-8 250 50 ppm 3.28 (R0/Rg) [202]
ZnO@ZIF-8 125 10 ppm ~5 (R0/Rg) [203]
ZnO@ZIF-8 250 50 ppm ~80% (∆I/I0) [204]

ZnO@ZIF-71 250 50 ppm ~80% (∆I/I0) [204]
Pd nanowires@ZIF-8 (4 h) RT 0.1% 0.7% (∆R/R0) [205]

ZnO@Pd@ZIF-8 nanowires 200 50 ppm 6.6 (R0/Rg) [206]
Pd NWs@rGO@ZIF-8 RT 100 ppm 2.2% (∆R/R0) [207]

ZnO@ZIF-8 290 1000 ppm ~6 (R0/Rg) [208]
MOF-5/CS/IL RT 100 ppm ~0.1 (R0/Rg) [209]

Pd/ZIF-67 RT 3000 ppm 9% (∆I/I0) [210]
Pd/ZIF-67/PMMA RT 3000 ppm 7% (∆I/I0) [210]

HKUST-1/Pd NP/SWCNT N.A. 10 ppm (not defined) [211]

CO2 SnO2@ZIF-67 205 5000 ppm 16% (∆R/R0) [212]
GA@UiO-66-NH2 200 5% to 100% 2% to 8% (∆R/R0) [213]

NO2
In2O3/ZIF-8 (4:1) 140 1 ppm 16.4 (Rg/R0) [214]

Cu3(HHTP)2/Fe2O3 RT 5 ppm 63% (∆R/R0) [215]
Pd@Cu3(HHTP)2 RT 5 ppm 62% (∆R/R0) [216]
Pt@Cu3(HHTP)2 RT 5 ppm 57% (∆R/R0) [216]
Pt@Cu3(HHTP)2 RT 3 ppm 90% (∆R/R0) [217]

ZnCo-ZIF/graphene
nanoplatelets 22 ◦C, 30% RH 100 ppm ~30 (R0/Rg) [218]

MIL-101(Cr)-PEDOT(45) RT 1 ppm to 10 ppm 1–30 (∆G/G0) [219]
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Table 3. Cont.

Analyte Material T (◦C) Conc. Response Ref

H2S
MOF-5/CS/IL RT 100 ppm 0.91 (R0/Rg) [209]
WO3@ZIF-71 250 20 ppm 19% (∆R/R0) [220]
ZIF-8/ZnO 25 10 ppm 52% (∆R/R0) [221]

Co-Zn-MOF@CNT 325 100 ppm ~60 (Rg/R0) [222]

NH3
ZnO@ZIF-8 250 50 ppm ~25% (∆I/I0) [204]

ZnO@ZIF-71 250 50 ppm ~25% (∆I/I0) [204]
Cu-BTC/GO (25) RT 500 ppm 7% (∆R/R0) [223]

Cu-BTC/PPy-rGO 25, 50% RH 50 ppm 12.4% (∆R/R0) [224]
Pd-Co@IRMOF1 RT 90 ppm ~80 (R0/Rg) [225]

SiO2CuOF-graphene-PAni N.A. 200 ppm 150% (∆R/R0) [226]
ZIF-67/rGO rt 50 ppm 5.8 (R0/Rg) [227]

ZIF-8@ZnO porous
nanospheres 220 50 ppm ~6 (R0/Rg) [228]

ZnCo-ZIF/graphene
nanoplatelets 25, 30% RH 1000 ppm ~1.1 (R0/Rg) [218]

Cu3(HHTP)2/graphite RT 80 ppm 5% (∆G/G0) [181]
Co3(HHTP)2/graphite RT 80 ppm 4% (∆G/G0) [181]
Fe3(HHTP)2/graphite RT 80 ppm 4% (∆G/G0) [181]
Ni3(HHTP)2/graphite RT 80 ppm 3% (∆G/G0) [181]

CO
MOF-5/CS/IL RT 100 ppm ~8% (R0/Rg) [209]

ZnCo-ZIF/graphene
nanoplatelets 22, 30% RH 1000 ppm ~1.4 (R0/Rg) [218]

CH4
ZnCo-ZIF/graphene

nanoplatelets 22, 30% RH 1000 ppm ~1.5 (R0/Rg) [218]

NO
Cu3(HHTP)2/graphite RT 80 ppm 8% (∆G/G0) [181]
Fe3(HHTP)2/graphite RT 80 ppm 11% (∆G/G0) [181]
Ni3(HHTP)2/graphite RT 80 ppm 10% (∆G/G0) [181]

H2O
Matrimid-NH2-MIL-53(Al) 28 2% 12% (∆G/G0) [229]

ZIF-8/MWCNT 25; 20% RH 100 ppm 11% (∆R/R0) [230]
ZIF-8/MWCNTs/AgNPs RT 1% 2.5% (∆R/R0) [231]

CH2O
(Formaldehyde)

ZnO@ZIF-8 300, 10% RH 100 ppm ~13.5 (R0/Rg) [232]
ZnO@ZIF-8 RT 5 ppm to 100 ppm 7 to 210 (R0/Rg) [233]

Janus Au@ZnO@ZIF-8 25 50 ppm 5–20 (R0/Rg, sample
dependent) [234]

ZIF-8/MWCNT 25; 20% RH 100 ppm 200% (∆R/R0) [230]
ZIF-8@ZnO porous

nanospheres 220 50 ppm ~9.7 (R0/Rg) [228]

Pd-Co@IRMOF1 RT 90 ppm ~10 (R0/Rg) [225]

CH3COCH3
(Acetone)

ZnO@5nmZIF-CoZn 260 10 ppm 28 (R0/Rg) [235]
ZnO@ZIF-8 250 50 ppm ~20% (∆I/I0) [204]

ZnO@ZIF-71 250 50 ppm ~240% (∆I/I0) [204]
ZnO@ZIF-71 150 5 ppm 39% (∆I/I0) [236]

ZIF-8/MWCNTs/Ag NPs rt 1% 2.3% (∆R/R0) [231]
ZIF-8/MWCNT 25; 20% RH 100 ppm 4.6% (∆R/R0) [230]

ZnO@ZIF-8 290 50 ppm ~2 (R0/Rg) [208]
ZIF-8@ZnO porous

nanospheres 220 50 ppm ~8 (R0/Rg) [228]

Pd-Co@IRMOF1 RT 90 ppm ~8 (R0/Rg) [225]
Pd/ZIF-67 RT 3000 ppm 0.5% (∆I/I0) [210]
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Table 3. Cont.

Analyte Material T (◦C) Conc. Response Ref

CH3CH2OH
(Ethanol)

ZnO@ZIF-8 250 50 ppm ~40% (∆I/I0) [203]
ZnO@ZIF-71 250 50 ppm ~325% (∆I/I0) [203]
ZnO@ZIF-71 150 10 ppm 13.4% (∆I/I0) [236]

ZIF-8/MWCNTs/Ag NPs RT 1% 12% (∆R/Ra) [231]
ZnO@ZIF-71@PDMS 250 10 ppm 500% (∆I/I0) [237]

Matrimid-NH2-MIL-53(Al) 28 2% ~8% (∆G/G0) [229]
ZIF-8/MWCNT 25; 20% RH 100 ppm 26.4% (∆R/R0) [230]

ZnO@ZIF-8 290 100 ppm ~2 (R0/Rg) [208]
ZIF-8@ZnO porous

nanospheres 220 50 ppm 13.8 (R0/Rg) [228]

Pd-Co@IRMOF1 RT 90 ppm 20 (R0/Rg) [225]

CH3OH
(Methanol)

ZIF-8/MWCNTs/Ag NPs RT 1% 8% (∆R/R0) [231]
Matrimid-NH2-MIL-53(Al) 28 20,000 ppm 8% (∆G/G0) [229]

ZIF-8/MWCNT 25–27, 20% RH 100 ppm 20% (∆R/R0) [230]
ZIF-8@ZnO porous

nanospheres 220 50 ppm 8 (R0/Rg) [228]

Cu3(HHTP)2/graphite RT 500 ppm 2% (∆G/G0) [181]
SnS/ZIF-8 25 10 ppm ~60 (∆G/G0) [238]

C2H4
(ethene) ZnO@ZIF-8 350 ◦C, 25% RH 250 ppm 20% (∆G/G0) [239]

C3H6
(propene) ZnO@ZIF-8 350 ◦C, 25% RH 250 ppm 60% (∆G/G0) [239]

Table 4. References on the use MOF-based composites as gas sensors employing methods different
from the chemiresistive one. Unless stated otherwise, all the data refer to experiments performed
at room temperature. The response for Ref [234] is defined as the minimal motional resistance
change. QCM and PL stand for quartz crystal microbalance and photoluminescence, respectively.
The transduction parameter is the ratio of optical transmittances (I/I0) as measured with and without
the analyte, respectively. In the case of the QCM sensor, the response is defined as the relative shift in
the resonance frequency ∆f/f. In the case of the PL-based transduction, the response is defined as
the ratio between the luminescence intensities at a responsive wavelength or as the ratio between PL
intensity in the presence of the analyte (I) divided by the PL intensity in the absence of the analyte (I0).

Analyte Method Material Conc. Response Ref.

CH4
Optical-fiber
transmittance ZIF8/PDMS 20% to 50% (in N2) 1.05–1.15 (I/I0) [240]

CH4
Optical-fiber
transmittance SBS/Fe(Pyz)Ni(CN)4 (50%) 100% to 20% Little % transmittance [241]

CO2
Optical-fiber
transmittance SBS/Fe(Pyz)Ni(CN)4 (50%) 100% to 10% Little % transmittance [241]

CO2
Optical-fiber
transmittance PMMA/ZIF-8 0% to 100% Up to 30% transmittance

reduction [242]

CO2

Interference
fringe shift

in cavity
ZIF8-decorated WGM microcavity 25% to 100% ∆λ = 7.4 pm per % of

CO2 concentration [243]

CO2 IR absorption Plasmonic nanopatch array-ZIF-8 20% to 35% ~4 × 102 (enhancement factor
of the IR absorption)

[244]

NH3 Optical MIL-124@Eu3+/Al2O3 500 ppm 14% (∆I/I0) [245]

NH3 QCM TiO2-SnO2/MWCNTs@Cu-BTC 40 ppm 0.8, see table caption for
the definition [246]



Chemosensors 2022, 10, 290 23 of 39

Table 4. Cont.

Analyte Method Material Conc. Response Ref.

H2O QCM CNT-HKUST-1 5% to 75% RH 2.5 × 10−5 of (∆f/f) per percent
of humidity

[247]

CH2O PL Eu(III)-functionalized ZnO@MOF 10 ppm 5.5, defined as I (614 nm)/I
(470 nm) [248]

C6H6 PL Eu(III)-functionalized ZnO@MOF 10 ppm 2.4, defined as I (614 nm)/I
(470 nm) [248]

Ethyl-
benzene PL Eu(III)-functionalized ZnO@MOF 10 ppm 2.4, defined as above [248]

Toluene PL Eu(III)-functionalized ZnO@MOF 10 ppm 2.3, defined as above [248]

Nitrobenzene PL [Ca(H2EBTC)(DMF)2]@PVDF 50 ppm 1.3 (I0/I) [249]

Apart from MOXs, other classes of materials have been explored for achieving func-
tional MOF-based composites; recently published works discuss, for example, the compo-
sition of MOFs with metal nanoparticles [142,144], carbon-based materials [140,146–149]
and polymers [143].

4.6.1. Composites of MOFs with Metal Oxides (MOXs)

MOFs-MOXs composite structures designed and tested as gas sensors have up to
now been tested mainly based on ZnO as the metal oxide (a smaller number of relevant
works propose the use of other oxides) and of materials belonging to the family of zeolite
imidazolate frameworks (ZIFs) as MOFs. ZIFs show a structure similar to zeolites. By
changing the metal ion or organic ligand, ZIFs’ gas-sieving ability can be easily tuned to
improve the controllable sensor selectivity. In addition, ZIFs often exhibit hydrophobic
properties [250]. During the production of MOF-MOX composites, MOX is used as a
metal-ion source; indeed, the metal cations released in solution through MOX partial
dissolution interact with organic ligands generating the desired MOF materials with the
MOX anchored inside. This approach has been used mostly for the production of ZnO/ZIF
composites [137].

ZnO/ZIF composites have been proposed as a sensing layer for the development
of sensors for the detection of small gas molecules and VOCs (see Table 3). In such a
structure, ZIFs act as a sieving material to concentrate the analyte before the interaction
with ZnO. Drobek et al. [201] developed a sensor for H2 detection by using ZnO nanowires
encapsulated in the ZIF-8 structure, achieving improved selectivity for H2 over C7H8 and
C6H6 at 300 ◦C thanks to the sieving effect of ZIF-8.

ZnO/ZIF composites have been also proposed by Zhou et al. [204] for the detection of
H2, NH3 and a selection of VOCs (ethanol, acetone and benzene). In particular, two ZIFs
(ZIF-8 and ZIF-71) differing in pore sizes (∼3.4 Å for ZIF-8 and ∼4.8 Å for ZIF-71) were
grown on the surface of ZnO nanorods to form ZnO@ZIF core–shell structures, where ZIFs
act as a, gas-molecule-sieving layer to shield ZnO from other gas molecules different from
the analytes and, thus, to improve the overall sensing selectivity. As a matter of fact, the
sensor based on ZnO@ZIF-8 exhibited a better response to smaller molecules, i.e., to H2
and NH3, while the one based on ZnO@ZIF-71 was able to discriminate benzene, most
likely as it has the largest molecular size among the three tested compounds (Figure 7).
These results demonstrated that the selectivity of sensors based on ZnO can be, to some
extent, controlled by tuning the structural properties of MOF coatings.
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Figure 7. Sieving effect of ZIF-8 and ZIF-71 in ZnO@ZIF NRAs. Reprinted with permission from
Ref. [204], copyright 2018 Elsevier.

The ability of ZIF-8 to concentrate the analyte by a sieving effect before the interaction
with ZnO nanorods was demonstrated also by Tian et al. [232], who produced a highly
selective formaldehyde gas sensor based on ZnO nanowires coated with ZIF-8.

Other studies also demonstrated that the thickness of the MOF layer—or, more gen-
erally, the amount of loaded MOF—affects the gas-sensing performance of MOF-MOX
composites. Indeed, to increase the specific surface area of the sensing layer without
increasing the diffusion path of the gas, an optimized shell layer thickness is needed.
Wu et al. [202] obtained improved H2 detection results by simply decreasing the MOF load-
ing in the composite; indeed, the sensor with a complete ZnO@ZIF-8 core–shell structure
experienced a higher hindrance of diffusion of the target gas to the ZnO. Additionally,
Cui and coworkers obtained an improved response to H2, also lowering the operating
temperature to 125 ◦C by increasing the number of pure ZnO nanorods and decreasing the
proportion of insulating ZIF [203].

Some modifications of the ZnO@MOF structure were also proposed. Yao and cowork-
ers [235] added Co2+ ions to the synthesis mixture, preparing ZnO@ZIF-CoZn character-
ized by a higher selectivity for acetone and improved resistance to humidity compared to
ZnO@ZIF-8. In the proposed composite, ZIF-CoZn acted as a filtration layer against water
molecules, allowing a humidity-independent acetone-sensing behavior at 260 ◦C. The same
authors synthesized an Au-ZnO@ZIF-DMBIM composite by partially replacing the 2-MIM
ligand with DMBIM [251]. After the exchange of ligands, no changes in the material crystal
structure occurred, but the pore size was reduced and, as a consequence, the absorption of
benzene derivatives was further inhibited by the sieving effect, and the moisture resistance
was improved.

Regarding the use of composites involving MOX different from ZnO, Dmello et al. [212]
synthesized SnO2-nanoparticle-encapsulated ZIF-67 (SnO2@ZIF-67) to take advantage
of the selective sorption properties of ZIF-67 towards CO2. The composite exhibited
a CO2 response approximately 2-fold higher than that of pristine SnO2 nanoparticles
(∆R/Ra = 8.8%). Zhou and coworkers proposed a WO3@ZIF-71 composite for the devel-
opment of a sensor with improved selectivity and response to H2S [220]. They showed
that the synthesized WO3@ZIF-71 exhibited, compared to pure WO3, an almost 9-fold-
improved response.

Liu et al. synthesized In2O3@ZIF-8 heterostructures and used them for the develop-
ment of a chemiresistive NO2 sensor [214]. During the preparation of the heterostructures,
ZIF-8 nanocrystals were uniformly deposited on In2O3 by using In2O3/ZnO as the source
of zinc ions for the growth of ZIF-8. The optimized In2O3/ZIF-8 heterostructure exhibited
at 140 ◦C a high response to 1 ppm NO2 and an enhanced humidity resistance thanks to
the hydrophobic ZIF-8 shield compared to the parent In2O3 (Rg/Ra = 4.9).
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Zhang and coworkers synthetized a luminescent MIL-124@Eu3+ film on porous Al2O3
for the development of a NH3-sensing system [245]. MIL-124 was allowed to grow on α-
Al2O3 via in situ solvothermal synthesis; then, the doping with europium ions was carried
out via a post-synthetic modification. The authors demonstrated that the luminescent
intensity of the MIL-124@Eu3+ film exhibited an excellent linear relationship with NH3
concentration in ambient air, reaching a detection limit as low as 26.2 ppm.

4.6.2. Composites of MOFs with Noble-Metal Nanoparticles

Composites with noble-metal nanoparticles (Pd, Pt, Au, and Ag) have been studied
mainly for the purpose of H2 detection. The ability of Pd nanoparticles to serve the detection
of H2 is based on changes in the resistance of the Pd-based sensor driven by the generation
of palladium hydride (PdHx) after the interaction between Pd and H2 [48]. On the basis
of this property, Koo et al. synthesized a Pd NWs@ZIF-8 composite in which ZIF-8 was
directly grown on the Pd nanowires [205]. The ZIF-8 acted as sieving layer, allowing a
selective penetration of H2 in the Pd-based sensors and, hence, preventing the detrimental
interaction between O2 and Pd nanowires.

Kumar et al. proposed a H2 sensor, using as a sensing layer ultrathin reduced graphene
oxide (rGO)-coated palladium nanowires (Pd NWs@rGO) with a coating of ZIF-8 (Pd
NWs@rGO@ZIF-8) [207]. The role of ZIF-8 was that of a nanofiltration layer; Pd NWs
promoted a rapid response and high sensitivity towards H2, while rGO prevented the
formation of additional conductive channels due to the expansion of Pd NWs upon H2
exposure, ensuring monotonic sensor response (Figure 8). The optimized device showed a
response of 2% to 1% H2 in air and a response time of 5 s and a lower limit of detection
of 20 ppm. The same Pd NWs@rGO@ZIF-8 composite was also tested as a CO and CH4
sensor, as reported in Table 3.

Xie and coworkers [210] proposed a H2 sensor which used as a sensing element a
composite consisting of a Pd nanocluster film, a ZIF-67 MOF, and a polymer (PMMA).
The polymer coating acted as a protection layer ensuring resistance to CO poisoning and
improving the sensitivity of the device to H2. The MOF served as an interface layer between
the Pd film and the polymer layer, leading to a significant improvement in the sensing
performance. Compared with traditional Pd-based electric-conductance-type H2 sensors,
the proposed sensor exhibited optimized sensing capabilities.

Pd- and Pt-based composites have been proposed also for the detection of other small
gases different from H2, including VOCs. Koo et al. [216] published the results of a study
involving a sensor based on composites of 2,3,6,7,10,11-hexahydroxytriphenylene hydrate
(HHTP)-based MOF with Pd and Pt for the detection of NO2, while a Pd/ZIF-67 composite
was recently proposed for acetone and benzene detection by Xie and coworkers [210].
The detection of ethanol, acetone, formaldehyde and NH3 was investigated by Khan and
coworkers using Pd-Co/IRMOF composites [225].

Other composites involving noble metals employ the plasmonic properties of Au
and Ag nanoparticles to enhance the response of optochemical sensor devices [144].
Wang et al. [234] coated the surface of Au nanorods with ZnO to form an Au@ZnO core–
shell structure; then, ZIF-8 crystals were allowed to grow on the ZnO surfaces. ZnO in the
resulting multilayered composite acted as an active-sensing material, while ZIF-8 acted as a
sieve for formaldehyde and as hydrophobic protection for humidity. Finally, Au nanorods
conferred a localized plasmonic resonance in visible light, so that at resonant illumination,
resulting in an improved generation of free carriers in the ZnO surface, thus lowering the
energy required for the device functioning and improving the response.

Chong et al. developed a nanophotonic device based on a plasmonic nanopatch
array (NPA)@ZIF-8 composite for enhanced-infrared-absorption CO2 sensing [244]. The
collected experimental results showed that the proposed plasmonic-MOF-based device
can effectively increase the infrared absorption path of on-chip gas sensors by more than
1100-fold. These results pave the way for the future development of on-chip gas sensing
with ultracompact size.



Chemosensors 2022, 10, 290 26 of 39

Chemosensors 2022, 10, x FOR PEER REVIEW 26 of 40 
 

 

formation of additional conductive channels due to the expansion of Pd NWs upon H2 

exposure, ensuring monotonic sensor response (Figure 8). The optimized device showed 

a response of 2% to 1% H2 in air and a response time of 5 s and a lower limit of detection 

of 20 ppm. The same Pd NWs@rGO@ZIF-8 composite was also tested as a CO and CH4 

sensor, as reported in Table 3.  

Xie and coworkers [210] proposed a H2 sensor which used as a sensing element a 

composite consisting of a Pd nanocluster film, a ZIF-67 MOF, and a polymer (PMMA). 

The polymer coating acted as a protection layer ensuring resistance to CO poisoning and 

improving the sensitivity of the device to H2. The MOF served as an interface layer be-

tween the Pd film and the polymer layer, leading to a significant improvement in the sens-

ing performance. Compared with traditional Pd-based electric-conductance-type H2 sen-

sors, the proposed sensor exhibited optimized sensing capabilities. 

Pd- and Pt-based composites have been proposed also for the detection of other small 

gases different from H2, including VOCs. Koo et al. [216] published the results of a study 

involving a sensor based on composites of 2,3,6,7,10,11-hexahydroxytriphenylene hydrate 

(HHTP)-based MOF with Pd and Pt for the detection of NO2, while a Pd/ZIF-67 composite 

was recently proposed for acetone and benzene detection by Xie and coworkers [210]. The 

detection of ethanol, acetone, formaldehyde and NH3 was investigated by Khan and 

coworkers using Pd-Co/IRMOF composites [225].  

 

Figure 8. Pd NWs@rGO@ZIF−8 composite. (a) Sensing mechanism; (b) energy band diagram of Pd 

NW and p-type rGO, and PdHx and p-type rGO; (c) molecular−sieving effect of ZIF−8 in the Pd 

NWs@rGO@ZIF−8 H2 sensor. Reprinted with permission from Ref. [215]. Copyright 2021 American 

Chemical Society. 

Figure 8. Pd NWs@rGO@ZIF−8 composite. (a) Sensing mechanism; (b) energy band diagram of Pd
NW and p-type rGO, and PdHx and p-type rGO; (c) molecular−sieving effect of ZIF−8 in the Pd
NWs@rGO@ZIF−8 H2 sensor. Reprinted with permission from Ref. [215]. Copyright 2021 American
Chemical Society.

4.6.3. Composites of MOFs with Carbon-Based Materials

Carbon nanotubes (CNTs) and graphene-based materials (GRMs including graphene,
graphene oxide, reduced graphene oxide (rGO), aminated graphene oxide, etc.) are the most
common carbon-based materials reported in the literature that can be used for gas-sensing
and gas adsorption applications, but they exhibit limited selectivity and low adsorption
capacity for gases [252–256]. Their poor selectivity towards specific gases can be enhanced
by compounding with MOFs, thus exploiting MOF as molecular sieves. In addition, the
integration with carbon-based materials leads to an improvement in the stability and the
electrical conductivity of the MOF structure [148]. Carbon-based MOFs proposed so far for
sensing applications are based on a few MOF types: BTC-based MOFs, MOF-5, ZIF-8, and
HTTP-based MOFs, as reported in Table 3. In all the cases, improved sensing performance,
with respect to single components, was achieved.

Jafari et al. [231] synthesized a composite made up by ZIF-8, MWCNTs and Ag
nanoparticles and they used it to develop a sensor for the detection of some VOCs including
methanol, ethanol, acetone, acetonitrile and n-hexane at room temperature. Thanks to the
ZIF-8-sieving properties, the proposed sensor exhibited good sensitivity to the analytes and
higher sensitivities towards ethanol and methanol, namely, the two analytes smaller in size
among the tested pool. Similarly, a trimetallic bilayer composite (Zn-Co-Ni MOF@CNT)
was discussed by Tan et al. [222] for H2S sensing, comparing its performances with those
of a monolayer, bimetallic Zn-Co MOF@CNT composite.

Composites with carbon nanotubes were implemented also in the development of
QCM-based sensors. Wong et al. [246] developed QCM-based sensors for NH3 detection
under ambient conditions covering the QCM quartz plate with a TiO2-SnO2/MWCNTs@Cu-
BTC composite. In such a material, the presence of a TiO2–SnO2/MWCNT hybrid prevents
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HKUST-1 decomposition, improving its longevity. The proposed QCM sensor exhibited a
NH3 limit of detection as low as 0.77 ppm and improved sensitivity, repeatability, good
chemical selectivity for ammonia and stability, even in the presence of moisture. Chappanda
and coworkers [247] proposed QCM-based humidity sensors based on HKUST-1/CNT thin
films. The optimized sensing film demonstrated a 230% increase in sensitivity compared to
a plain HKUST-1 film, stability, reliability, and an average sensitivity up to ten times better
than previously reported.

In some examples, the MOF represents the conductive component, such as in the
work by Ko et al. [181], who described the sensing performances of chemiresistive sensors
based on using conductive MOF composites as sensing layers. The conductive MOFs were
obtained by the integration of the MOF M3HHTP2 (M = Fe, Co, Ni, or Cu) with graphite
by a solvent-free ball-milling procedure. The as-prepared chemiresistors were capable of
detecting and differentiating NH3, H2S and NO at ppm levels (Figure 9). Other interesting
results involving metal-doped MOFs are reported in Table 3 with reference to the detection
of NO2 [216] and NH3 [225].
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Figure 9. Sensing performances of M3HHTP2/graphite composites. ((A) Change in conduc-
tance ∆G/G0 (%) over time (min) for the M3HHTP2/graphite blends (Fe3HHTP2 = green,
Co3HHTP2 = orange, Ni3HHTP2 = purple, Cu3HHTP2 = blue). (B) Concentration dependence plots
of sensing response of the M3HHTP2/graphite blends to NH3, NO and H2S (5–80 ppm). (C) Sensing
performance of M3HHTP2/graphite array towards different NH3 concentrations (1200, 800, 80, 40,
20, 10, 5 ppm) diluted with N2. (D) Ability of the array to distinguish between 80 ppm NH3, H2S,
NO, and 7000 ppm H2). Reproduced from Ref. [181].
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4.6.4. Composites of MOFs with Conducting Polymers

Conducting polymers have been largely used as a material for preparing gas sen-
sors [257], but they have usually exhibited poor sensitivity and selectivity. These drawbacks
can be, to some extent, tackled by interfacing the polymers with MOFs. The polymerization
of MOF with polymers is a possible procedure for modulating/modifying the properties of
the parent polymer, while the addition of a polymer can improve the MOF water stability
and strengthen the coordination bonds between the metal and the ligand [156].

To date, only few reports are focused on the gas-sensitive properties of MOF–polymer
composites. For example, Sachdeva and coworkers prepared thin films of nano-NH2-
MIL-53(Al) dispersed in Matrimid 5218 for the development of VOC capacitive sensor
devices [229]. They reported a detection limit of 1000 ppm for methanol, achieved thanks
to the affinity of NH2-MIL-53 (Al) for this specific alcohol. In addition, the prepared device
exhibited cross-sensitivity and selectivity after exposition at 2 × 104 ppm to different VOCs
(methanol, ethanol, and 2-propanol) and water.

Optical fibers with a ZIF-8/PDMS composite were employed by Cao et al. [240] for
CH4 detection in N2. In the prepared system, polydimethylsiloxane (PDMS) polymer
provides hydrophobicity, good mechanical properties and good permeability to CH4, and
the presence of ZIF-8 increased the free volume of the polymer and the CH4 diffusion rate.

Other recent examples of polymer–MOF gas-sensitive composites include the prepa-
ration of MIL-101(Cr)PEDOT composites [219] employed for NO2 sensing at a limit of
detection as low as about 60 ppb, or the synthesis of a MOF−polymer mixed-matrix flexible
membrane for H2S detection at room temperature [209]. In the latter case, the sensing
layer was produced embedding MOF-5 microparticles on a conductive chitosan (CS)-based
membrane (the conductivity properties were inferred by a glycerol IL). The sensor showed
a remarkable detection sensitivity for H2S gas (as low as 1 ppm), fast response time (<8 s),
recovery time of less than 30 s, and outstanding sensing stability, averaging at 97% detection
with 50 ppm of H2S gas.

Furthermore, Zhou et al. [237] synthesized a ZnO@ZIF-71(Co)@PDMS composite by
allowing PDMS to polymerize on the surface of ZnO@ZIF-71. The material was used to de-
velop a new chemiresistive sensor for VOCs, which showed high sensitivity, low detection
limit, and high selectivity towards acetone and stability in the presence of humidity. The
use of a PDMS coating allowed for the reduction in cross-sensitivity with ethanol.

5. Conclusions and Perspectives

The references reported in this review quite clearly demonstrate the ongoing interest
in gas sensors employing ionic liquids and metal–organic frameworks. In the first case,
the key actors are the sensing devices based on the amperometric principle (AGS), which
started employing ILs as membrane-free electrolytes about 15 years ago. There are evident
advantages offered by ILs, such as their high thermal stability, their wide electrochemical
window and their low evaporation rate. Important challenges remain in order to maximize
their technology-readiness level, up to the point where AGS systems/devices would be
available at the commercial level. An obvious challenge is caused by the sensitivity of
ILs to water, which “poisons” the electrolyte by affecting, in a relevant way, its viscosity.
Hence, future developments have to confront a better understanding and management
of the interaction of sensing devices with air and moisture. It is also worth mentioning
that ILs are relatively expensive, so that another important trend for AGS devices is to
miniaturize planar electrodes, i.e., obtaining cells with very small volumes (e.g., a few µL)
in order to lower the cost of the electrolyte and, possibly, of the cells’ manufacturing.

Despite the vast amount of scientific works regarding the use of MOFs for various
applications, we realized while reviewing the literature on MOF-based gas sensors that
several issues are still to be addressed, and that the literature available on the topic is still
limited. Even if MOF-based sensors showed interesting and promising sensing properties,
their sensing systems are rather complicated, and further enhancement in the transduction
values of sensing signals is required. It is noteworthy that the available literature on
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this topic is still too limited to catalyze and boost the development of modeling research
aiming towards the description of the phenomena and the mechanisms involved in the
sensing process.

Looking at the categories of MOF composites considered before for gas-sensing appli-
cations, we can draw some considerations:

• MOF materials employed for hybrid MOFs-MOXs composites are still limited; thus,
the size of gas molecules that can be detected at present is also limited. Therefore, it is
important to individuate other suitable MOF materials to be used instead of ZIF. Since
the choice of MOX is dominated by ZnO due to the synthetic approach implemented,
new methods of synthesis involving other MOXs as metal precursors have to be tested
and other synthetic approaches have to be developed, also with the hope of improving
more the sensing performance for specific gases.

• A surprisingly small number of reports is available on gas sensing based on MOF/carbon-
based materials, if compared with the high number of studies in which this class of
materials is employed as gas adsorbents. Such a limitation is probably partly related
to the poor processability and to the synthetic approaches used, so research efforts in
such a direction have to be prompted.

• Regarding MOF/polymer composites, there are few applications in gas sensing and
the corresponding selection of MOF materials and polymers is also small. Such
limitations are related to different aspects: MOFs have a certain pore size, and if the
polymer is polymerized and inserted into the MOF pores, the transport of some gas
molecules can be hampered and the accessibility of the target analyte to the active sites
can be limited; the homogeneous dispersion of polymers in MOFs is, in most cases,
far from being achieved and it still needs to be explored and optimized. In addition,
the polymer-loading amount plays an important role in defining the final composite
properties so various synthetic methods need to be further improved.

The integration of MOFs with conductive materials enables the detection of gas at room
temperature in air, but the corresponding composites still exhibit poor sensing properties
and cross-sensitivity, the range of detectable species is still limited to small molecules, and
the response rate of the gas is slow due to diffusion phenomena. Moreover, little literature
is still available on the development of sensors based on MOF composites for the detection
of O2 and industrial gases and for food security and health monitoring, since the research
activities have, up to now, mostly focused on VOC detection. A further enhancement in the
selectivity towards molecules with a similar sensing activity and the reduction in moisture
sensitivity are only two of the main challenges to be pursued. Many of these challenges
will likely require interdisciplinary research approaches to progress further. Overall, there
is still more room for the development of such a kind of composite and it is our opinion
that this is a direction worth exploring.
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