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Abstract: Recently, the scientific community has shown a great interest about the Organ-on-Chip
(OoC) devices, a special kind of micro-fabricated platforms capable of recapitulating the human
physiology implementing the traditional cell culture methods and the concept of in vivo studies.
Copper ions represent a cellular micronutrient that must be monitored for its potential hazardous
effects. The application of electrochemical analysis for heavy metal ions detection and quantification
in commercial cell culture media presents several issues due to electrolyte complexity and interferents.
In fact, to the best of our knowledge, there is a lack of applications and OoC devices that implement
the Anodic Stripping Voltammetry as an ion dosing technique due to the reasons reported above. In
fact, considering just the peak intensity value from the measurement, it turns out to be challenging
to quantify ion concentration since other ions or molecules in the media may interfere with the
measurement. With the aim to overcome these issues, the present work aims to develop an automated
system based on machine learning algorithms and demonstrate the possibility to build a reliable
forecasting model for copper ion concentration on three different commercial cell culture media (MEM,
DMEM, F12). Effectively, combining electrochemical measurements with a multivariate machine
learning algorithm leads to a higher classification accuracy. Two different pH media conditions,
i.e., physiological (pH 7.4) and acidic (pH 4), were considered to establish how the electrolyte
influences the measurement. The experimental datasets were obtained using square-wave anodic
stripping voltammetry (SWASV) and were used to carry out a machine learning trained model.
The proposed method led to a significant improvement in Cu2+ concentration detection accuracy
(96.6% for the SVM model and 93.1% for the NB model in MEM) as well as being able to monitor the
pH solution.

Keywords: chemometrics; machine learning; classification; heavy metal ion detection; complex media

1. Introduction

During the last few decades, the scientific community has shown a great interest in
the so-called Organ-on-Chip (OoC) devices, namely micro physiological systems (MPS)
capable of recapitulating human physiology by substituting traditional cell culture meth-
ods and the use of in vivo studies. As a matter of fact, the main advantage of MPS vs.
the standard 2D flask-based cell cultures is represented by the possibility to integrate in
a single chip different cell lines in co-culture approach, sensors, and microfluidic perfusion,
with the aim to imitate more accurately the physiological environment and parallelize the
experiments [1,2]. Among the several studies which can be conducted by MPS in a complex
cell culture medium, the monitoring of copper ion concentration in human tissues is of
great interest. Copper is an essential trace element present in most of the human tissues
and involved in most of biological and metabolic processes. However, if its concentration
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is outside a specific physiological range, it can lead to various diseases, such as Menkes,
Alzheimer, Horn, etc. [3,4]. For these reasons, it could be useful to detect copper ions and to
monitor its concentration in an in vitro model to study how it affects cells’ vitality. Inserting
a sensor inside the microfluidic chip would also allow a direct and in situ measurement
of the ion of interest, thus avoiding the use of traditional spectroscopic techniques, such
as Inductively Coupled Plasma Spectroscopy (ICP) and Atomic Absorption Spectroscopy
(AAS), which are destructive techniques, in addition to being expensive and bulky [5,6].

A valid alternative to quantify ions in a solution is represented by Square Wave
Anodic Stripping Voltammetry (SWASV), which is an electrochemical technique used for
the detection of heavy metal ions in aqueous solutions. It is a fast and low-cost technique
which provides qualitative and quantitative information about heavy metals present in
a solution. This analytical method consists of two steps: the first is the application of
a negative potential to the working electrode where copper ions were reduced to the metallic
phase; the second step, instead, consists of a potential scan carried out to bring the metallic
copper previously deposited back as an ion to the solution. From this step, we collect the
stripping current measurement as a function of the potential, i.e., the voltammogram used
to determine ion concentration [7–9].

Usually, the quantitative analysis of the voltammogram is performed by evaluating the
peak current or the peak area. However, the only information coming from the peak current
intensity value may be insufficient to evaluate accurately the concentration of the analyte
of interest, especially with a view to develop an automated recognition model. In fact, the
co-presence of multiple ions and organic molecules in complex matrices, as in the case of
cell culture media, affects the electrochemical measurement, because of the complexity of
electrode–electrolyte microenvironment [10,11]. In addition, the scientific community, and
private companies active on the OoC research field, are supporting the actions aimed at
embedding sensors, avoiding any cell culture perturbation or contamination. From this
perspective, it could be helpful to consider a holistic approach from the SWASV absolute
peak shape, to use as much information as possible from recorded data, and to select
the most relevant features (i.e., variables used to perform the analyte and concentration
prediction). Ye et al. have proved that the peak shape of the stripping voltammogram
allows the discrimination of heavy metal ions with a high accuracy, without using absolute
values of currents and potentials [12]. Liu et al. have demonstrated that using a selected set
of features, extracted from stripping currents, provides more accurate models compared
to those obtained by using the single peak value or the full stripping current. Indeed, the
model carried out using the single peak value is a univariate linear model that does not
consider mutual interferences among ions, whereas the full stripping current considers
a lot of redundant information, unnecessary for the classification [10].

For a better interpretation of the electrochemical measurements, chemometric tech-
niques were recently introduced. They allow for the selection of the most relevant chemical
information to develop specific mathematical models starting from experimental data,
instead of using theoretical and pre-existing fitting models [13]. Moreover, chemometrics
is used in electrochemistry when it is hard to extrapolate a physic-chemical model of the
involved processes, due to electrode reactions, transport phenomena or a combination of
both [14].

In this context, Machine Learning (ML) models have increasingly spread in analytical
chemistry fields, thanks to their capability of processing a large amount of data and to
develop a multivariate analysis model which takes into consideration all the most relevant
parameters [15–17]. In fact, supervised methods of machine learning can analyze the
relationship between the variables used to perform the prediction (‘’features”) and the
responses to be predicted (‘’labels”) and then they use the discovered relationship to predict,
in an automated way, the output of new SWASV records. Different machine learning
approaches to fit data can be considered, leading to different classification accuracies.

In this work, experimental data obtained from the SWASV measurements in cell
culture media were exploited to develop a recognition model that allows for obtaining, from
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a single measurement made by the same sensor, the correct quantification of copper ion
concentration. Moreover, a pH evaluation was performed by using two different conditions:
physiological condition (pH 7.4) and acidic condition (pH 4). This last condition is useful
to improve the electrochemical signal and obtain a peak with a better shape definition that
could help in the classification process. This study represents a preparatory investigation
about the use of electrochemical methods for the determination of copper ion concentration
in the Organ-on-Chip devices and is focused on a comparison among four machine learning
approaches, i.e., decision tree, SVM, Naïve-Bayes and neural network, to compare detection
accuracies. The resulting trained models were used to forecast new voltammograms
starting from their extracted features.

This work demonstrates that the combination of machine learning techniques with an-
odic stripping voltammetry improves the analytical accuracy of copper ions’ quantification
in complex systems, like cell culture media.

2. Materials and Methods
2.1. Reagents and Instruments

A solution of anhydrous copper (II) sulphate 0.01 M in 0.1 M nitric acid was prepared
to ensure the complete salt dissolution. The copper sulphate solution was further diluted
in phosphate buffer up to a concentration equal to 10−4 M. Working solutions were pre-
pared starting from a 10−4 M solution by diluting with cell culture media (solutions at
physiological pH = 7.4).

The cell culture media used are Minimum Essential Medium Eagle (MEM) purchased
from Corning (Corning, NY, USA), Dulbecco’s Modified Eagle’s Medium—high glucose
(DMEM) from Sigma Aldrich (St. Louis, MO, USA) and Kaighn’s Modification of Ham’s
F12 (F12K) was supplied by ATCC (Manassas, VA, USA). All these cell culture media are
composed of a combination of nutrients, such as carbon source, vitamins and amino acids,
that are necessary for cellular growth.

For the measurements in acidic conditions (pH = 4), the cell culture media with copper
sulphate were further diluted with buffer acetate at pH 3.6 in a volume ratio 1:1. In this
way, there were prepared solutions in the range 1 ÷ 20 µM of Cu2+ (1, 2, 5, 10 and 20 µM),
in two different pH conditions (physiological at pH = 7.4 and acidic at pH = 4). The pH
variation in acidic condition is due to the exceeding of buffer capacity of the cell culture
media. Indeed, the cell culture media can be considered as a phosphate buffer and, when
a large quantity of acidic solution is added, its buffer capacity is exceeded, and the obtained
solution can be considered as a pH 4 buffer acetate.

The SWASV measurements were performed using a single-channel potentiostat/
galvanostat workstation (Ivium Vertex One, Ivium Technologies B.V., Eindhoven, The
Netherlands). A three-electrode system was used to collect SWASV curves: (i) a circu-
lar working electrode, 3 mm diameter, realized by gold thin film evaporation (200 nm
thick) on 4” silicon/silicon oxide substrate (ii) a stainless-steel counter electrode and
(iii) Ag/AgCl/saturated KCl reference electrode (+0.197 V vs. SHE).

2.2. SWASV Data Acquisition

Before SWASV measurements, gold electrodes were cleaned by performing 10 cyclic
voltammetry cycles in diluted H2SO4 (50 mM) in the potential range −0.3 ÷ 1.5 V vs.
Ag/AgCl.

A SWASV measurement consists of two steps: deposition and stripping. In the
deposition step, copper ions were reduced to metallic copper onto the gold electrode
surface by applying a negative potential (−0.4 V vs. Ag/AgCl for 30 s).

The stripping step, instead, consisted of the oxidation of metallic copper, previously
deposited, and was conducted in the potential range −0.4 V ÷ 0.7 V (pulse amplitude
30 mV, frequency 25 Hz and E step 4 mV). From this step, we obtained the electrochemical
record (voltammogram) for the ion concentration measurement. For each condition of
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copper ion concentration and pH in cell media culture, three electrochemical measurements
were carried out.

2.3. Pre-Processing, Features Extraction and Data Augmentation

The processing of the experimental data requires a pre-processing procedure composed
of two main steps: (1) baseline correction and (2) normalization on Ipeak.

Figure 1 shows the pipeline of the main steps followed. The first step is necessary to
start all scans from the same level and, therefore, to eliminate any current bias accumulated
by the instrument [18]. Subsequently, the second current normalization is made referring
to the peak current value, so that all current intensity values fall within the range (0–1).
Generally, a normalization is made to obtain the same range of input values and to ensure
a stable convergence of the mathematical method. The aim of pre-preprocessing steps is
also to remove all irrelevant information. In this way, normalized voltammograms were
obtained which consider the peak shape, removing any absolute current and potential value
effects. Moreover, a greater relevance to peak shape is given, together with the capability to
extract more information than the only peak amplitude.
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After normalization, a MATLAB script was developed to extract the features of interest.
The aim of the features’ extraction is to obtain values that are significant for recognition and
discrimination of different labels. As a matter of fact, the availability of a greater number of
features related to a peak’s shape allows for a more accurate classification. In this work,
“left-side” values of the measured peaks were considered, since the features’ extraction from
the “right-side” is more difficult at potentials greater than the copper oxidation potential
especially at very low concentrations, due to an ascending current probably linked to the
oxidation process of water.

The extracted features are, therefore, half the width of the peak at different levels,
i.e., at 30, 50 and 70% (E0.3, E0.5 and E0.7) of the maximum intensity; then, we have the ratio
E0.3/E0.7 and the derivative in the ascending part of the peak, which ensures a series of
geometric characteristics that result in being useful in the subsequent recognition phase.

As already reported in the Introduction section, the main objective of this paper is to
compare different ML approaches for accuracy evaluation of copper ion quantification in
complex systems.

Supervised ML models are being successfully used to respond to a whole range of
classification problems in different research areas. However, these models are data-hungry,
and their performance relies heavily on the size of available training data. In many cases, it
is difficult to create training datasets that are large enough. In the present work, this issue
is emphasized by the cost to perform a specific measurement, linked greatly to the use of
expensive reagents and solvents. To overcome this problem, the technique known in the
literature as Data Augmentation was implemented.

Data augmentation, in data analysis, is a technique used to increase the amount of
data by adding slightly modified copies of already existing data or newly created synthetic
data from existing data. It acts as a regularizer and helps to reduce overfitting when a ML
model is trained.

Specifically, in this paper, we focus on Features space Data Augmentation (FDA)
methods to improve the classification performance of the output categories [19]. Five widely
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different feature space data augmentation methods were evaluated to expand our dataset.
Considering the nature of the available data, the well-known “random perturbation”
method was selected [19]. Each experimental value was randomly perturbed in a well-
defined neighborhood that was valued from standard deviations of each group (fixed
concentration and pH) of experimental data. In this way, other seven values were carried
out from each real measurement, which can be considered as equivalent to the real ones.

2.4. Supervised Classifiers

For the final classifier layer, specific ML classifiers have been selected among those
that resulted in being the most promising in previous studies, and compared, such as
Decision Tree (DT), Support Vector Machine (SVM), Naïve-Bayes (NB) and Artificial Neural
Networks (ANNs). Supervised machine learning algorithms are first trained with a labelled
training dataset to develop the underlying relationship between input and output. The
trained algorithm is then used to categorize test data into predefined labels.

In this study, we employed four kinds of algorithms to improve detection accuracy
of Cu2+ concentration. Experimental data were classified using the Classification Learner
Toolbox (MATLAB 2021b).

Machine learning algorithms reported above and used for identification are
briefly described:

DT is an algorithm used as a predictive model. It uses a flowchart such as a tree
structure where features are represented by internal nodes, class labels are represented by
leaves, and conjunctions are represented by branches [20].

SVM is a classification and regression method developed to discover nonlinear rela-
tionships. It denotes a set of examples, known as support vectors, that seem to be the most
relevant observations for target classes. Kernel is used to improve flexibility for nonlinear
data adding more features to fit a hyperplane instead of a two-dimensional space. Most
used kernels are the linear kernel, polynomial kernel, and radial kernel [21].

NB is a classifier based on Bayes theorem for probabilistic classification. It is easy and
quick to implement, and it assumes that variables are independent of given classes. In fact,
parameters can be trained separately, and this implies a simplification in computational
operations [22].

ANNs are modeling tools that simulate human brain processes. They present a better
ability to adapt and learn and have a stronger fault tolerance [23].

In the present work, the optimal selected parameters for each classifier were obtained
through a grid search technique [24], and they are reported in Table 1.

Table 1. Parameters used for classification models.

Model Hyperparameters

Decision tree criterion = Gini; maximum depth = 100
SVM kernel function = quadratic; box constraint level = 1

Naïve-Bayes gaussian Naïve-Bayes
Artificial Neural Networks wide neural network; iteration limit = 1000

2.5. Evaluation of Model Performance

For each classification, 288 samples were used (144 in MEM pH 7.4 and 144 in MEM
pH 4).

The information about a classification ML model’s performance is typically summa-
rized into a confusion matrix. This matrix is built by comparing the observed and predicted
classes for a set of observations. It contains all the information needed to calculate most
of the classification performance metrics. Among them, Accuracy (Acc) is one of the most
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common. It represents the proportion between correctly predicted observations and all the
observations. Acc can be expressed by the following formula:

Acc =
TP + TN

TP + TN + FP + FN
(1)

where the value reported in the numerator (the sum of TP—True Positive and TN—True
Negative) represents an outcome where a specific model predicts in a correct way both the
positive and negative classes. On the other hand, the value given in the denominator (the
sum of TP—True Positive, TN—True Negative, FP–False Positive and FN–False Negative)
represents the total number of made predictions. Table 2 details the terms used in the
“accuracy” formula that is introduced above.

Table 2. Definition of accuracy terms.

Predicted Label Actual Label Definition

Positive Positive True Positive (TP)
Positive Negative False Positive (FP)

Negative Positive False Negative (FN)
Negative Negative True Negative (TN)

Moreover, to verify the generalization ability of our proposed model, the evaluation
method called K-fold cross validation was applied, since it is a method that is easy to
comprehend, works well for a limited data sample and also offers an evaluation that is less
biased, making it a popular choice [25]. The selection of a good value for k is fundamental.
It is important to highlight that a poor value for k can result in a poor evaluation of the
model’s abilities. Here, we set the value of k = 10. Consequently, we have split our data
randomly into 10 parts, and 9 of those parts (90% of samples) were used for training,
whereas 1 part (10%) was reserved for testing. The procedure was repeated 10 times each
time reserving a different tenth for testing.

3. Results and Discussion

The aim of this work is to study SWASV measurements in cell culture media through
machine learning models with the idea to obtain an automatic recognition method of
copper ion concentration and pH evaluation.

Electrochemical measurements were performed in a cell culture media in physiological
and acidic conditions (pH 7.4 and pH 4) in a range of Cu2+ concentration between 1 and
20 µM. Figure 2 depicts the SWASV measurement performed for each Cu2+ concentration
in the range 1–20 µM and at physiological (Figure 2a) and acid (Figure 2b) conditions.
A linear correlation between copper concentration and the current intensity peak in both
conditions is evident, as shown in the insets of Figure 2a,b. However, the acidified media
are more responsive since the pH of the solution influences the equilibrium between free
copper ions and complexed copper, that does not take part in the anodic stripping process.

Starting from these records, the two aforementioned pre-processing steps were applied,
i.e., the elimination of current bias and the normalization respect Ipeak.

Figures 3 and 4 show the obtained normalized voltammograms for physiological
and acid conditions, respectively. The potential range of Figure 3 is between −0.2 V and
+0.5 V vs. Ag/AgCl, while that of Figure 4 is between −0.3 V and +0.4 V vs. Ag/AgCl. The
potential is deliberately not shown in the figures since the objective of the reported method
is to classify the peaks according to their shape and not to their potential and current.

In both cases, a gradual transformation of peak shapes is evident with the increase
of copper concentration, thus confirming the validity of our classification idea using
a normalized peak shape instead of peak current/area.

In physiological conditions, the shape develops from a broader shape to a more defined
peak (Figure 3). The reason is that, at low concentrations in physiological conditions, the
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copper ions peak is quite small and comparable to the baseline. At the lower concentrations,
an increasing current is visible probably related to water oxidation and such currents tend
to cover the peak shape of Cu2+ SWASV. In contrast, in acidic conditions, the considered
peak is more defined and symmetric, also at low ion concentrations (Figure 4).

To validate the proposed pipeline and select the best machine learning approach,
a comparison between chosen algorithms was performed. A step-by-step analysis was
conducted for the identification of the initial copper ion concentration at a defined pH
condition and then with the whole dataset.
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Firstly, confusion matrices were calculated separately at the two pH values considered
for the experiments. As deducible from Figures S1–S4, the results show that, in acidic
conditions, there is a clear distinction in the labeling output response, and this involves
a remarkable discrimination in concentration. Consequently, features extracted from
these measurements are also well-defined and distinct from each other. On the other
hand, confusion matrices in physiological condition present a higher confusion percentage,
especially at low concentrations (0–2 µM). This behavior is due to the overlapping of
extracted features at the considered condition. Nevertheless, the SVM classifier shows
a testing accuracy of 82.8%, and it turns out to be the best one.

These accuracies can be considered as very good results, considering that, during real
cell culture experiments, it is impossible to perform in acidic pH conditions (cells’ death
risk); thus, this reliable method to predict ion concentration avoiding medium acidification
and contamination represents an enabling tool technology for continuous OoC devices
monitoring (ions and pH, as described below).

Afterward, the two different datasets were combined to elaborate a new forecasting
model with both acidic and physiological conditions (pH 4 + pH 7.4) to investigate if
extracted features from normalized voltammograms can discriminate copper ion concentra-
tion in the same media but in two different pH conditions. In this way, we aimed to obtain
a detection model of the media’s pH, since it influences the electrochemical measurements
and the peak shape.

Even if the experiments conducted in physiological conditions led to a decrease in the
prediction performance, the global models’ accuracies show good results. In fact, labels in
different pH conditions are not confused, and this behavior is remarkable in pH evaluation
(Figure 5).
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Figure 5. Confusion matrix for twelve classes of copper ion concentration in MEM at different pH
conditions using DT (a), NB (b), SVM (c) and ANN (d) as classifier.

It is also worth noting that, even when the classifier makes a mistake in labeling, the
confusion is between two bordering classes, i.e., similar concentrations.

Classifiers rarely confuse different concentrations, confirming their high reliability in
the identification of gradual variation of normalized voltammograms and features’ values.

A common trend between all classifiers is that, at low copper ion concentrations and
at physiological pH, there is the largest confusion in labels discrimination.

The main remarks that can be deduced from the presented analysis are the following.
First, considering the metrics reported in Figure 6, the four classifiers trained with the whole
dataset present a testing accuracy with a clear difference in results. The SVM classifier has
96.6% accuracy, which is 19.26% more than the worst case (i.e., DT) and presents better
accuracy results than NB and ANNs, respectively 3.76 and 14.32%.
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Figure 6. Testing classification accuracy for copper ion discrimination in MEM at different
pH conditions.

Furthermore, we conducted the same type of classification in other cell culture media,
specifically DMEM and F12, to avert the influence of the considered media on the classi-
fication method. As reported in Supplementary Information (Figures S5–S12), confusion
matrices have an analogous trend in the three different investigated cell culture media. This
result helps to conclude that the selected features for our investigation can discriminate
labels, making the developed models more generalizable and suitable for other media,
obtaining analogous results.

In case of DMEM (Figure 7) culture media, the best classifiers with the whole dataset
are DT and NB (91.4%), even if also other classifiers present similar values (86.4% for SVM
and 84.5% for ANN).
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Finally, Figure 8 shows reported testing accuracies in F12 cell culture media. In this
case, testing performances are lower than other media (maximum 81.1% for both DT
and NB).
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Figure 8. Testing classification accuracy for copper ion discrimination in F12 at different
pH conditions.

In general, it can be concluded that the considered models can predict in a reliable
way the copper ion concentration trends and pH modifications in various analyzed envi-
ronments. These results confirm again the high added value of the proposed model for the
future development of a new embedded monitoring paradigm for Organ-on-Chip devices.

4. Conclusions

This study aims to develop a machine learning forecasting model to evaluate the
concentration of an analyte in different commercial cell culture media (MEM, DMEM, F12)
by exploiting the electrochemical measurements peaks and their easy-to-extract geometrical
features. In particular, the interest was focused on copper ion detection in complex media,
like those used for cell culture research, because of their increasing interest in organ on
chip applications.

A comparison of statistical results of testing datasets for different machine learning
approaches was conducted to determine the best tool. Two of the four analyzed models
had better performances: the SVM model gave a testing accuracy of 96.6%, whereas the NB
model gave 93.1% in MEM. Instead, in DMEM and F12, the two best classifiers result in DT
and NB, which gave the same accuracy in each culture media (91.4% in DMEM and 81.1%
in F12).

It has been shown that the coupling of SWASV with machine learning models allows
for achieving better detection performances of copper ions and to also predict the pH
conditions during measurements. This study confirms that the machine learning approach
is a powerful tool in analytical chemistry correlated with biological systems, since it extracts
and uses hidden information, supplied by selected extracted features.

Considering that the SWASV technique is a good candidate for low-cost embedded
sensing approaches, this work must be considered as a preliminary assessment for the
future SWASV integration in the OoC devices. In fact, this paradigm can be materialized
with a fluidic chip where the cell culture medium is acidified on a separate chamber from
the live cells compartment and wasted after the electrochemical measurement.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11010061/s1, Figure S1: Confusion matrix for six
classes of copper ions concentration in MEM at the same pH condition (pH 7.4 on the left, pH 4 on the
right) using DT as classifier; Figure S2: Confusion matrix for six classes of copper ions concentration
in MEM at the same pH condition (pH 7.4 on the left, pH 4 on the right) using NB as classifier;
Figure S3: Confusion matrix for six classes of copper ions concentration in MEM at the same pH
condition (pH 7.4 on the left, pH 4 on the right) using SVM as classifier; Figure S4: Confusion matrix
for six classes of copper ions concentration in MEM at the same pH condition (pH 7.4 on the left,
pH 4 on the right) using ANN as classifier; Figure S5: Confusion matrix for twelve classes of copper
ions concentration in DMEM at different pH conditions using DT as classifier; Figure S6: Confusion
matrix for twelve classes of copper ions concentration in DMEM at different pH conditions using
NB as classifier; Figure S7: Confusion matrix for twelve classes of copper ions concentration in
DMEM at different pH conditions using SVM as classifier; Figure S8: Confusion matrix for twelve
classes of copper ions concentration in DMEM at different pH conditions using ANN as classifier;
Figure S9: Confusion matrix for twelve classes of copper ions concentration in F12 at different pH
conditions using DT as classifier; Figure S10: Confusion matrix for twelve classes of copper ions
concentration in F12 at different pH conditions using NB as classifier; Figure S11: Confusion matrix
for twelve classes of copper ions concentration in F12 at different pH conditions using SVM as
classifier; Figure S12: Confusion matrix for twelve classes of copper ions concentration in F12 at
different pH conditions using ANN as classifier.
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