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Abstract: Impedimetric biosensors are used for detecting a wide range of analytes. The detection
principle is a perspective for the development of new types of analytical devices for biomolecular
diagnosis of diseases. Of particular interest are biosensors with very high sensitivities, capable of
detecting trace amounts of biomarkers or drugs in biological fluids. Impedimetric biosensors possess
a potential for increased sensitivity, since their electrodes can be modified with nanostructured
materials, in particular zinc oxide. In this work, a miniature biosensor with an array of zinc oxide
nanorods synthesized by the hydrothermal method has been created. Protein A was immobilized
on the resulting structure, which was previously tested for binding to omalizumab by capillary
electrophoresis. Using impedance spectroscopy, it was possible to detect the binding of omalizumab
at concentrations down to 5 pg/mL. The resulting structures are suitable for creating reusable
biosensor systems, since ZnO-coated electrodes are easily cleaned by photocatalytic decomposition
of the bound molecules. The biosensor is promising for use in Point-of-Care systems designed for
fast, multimodal detection of molecular markers of a wide range of diseases.

Keywords: impedimetric biosensor; zinc oxide; express detection; nanorods; antibodies; label-free
detection; hydrothermal synthesis

1. Introduction

The use of micro- and nano-technologies in biology and medicine makes it possible
to develop new miniature devices for expressing the control of biological parameters,
including multiparametric molecular biomarker monitoring. The main areas of develop-
ment are biosensors [1,2], lab-on-a-chip (LoC) [3,4] devices and, based on these, portable
diagnostic devices in the Point-of-Care Testing (PocT) [5] class. A biosensor is an analytical
device that converts a chemical or physical stimulus derived by an interaction with a
biological component into a measurable signal. The following main components form
the structure of a biosensor: a biorecognition element (antibody, protein, aptamer, nucleic
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acid, microorganism, etc.), which has a specific complementarity to the analyzed object; a
transducer (optical, electrochemical, magnetic, etc.), which converts the biointeraction into
a recorded and measured signal; and a data processing and analysis system that visualizes
and converts experimental data into a form convenient for the operator. Such devices
should provide high sensitivity and speed of analysis, use a small sample volume and be
of low cost [6].

Antibodies are one of the most popular objects for fast diagnostic devices due to their
high specificity and high binding strength to the target. Antibodies are either monoclonal
or polyclonal. Monoclonal antibodies are produced by B cells that are clones of the same
parent cell and are monovalent when they recognize the same antigen epitope [7]. This
type of antibody is produced ex vivo in tissue culture. To create polyclonal antibodies,
an antigen is injected into an animal that has an immune response, after which they are
collected directly from the serum and purified. They can be used as markers for diag-
nosing chronic [8], neurodegenerative [9,10], oncological [11] and infectious [12] diseases,
etc. Traditional methods for the detection of protein biomarkers, such as immunoassays
(ELISA, immunochemiluminescent assays), despite their high sensitivity and selectiv-
ity, are expensive, time-consuming and multi-stage procedures performed in specialized
diagnostic laboratories [13]. Therefore, there is a need to create highly sensitive, fast diag-
nostic biosensor systems capable of detecting the level of various antibodies at extremely
low concentrations.

Optical and electrochemical detection systems are widely used to create miniature
devices for protein detection [14,15]. Optical detection methods, which are considered
very sensitive and specific, are based on a change in the phase, amplitude, polarization
or frequency of incoming light in response to biorecognition processes. Often, these
methods use specialized labels, which make it possible to increase sensitivity, but complicate
and increase the cost of the manufacturing technology. In addition, the instrumental
implementation of individual methods can be large and expensive and require specially
trained personnel to conduct tests.

Electrochemical biosensors are one of the most widespread classes of biosensor de-
vices, which use electrodes with recognition elements immobilized on their surface capable
of selectively binding to target molecules. Detection of the binding of the target to the
recognizer on the electrode is carried out by registering changes in current and/or voltage.
According to the measurement principle, electrochemical biosensors are divided into po-
tentiometric, amperometric and impedimetric detection systems that convert a chemical
reaction parameter into a measurable electrical signal. Due to low operating voltages, fabri-
cation costs and ease of miniaturization, electrochemical biosensors have great prospects
for various biomedical applications, especially for fast, multimodal biosensor systems.

Biosensor systems based on impedance detection are currently one of the most popular
solutions for the detection of binding of antibody biomarkers. Unlike other electrochemical
methods, impedimetry works on low-amplitude electrical signal disturbances; therefore,
this method is considered non-destructive [16]. Since the signal measurement principle
of impedance spectroscopy is based on modifications of the electrode surface, it is largely
sensitive to the organization of the near-electrode monolayer and can be used for measure-
ments at low concentrations or in studying enzymatic processes [17]. The low cost, speed
and convenience of analysis, the possibility of eliminating the influence of third-party
substances on the test sample, as well as the ease of miniaturization of such sensors make
them promising for integration into LoC. The work [18] is an example of an impedimetric
biosensor for the qualitative detection of antibodies of COVID-19 in serum by using gold
electrodes deposited on a SiO2 substrate modified with the SARS-Cov-2 spike protein.
The resulting device made it possible to register the specific interaction between the spike
protein and antibodies in the studied samples. Soma et al. [19] reported the development
of an impedimetric biosensor for the detection of the norovirus with a detection limit
of 60 µg/l, where a gold electrode was modified with polyaniline and streptococcus to
improve the electron transfer process and the conjugation of a biotinylated monoclonal
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antibody, which improves the electrochemical response and provides enhanced active
centers for targeted analytes.

Modern biosensors are an example of the convergence of various scientific and techni-
cal areas. The use of a variety of nanomaterials (magnetic nanoparticles, nanorods, carbon
nanotubes, graphene, quantum dots, etc.) is one of the main means of increasing the
sensitivity and selectivity of biosensors [20–22]. Zinc oxide nanostructures are promising
in electrochemical biosensors, as they serve in immobilizing a bioselective element and
distributing it over the entire electrode area [23–30]. In [23], an example of using zinc oxide
nanorods as a layer on the surface of a biosensor is presented, which makes it possible to
detect the HRP antigen and nonspecific antigen in the buffer. This result was confirmed by
capacitive measurements. The authors found the maximum response for their structure
was in the range of 5–6 kHz, which is promising for the creation of a single-frequency
measuring system for the analysis of multiple samples. Shanmugam et al. [25] used zinc
oxide nanostructures to create a biosensor with multiplex detection of a panel of cardio-
biomarkers. The nanostructures were hydrothermally grown, functionalized with specific
antibodies and thus prepared to detect cardiac Troponin I and Troponin T with a detection
limit of 1 pg/mL.

Zinc oxide is a direct-gap semiconductor with a band gap Eg ≈ 3.3 eV, n-type con-
ductivity, piezoelectric properties and a high electron mobility [31]. However, interest in
zinc oxide is due not only to its electrophysical properties, but also due to the possibil-
ity of synthesizing ZnO in the form of nanorods using the hydrothermal method at low
(<100 ◦C) temperatures. This eliminates the use of autoclaves and makes the synthesis of
ZnO nanorods scalable and inexpensive, which is extremely important for the creation
of disposable biochips. Low-temperature hydrothermal synthesis may be preferable in
comparison to physical methods of synthesis, not only due to the possibility of scaling; an
advantage of the method is the ability to introduce impurities (dopants) into the synthesis
process. The introduction of salts of other metals into the growth solution can modify the
surface of nanoparticles with new adsorption centers to improve further binding.

ZnO nanoparticles in the form of nanorods are efficient when treating the substrate
surface, since the surface area for immobilization of the bioselective element is considerably
higher. This feature makes ZnO nanorods attractive for use in gas sensors [32,33]. ZnO
nanorods have also been successfully used as a photocatalyst, where ZnO with high con-
centrations of OH groups on its surface demonstrated a high photocatalytic activity [34,35].
We assume that such a surface should facilitate immobilization. It should be noted that the
possibility of photocatalytic decomposition of molecular units conjugated on the surface of
ZnO nanorods can probably ensure the reusability of electrodes coated with ZnO nanorods.
The process of biorecognition will be followed by the illumination of the electrodes in the
ultraviolet (<380 nm) region and photocatalytic decomposition on the surface of ZnO. After
the photocatalysis, the stages of purification and immobilization can be repeated. Therefore,
we assume that the use of photocatalytically active materials is especially promising for
implementation of reusable sensor chips.

The synthesis methods of ZnO nanorods can be divided into two main approaches:
physical gas-phase synthesis methods (including the vapor–liquid–solid method [36],
pulsed laser deposition [37], chemical vapor deposition [38,39], molecular beam epi-
taxy [40] and others) and chemical methods (including such methods as the electrochemical
method [41], electrospinning process [42] and others). Nevertheless, the most flexible chem-
ical method is hydrothermal [43,44]. This method, convenient for laboratory application as
well as for scaling up, has generated additional interest in the wide study and application
of zinc oxide in the form of nanorods. During hydrothermal synthesis, ZnO nanorods
are formed in solution with precursors, and if a substrate with a seed layer is placed in
the solution, nanorods will grow on the substrate. Therefore, to create biosensors, ZnO
nanoparticles are applied directly from a suspension [24,45,46] or formed on a substrate
with preformed seed layers [23,25,28]. The advantage of application from a suspension
is the possibility of obtaining a given dispersion of particles by separating the particles
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according to size by methods such as centrifugation or filtration. However, this approach
seems unpromising for integration with microfluidic systems due to the poor adhesion of
particles on substrates with electrodes. ZnO nanorods grown on a substrate seems to be
more promising for this purpose. However, during the hydrothermal synthesis of nanorods
on a substrate, they grow not only on the substrate, but also in the bulk of the solution,
forming agglomerates which can be fixed on the sample surface. This worsens the repro-
ducibility of the technology, since the process is random to a certain extent. In addition, the
seed layer is applied by centrifugation [23,28], which, unlike the hydrothermal method, is
not so convenient for scaling. Additionally, the use of methods for depositing a ZnO seed
layer in a vacuum, such as the Magnetron sputtering technique [25], also somewhat reduces
the advantages of the hydrothermal method, which does not require vacuum systems.

In this study, the hydrothermal synthesis of ZnO nanorods on the substrate surface was
carried out with the suppression of nucleation in the bulk of the solution, making it more
reproducible. Additionally, the ZnO seed layer was deposited by ultrasonic spray pyrolysis,
which does not require a vacuum and is easily scaled up, similar to the hydrothermal
method. We believe that cost effectiveness and scalability play an important role in terms
of future prospects for creating commercial sensor platforms. Therefore, the purpose of
this work was to study the possibility of using this technique for the synthesis of coatings
from nanorods to develop an impedimetric biosensor on interdigitated electrodes.

2. Materials and Methods
2.1. In Vitro Study of Complex Formation between Protein A and Omalizumab

In this study, we decided to demonstrate the use of zinc oxide modified electrodes for
the detection of omalizumab using surface-bound protein A.

Omalizumab (MW 149 kDa) is a humanized anti-IgE monoclonal IgG1 antibody used
in the treatment of bronchial asthma [47]. It was produced in soluble form in the modified
CHO cell line, then purified from the supernatant with Protein A affinity chromatography
and with SEC to remove aggregates. The resulting purity of the omalizumab specimen
used in this work was 96.8%, as determined with RP-HPLC.

Protein A (MW 50 kDa in S-S dimer form) is a surface protein of S. aureus, able to bind
IgG [48] and modified with His-tag and several amino acid substitutions. It was produced
in a soluble form in the modified E. coli strain, then purified from the cell lysate with
metal-chelate affinity chromatography on Ni-NTA resin and then with cation-exchange
chromatography. The resulting purity of the protein A specimen used in this work was
97.6% as determined with RP-HPLC.

Both omalizumab and protein A specimens were kindly provided by S.V. Rodin.
To show their ability for complementary interaction, we conducted studies using

Kapel-105M (Lumex Ltd., Saint Petersburg, Russia) capillary electrophoresis, with acap-
illary inner diameter of 75 µm, a total length of 60 cm, an effective length of 50 cm, a
temperature of +30 ◦C and a spectrophotometric detector with detection wavelength at
200 nm. To dilute the stock solutions, a 10 mM Tris-HCl buffer with a pH of 7.2 was used.

Electropherograms of stock solutions showed a single electrophoretic peak at 4.8 min
for omalizumab (Figure 1) and 9.9 min for protein A (Figure 2).

The areas of both peaks were directly proportional to the concentration of the
initial solutions.

2.2. Formation of an Electrode Coating from ZnO Nanorods

The biosensor was based on a ceramic substrate with NiCr/Ni/Au interdigitated
electrodes (Sensor Platform, Tesla Blatna, a.s.). The width of the electrodes and the distance
between the electrodes deposited on the substrate were 25 µm. Coating of the ZnO nanorods
was performed by a two-stage procedure, consisting of ultrasonic spray pyrolysis of a
zinc oxide seed layer and the low-temperature hydrothermal synthesis of nanorods with
suppression of nucleation in the bulk solution. This technique allows a selective growth
of nanorods to be realized only on the substrate surface. In the first stage, an aqueous
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solution of 0.05 M zinc acetate (purity ≥ 99%, Vekton, Saint Petersburg, Russia) was used
to deposit a ZnO seed film by ultrasonic spray pyrolysis for 5 min. The substrate heating
temperature was maintained at +380 ◦C. A control sample of the ZnO seed layer was
formed on the polished side of the silicon substrate. The morphology of the seed layer was
studied using atomic force microscopy (Atomic Force Microscope Probe nanolaboratory
INTEGRA- TERMA, NT-MDT, Saint Petersburg, Russia) (Figure 3).
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The roughness of the ZnO seed layer was ~10 nm, and the size of the crystallite width
was 25–30 nm.

Low-temperature hydrothermal synthesis of ZnO nanorods from a seed layer was
carried out using an aqueous solution of zinc nitrate (purity≥ 98%, Vekton, Saint Petersburg
Russia) and hexamethylenetetramine (purity ≥ 98%, Vekton, Saint Petersburg, Russia) with
an equimolar concentration of 25 mM, to which ammonia water (purity ≥ 98%, Vekton,
Saint Petersburg, Russia) and polyethyleneimine (branched, Mw ~ 800, Sigma-Aldrich, St.
Louis, MO, USA) were added to ensure ZnO nucleation in the bulk of the solution. The
features of the synthesis of the ZnO nanorods have been described in more detail in [49].
After synthesis, the ZnO nanorods were annealed at a temperature of +500 ◦C for 5 min.
The results of the scanning electron microscopy of a control sample on a silicon substrate
are shown in Figure 4.
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method with suppression of nucleation in the bulk solution and the use of a seed layer formed by
ultrasonic spray pyrolysis. The inset shows the cross-section of the sample.

As can be seen from the SEM micrograph (Figure 4), a uniform coating of ZnO nanorods
of ~1 µm in length and with a diameter which does not exceed 50 nm was formed.

The surface of the ZnO nanorods was studied using X-ray photoelectron spectroscopy
(XPS). The XPS study was carried out under ultrahigh vacuum conditions (~10−7 Pa)
on an Escalab 250Xi complex photoelectron spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) at the excitation photon energy, AlKα, of 1486 eV. The XPS spectra
were processed using the CasaXPS Version 2.3.24 software.

2.3. Immobilization of Ligands on ZnO Nanorods

In the development and fabrication of a biosensor, an important step is the integration
of a recognizing element into its structure that is capable of selectively capturing an analyte.
The recognizing element must be immobilized on the surface of the electrode. For that, the
electrodes surface must be functionalized with some reactive chemical groups, usually NH2-
or SH- groups. The easiest way to functionalize the ZnO surface with NH2- groups is by
treatment with aminosilanes, which can be achieved in many different ways with different
silanes [50,51]. In this study, we used the method of (3-aminopropyl)trimethoxysilane
(APTMS) treatment in water solutions. This method could be easily scaled-up for mass
production of biosensor chips. The NH2- groups on surface could be then used for direct
conjugation of various organic compounds, including antibodies, onto the substrate surface,
or as an intermediate layer in multi-step conjugations.

In addition to chips with electrodes for the purpose of technological control, we also
carried out silanization of glasses coated with a layer of zinc oxide nanorods using the
same technology. ZnO was annealed to glass slides by heating at +180 ◦C for 10 min. Then,
glasses were treated with 2% APTMS (Sigma-Aldrich 281778, >97%, St. Louis, MO, USA)
in isopropanol for 60 min, washed in isopropanol and dried in air at room temperature.
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After silanization, electrodes and glass slides were functionalized with SH-groups by
treatment with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) (Thermo Fisher
Scientific 22311, Waltham, MA, USA) solution. The presence of SH- groups allows conjuga-
tion of ligands with more constant orientation as SH- groups are much less abundant in
proteins that NH2 groups. To prepare a solution of MBS, 5 mg of MBS was dissolved in
5 mL of dimethyl sulfoxide (DMSO), and then the mixture was dissolved in 20 mL of PBS
(phosphate-buffered saline, 20 mM monosodium phosphate, 0.9% NaCl, pH 7.4, adjusted
with NaOH). The substrate was treated with this solution for 70 min, washed with PBS and
deionized water, and then dried in air at room temperature.

In the last step, protein A was conjugated to the chips and the glass slides treated with
MBS through formation of S-S bonds. First, the SH- groups of protein A were reduced with
dithiothreitol (DTT) (Sigma-Aldrich 111474, >99%, St. Louis, MO, USA). An amount of
5 mg of DTT was added to 100 µL of 10 mg/mL protein A solution in PBS, this solution was
incubated at +40 ◦C for 1 h, then dissolved with PBS to 2 mg/mL and dialyzed against PBS
in a dialysis bag with MWCO of 14 kDa (Sigma D-92777). Second, the reduced protein A
was conjugated to chips and glasses treated with MBS in two steps: short-time conjugation
with concentrated ligand for a short time and then long-time conjugation with diluted
ligand for a long time. Initially, only some small areas on the chips which will be in further
contact with analytes were treated with protein A solution after dialysis for 1 h. Next, 10 mL
of PBS was added to the Petri dish with chips, and the samples were left on a shaker for 8 h.
This was done to ensure the conjugation of protein A to the surface. After immobilization
of protein A, the chips and slides were washed in buffer and water, dried in air and stored
at +4 ◦C.

2.4. Impedance Spectroscopy

Impedance spectroscopy was implemented on the biochips for detection of the binding
of the target substance, omalizumab, and was performed in the frequency range from
1 Hz to 500 kHz, with a voltage amplitude of 100 mV and without applying an additional
DC bias (impedance meter Z500P, Elins, Chernogolovka, Russia). We decided to use this
amplitude upon analysis of the experiments of scientific groups that detected cardiac
troponin [24], as well as colleagues who worked on a similar device [52]. In the future,
we plan to use the developed chip for multiparametric detection of protein biomarker
arrays for diagnosis of chronic diseases. The measurement procedure (Figure 5) consisted
of immersing the immobilized sensor in a 1.5 mL solution of omalizumab in PBS buffer
(pH 7.4) with a concentration of 25 mM, where the sensor was kept for 5 min. Then,
the sensor was further rinsed in 1.5 mL of deionized water to remove residual buffer
solution and non-crosslinked omalizumab, and finally it was immersed in deionized water
for impedance spectrum measurements. The sensor chip contacts were connected to the
impedance meter via miniature clamps and shielded wires to minimize noise.
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3. Results and Discussion

The zinc oxide nanorods were obtained using hydrothermal synthesis on substrates
with comb electrodes. The SEM micrograph of the nanorods on the surface of a ceramic
substrate with an electrode is shown in Figure 6.
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It can be seen from Figure 6 that the morphology of the coating of ZnO nanorods on
the surface of the ceramic substrate with interdigitated electrodes differs from the coating
of nanorods on a silicon substrate, this is due to the morphology of the initial ceramic
substrate, which consists of larger grains. The grain edges determine the general directivity
for several nanorods at once.

It should be noted that the distance between the ZnO nanorods is large enough to
effectively immobilize the nanorods, with protein A binding to omalizumab. The char-
acteristic dimensions of such biological objects are in units of nanometers [53], while the
distance between nanorods is tens of nanometers (Figures 4 and 6). Nevertheless, the
nanorod diameter of ~50 nm is comparable with the total thickness of bounded biorecog-
nition elements (>10 nm), since they are crosslinked from all sides of the nanorods. The
resulting system can be considered as a composite material consisting of a zinc oxide phase
and a phase of biorecognition elements, obviously differing in dielectric constant, E, and
polarization mechanisms. Moreover, since the crosslinking processes occur in the buffer
solution, a double electric layer should form on the biosensor surface, which also affects
the polarization processes. All these factors indicate that the geometric parameters of the
nanostructured ZnO layer can have a significant effect on the features of the impedance
spectra and the sensitivity of the sensor. The optimization of these parameters is a goal of
our further research.

The results of X-ray photoelectron spectroscopy of the surface of ZnO nanorods are
shown in Figure 7.

It can be seen from the survey XPS spectrum that, in addition to the core levels of zinc
and oxygen, the core level of carbon C1s is observed, which is probably associated with
the adsorption of carbon-containing compounds from the air. A detailed interpretation
of the overview spectrum was made according to [54]. In addition to the main peaks of
the Zn2p, O1s and C1s core levels, less intense peaks of photoelectrons of the Zn2s, Zn3p
and Zn3d core levels of zinc, as well as Auger electrons O KLL and Zn LMM, were noted.
The ratio of zinc atoms to oxygen was ~1.13. In this case, obviously, part of the oxygen is
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contained in the surface-adsorbed groups, which makes the ratio of zinc to oxygen atoms
even higher than 1.13. The detailed spectrum of the core oxygen level, O1s, shows the main
oxygen peak in the zinc oxide crystal lattice (~530.9 eV) and a distinct second peak, which,
according to the literature [55–58], is associated with oxygen in the adsorbed OH groups on
the ZnO surface. Since carbon is observed on the surface of ZnO, part of the O1s spectrum
must be due to oxygen in adsorbed compounds with carbon. The deconvolution of the O1s
spectrum was carried out according to [55,56].
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We assume that the high concentration of oxygen vacancies and the predominance
of zinc atoms in the ZnO surface layer promote the adsorption of -OH groups. In turn,
the obtained ratio of oxygen atoms to zinc and oxygen can be associated not only with
the processes of assembly of ZnO nanocrystals during hydrothermal synthesis, but to a
greater extent to the process of annealing the samples at 500 ◦C after synthesis. A high
concentration of OH groups should contribute to the successful silanization process in
our experiment.

As noted above, a high concentration of OH groups on the surface of ZnO is also
accompanied by a high photocatalytic activity. This may be due to the formation of addi-
tional defective levels within the band gap, which are more energetically favorable for the
formation of reactive oxygen species and OH radicals. As can be seen from the XPS data,
the composition of the near-surface region of the synthesized ZnO is indeed significantly
deviated from the stoichiometry. The ZnO nanorods used in this work can potentially have
good photocatalytic activity. At the same time, standard glasses and some optically trans-
parent polymeric materials that are used to create microfluidic systems will be transparent
for the absorption edge of ZnO (~380 nm). Thus, photocatalytic decomposition on ZnO or
similar metal oxide photocatalysts can be easily implemented for microfluidic systems.

Calibration relationships for omalizumab and protein A were obtained using the
following solutions:

• Omalizumab: 0.2; 0.4; and 0.6 µM (Figure 8a);
• Protein A: 0.64; 1.28; 3.2; and 6.4 µM (Figure 8b).
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The complex formation of omalizumab and protein A in different molar ratios was
studied with capillary electrophoresis. An example electropherogram of a mixture with
a ratio of protein A/omalizumab of 1.06 is shown in Figure 9. All electropherograms of
mixtures, regardless of the ratio of components, contained three zones, two of which were
previously assigned to the initial components, while the third intermediate zone represents
the resulting protein–antibody complex.
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Using the capillary electrophoresis data, the average value of the effective dissociation
constant of the 1:1 complex was determined, at Kd = (5.1 ± 2.1) × 10−7 (pKd = 6.3). Thus,
the formation of a complex between omalizumab and protein A was demonstrated, which
proved its further application for quality control of biosensor substrates and the sensitivity
of the formed nanostructured biosensor element.

We tested the effectiveness of protein A immobilization on zinc oxide nanorods by
detecting the binding of antibodies labeled with horseradish peroxidase. For this, glass
substrates were washed in BBST pH 8.2 (20 mM borate buffer with 0.9% NaCl and 0.1%
Tween-20) and treated with 0.2 µg/mL horseradish peroxidase antibody conjugate in BBST
with 1 mg/mL BSA (Sigma-Aldrich, >98%) for 1 h. Then, the substrates were washed in
BBST and developed in 3,3′,5,5′-tetramethylbenzidine (TMB). As a negative control, a glass
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with nanorods of zinc oxide subjected only to silanization without treatment with MBS
and protein A was used, and one glass with conjugated protein A was taken as the sample
(Figure 10).
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Figure 10. Detection of binding of horseradish peroxidase-conjugated antibodies to the surface of
ZnO-coated glasses with bound protein A using TMB treatment: (a) glass with ZnO nanorods without
MBS treatment, only silanized: negative control; (b) glass coated with zinc oxide nanorods silanized
with MBS treatment.

A drop of TMB on the glass with protein A quickly began to turn blue and then yellow,
which meant that TMB reacted with horseradish peroxidase. Horseradish peroxidase is
associated with antibodies; therefore, this observation indicates that the antibodies have
bound, meaning that protein A has been adsorbed onto the glass. Slight traces of staining
are visible on the glass without treatment with protein A, which may indicate a small
proportion of physical adsorption of the antibody. The obtained data indicate that protein
A is adsorbed on the ZnO–silane–MBS structure in the operable state and orientation.

As a result of the study of the frequency range for measuring the impedance spectra
of various concentrations of omalizumab, we determined the frequency range where the
concentration dependence of the impedance is clearly visible (Figure 11).

The characteristic frequency range of the supplied alternating signal for the cre-
ated biochip was approximately from 7 to 500 kHz in the total investigated range of
1 Hz–500 kHz. As can be seen from Figure 11, an increase in the concentration of the
target antibody in the sample leads to a change in the impedance spectrum in the Nyquist
coordinates of the biochip after it is immersed in the analyzed solution. With an increase
in the concentration of the target antibody, omalizumab, a shift in the circular arc in the
impedance spectrum is observed.

The impedance spectrum in the Nyquist coordinates for such systems of semiconduc-
tor nanorods has a characteristic semicircle shape and can be described by an equivalent
RC scheme [52,59]. For composite organo–inorganic structures that are detected by elec-
trochemical nanobiosensors, part of the impedance spectrum usually also has a distinct
semicircle region [60–62]. However, as we assumed from the design of the experiment,
despite the stage of washing and measurements in deionized water, the binding processes
are also accompanied by the transfer of ions in the buffer solution (surrounding the proteins
in the buffer). The impedance spectra indicate (Figure 11) an outline typical for an electro-
chemical system [60], where there is a circular arc region corresponding to the resistance of
the electrolyte and ZnO nanorods and a characteristic “tail” of the corresponding electric
double layer (EDL) diffusion region.

A decrease in the arc of the circle is characteristic of an increase in the concentration of
electrolyte ions [52]. In our case, a decrease in the circular arc is observed with an increase
in the concentration of the target protein, and, apparently, is accompanied by an increase in
the concentration of bound buffer ions on the protein surface.
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Thus, the binding of omalizumab to protein A redistributes the charge in the near-
electrode electric double layer (EDL). Tracking the EDL changes indicates biomolecular
binding events [25]. The changes that occur with the formation of the near-electrode EDL at
the boundary between the biosensor surface and the surrounding liquid can be successfully
detected using electrical impedance spectroscopy. At the same time, the identification
of the frequency range in which the maximum sensitivity and response is observed will
make it possible to implement a simplified measurement scheme in the future, in the
form of a portable device with a disposable line of sensitive electrodes and immobilized
biorecognizing elements.

Based on the results of the impedance measurements, we determined the frequency
range from 7 to 50 kHz, which allowed us to observe a linear change in the impedance
in response to a change in the analyte concentration. Figure 12 shows the change in
impedance of biochips with bound omalizumab versus the logarithm of concentration
at a frequency of 12 kHz. The dependence for omalizumab impedance is linear for the
studied concentration range and satisfies the linear equation: y = 220.11x − 134.87, with
R2 = 0.9421. The concentration limit of detection (LOD) for omalizumab was 5 pg/mL,
which was calculated by a standard procedure using standard deviation and slope values.

In addition, for the same range of concentrations, we demonstrated a similar depen-
dence for BSA solutions. The selection of BSA was motivated by the presence of this protein
in blood samples in large concentrations; thus, it can be used to demonstrate the absence
of non-specific binding. Compared to omalizumab solutions, the developed chips in BSA
solutions showed almost the same impedance response over the studied concentration
range, which indicates the absence of nonspecific binding between protein A and BSA.
Therefore, we have demonstrated the operability of the developed biosensor structure and
have determined the operating frequency range and good sensitivity. Further research
will be carried out to create multisensor impedimetric microsystems for detecting various
protein markers of diseases.
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4. Conclusions

Micro- and nano-technologies make it possible to implement the automatic control of
the stages of analytical procedures using integrated functional modules in microsystems on
the microscale. They enable flexible modeling of the topology and design of such systems
for performing a specific analysis, and furthermore enable the creation of multichannel
systems for parallel analysis of multiple samples.

Impedimetric sensors can be successfully combined with microfluidic systems [63,64],
which promises the prospect of their use as sensor nodes in miniature analytical systems,
such as in lab-on-a-chip systems. Unlike other electrochemical sensors, impedimetric
sensors are less demanding in regard to the quality of the electrodes. They can be chemically
stable in a variety of media and offer the ability to work in opaque samples, unlike most
optical biosensors.

Modern biosensor systems should provide high sensitivity and selectivity, high de-
tection rate, small sample volume, be small in size and have low cost. Ensuring this set of
characteristics is possible due to the heterogeneous integration of functional modules into
a single system, the architectonics of which determines a set of design and technological
solutions implemented at the micro- and nano-levels, including those using biological
media. The physical and technical principles of detection underlying the created biosensor
system are often determined by the nature and properties of the analyzed biological com-
ponent, in particular, protein structures identified as markers of diseases and physiological
conditions. The development of registration methods without the use of specialized labels,
which complicate and increase the cost of the design and technology of forming biosensor
systems, is an object of interest for many researchers [65–67].

In this study, we demonstrated the operability of a label-free impedimetric biosensor
for detecting antibodies using electrodes coated with zinc oxide nanorods. We performed a
preliminary study of the binding of protein A and omalizumab using capillary electrophore-
sis. Zinc oxide nanorods were deposited by spray pyrolysis on comb electrodes, after which
they were silanized and conjugated with protein A on the surface. Using impedance spec-
troscopy, it was possible to detect the binding of omalizumab at concentrations down to
5 pg/mL. We assume that the coating of electrodes with ZnO nanorods in the future will
not only serve as a matrix for immobilization and increase the effective area of electrodes,
but will also ensure the reusability of the biochip due to the cleaning of electrodes coated
with ZnO by photocatalytic decomposition of the bound molecules.
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Further development of this work should go towards the creation of highly sensitive
multiparametric biosensor systems for the diagnosis of protein markers of diseases. To this
end, we plan to create detection sites using peptide aptamers with spatial complementarity
to target proteins. We have a set of tools and methods for an in silico search for such
structures [68,69] and are currently testing a number of samples for protein markers of
cardiovascular and inflammatory diseases. This is particularly important in relation to the
prospect of using such biosensors in Point-of-Care systems.
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