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Abstract: In recent years, plasmonic sensors have been used in various fields ranging from envi-
ronmental monitoring, pharmaceutical analysis, medical diagnosis, and food quality assessment to
forensics. A significant amount of information on plasmonic sensors and their applications already
exists and there is a continuing development of reliable, selective, sensitive, and low-cost sensors.
Combining molecularly imprinting technology with plasmonic sensors is an increasingly timely and
important challenge to obtain portable, easy-to-use, particularly selective devices helpful in detecting
analytes at the trace level. This review proposes an overview of the applications of molecularly
imprinted plasmonic chemosensors and biosensors, critically discussing the performances, pros, and
cons of the more recently developed devices.

Keywords: plasmonic chemosensors; plasmonic biosensors; molecularly imprinted polymer sensors;
chemical analyses; biochemical analyses; nanoparticles; MIP-based sensors; low-cost devices; high
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1. Introduction

The application of Molecularly Imprinted Polymers (MIPs) as sensing recognition
elements in chemo-/biosensors has been continuously developing since the 1990s [1–7].
MIPs are appealing for recognition properties like those of biological receptors but with
higher stability and for their availability for several target analytes. These pros have
confirmed MIPs’ application in different fields, like solid-phase extraction (SPE), immune
tests, drug delivery, and sensing [7–9].

Molecular imprinting is a template-guided synthesis resulting in the formation of
selective cavities in a polymeric network [10]. The removal of the template from the
polymer left cavities that are complementary in shape and dimension to the same molecule
template (see Figure 1, [11]).

Research on MIPs has enticed scientific interest due to promising characteristics
like stability, robustness, selectivity, and high affinity towards the target analyte [12–17].
The groundbreaking approach of MIP-based sensors for environmental and biomedical
analysis can be explained by their ability to selectively detect target molecules present in
complex matrices at trace levels, frequently without the need for sample pretreatment,
which could open the possibility of in-situ monitoring and clinical tests at the point-of-care.
Unfortunately, the research and development of MIP-based sensor technology are still at
the academic level [18].

Most MIP-based sensors exploit optical or electrochemical responses. Among the opti-
cal sensors, Surface Plasmon Resonance (SPR) and Localized Surface Plasmon Resonance
(LSPR) are, to date, the most promising MIP-faced devices.

SPR and LSPR sensors have appealing characteristics like suitability for automation,
the possibility for label-free analysis, and easy surface modification to be effectively func-
tionalized with MIPs [19].
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Figure 1. Molecularly imprinted polymers (MIPs) synthesis. (Reproduced with permission from 
[11], open access Creative Common CC licensed 4.0, MDPI). 

SPR and LSPR sensors have appealing characteristics like suitability for automation, 
the possibility for label‐free analysis, and easy surface modification to be effectively 
functionalized with MIPs [19].  

Surface plasmons are free electrons coherent oscillations at a metal/dielectric 
interface that are classified into two groups: propagating surface plasmons and localized 
surface plasmons [20].  

SPR sensors use the evanescent field of surface plasmons propagating through a 
metallic surface to detect variations of the sample's dielectric constant around 100 nm of 
the plasmonic material. The interaction of the evanescent field with the analyte produces 
a shift in transmitted excitation light wavelength (or angle) or a change in light intensity 
proportional to the changes in the sample's refractive index [21–24]. This change allows  
detection of the target analyte. 

When the surface plasmon is constrained to a nanoparticle of a size like the light's 
wavelength, the particle's free electrons contribute to the coherent oscillation. This 
phenomenon is called Localized Surface Plasmon Resonance (LSPR). LSPR shows two 
significant effects: the electric field close to the nanoparticle's surface is considerably 
enhanced, and the nanoparticle's optical transmission spectrum shows a maximum at the 
plasmon resonant frequency in the region of the UV‐vis that depends on the refractive 
index of the surrounding medium [25]. The plasmon resonance spectral shift determined 
by a change in the dielectric properties of the environment surrounding the metal 
nanoparticles is the sensing principle for LSPR sensors [26]. A scheme of SPR and LSPR 
mechanisms is shown in Figure 2 [27]. 

In the last thirty years, there has been a huge increase in fiber‐optic‐based sensors for 
applications in several fields, like the environment, agriculture, food industries, energy, 
pharmaceutics, and medicine, thanks to their peculiar features that allow remote or online 
monitoring and the possibility of obtaining miniaturized devices suitable for point‐of‐care 
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open access Creative Common CC licensed 4.0, MDPI).

Surface plasmons are free electrons coherent oscillations at a metal/dielectric in-
terface that are classified into two groups: propagating surface plasmons and localized
surface plasmons [20].

SPR sensors use the evanescent field of surface plasmons propagating through a
metallic surface to detect variations of the sample’s dielectric constant around 100 nm of
the plasmonic material. The interaction of the evanescent field with the analyte produces
a shift in transmitted excitation light wavelength (or angle) or a change in light intensity
proportional to the changes in the sample’s refractive index [21–24]. This change allows
detection of the target analyte.

When the surface plasmon is constrained to a nanoparticle of a size like the light’s wave-
length, the particle’s free electrons contribute to the coherent oscillation. This phenomenon is
called Localized Surface Plasmon Resonance (LSPR). LSPR shows two significant effects: the
electric field close to the nanoparticle’s surface is considerably enhanced, and the nanoparti-
cle’s optical transmission spectrum shows a maximum at the plasmon resonant frequency in
the region of the UV-vis that depends on the refractive index of the surrounding medium [25].
The plasmon resonance spectral shift determined by a change in the dielectric properties
of the environment surrounding the metal nanoparticles is the sensing principle for LSPR
sensors [26]. A scheme of SPR and LSPR mechanisms is shown in Figure 2 [27].

In the last thirty years, there has been a huge increase in fiber-optic-based sensors for
applications in several fields, like the environment, agriculture, food industries, energy,
pharmaceutics, and medicine, thanks to their peculiar features that allow remote or online
monitoring and the possibility of obtaining miniaturized devices suitable for point-of-care
measurements [28]. In optical fiber sensors, the fiber can be simply used as a waveguide to
carry light from a source to a sensing component; this is the case for the so-called extrinsic
sensors. Otherwise, intrinsic platforms are obtained when the optical fiber itself is used as
a sensing waveguide. In this scenario, SPR/LSPR implementation on optical fibers was
exploited, aiming to obtain very sensitive and small-size sensors [29–31].

Additionally, highly selective platforms can be produced by modifying the SPR/LSPR
surfaces with receptors, such as MIPs.
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of reflection [◦]. (Reproduced with permission from [27], open access Creative Common CC licensed
3.0, Royal Chemical Society—RSC).

This paper presents an overview of molecularly imprinted plasmonic chemosensors
and biosensors. Their realization and applications will be critically discussed. Compared
to other recent reviews on the same topic, but more sectoral and specific (see, for example,
Gupta et al. [28], Cennamo et al. [31] and Yang et al. [32] for MIPs-based optical fiber
sensors or Chiappini et al. [33] for biosensors or Fang et al. [34] for MIPs-modified optical
sensors for pesticides), the present review provides a broader overview of the state of the
art SPR and LSPR sensors interfaced with molecularly imprinted polymers for applications
in various fields, including environmental, agricultural, and clinical-biomedical.

2. MIP-Based Plasmonic Chemosensors and Biosensors

The following paragraphs describe the latest advances in SPR and LSPR sensors
functionalized with molecularly imprinted polymers (MIPs). Devices based on MIP film
covering the plasmonic surfaces, nanoMIP-based chips, MIP-coated nanoparticles-based
sensors, and MIP films-based SPR imaging chips will be presented together with their
analytical applications.

2.1. MIP Film-Based SPR Sensors

The first MIP-based SPR sensor was proposed by Lai et al. for caffeine, theophylline,
and xanthine detection [35]. After this pioneering work, the employment of MIP as a
recognition element in SPR sensors become an appealing strategy for developing selective
and sensitive sensors for various target molecules of environmental, biological, clinical,
and industrial interest [24].

In MIP film-based devices, a surface imprinting with control of the polymer layer
thickness must be performed to ensure the measurements’ good reproducibility [36].

Drop-coating and spin-coating of the prepolymeric MIP’s mixture are the common
techniques with the spin-coating approach the best one for nanosized control of the MIP
layer thickness [36,37].

The Zeni and Cennamo group proposed several MIP-functionalized SPR sensors based
on D-shaped plastic optical fibers (POFs). These platforms were realized by eliminating both
the cladding and the partial core of the optical fiber, spin coating a photoresist buffer layer
(Microposit S1813) on the exposed core, and sputtering a gold film over the buffer [38]. Finally,
the MIP prepolymeric mixture was drop-coated or spin-coated on the gold sensing surface and
left to polymerize overnight thermally. Figure 3 reports a scheme of this kind of platform [39].
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In SPR-POF platforms, an increase in the refractive index at the gold/dielectric inter-
face, according to the SPR theory, corresponds to a shift in the resonance wavelength [38].
When a MIP layer covers the gold film, the interaction of the target analyte with the MIP
cavities usually produces an increase in the resonance wavelength due to the refractive
index variation at the interface MIP layer/gold film [39].

An example of these sensors is a MIP on a plasmonic POF for detecting perfluorinated
compounds [39]. The sensor was very selective for perfluorooctanoate, perfluorooctane-
sulfonate, and perfluorinated alkylated substances in the C4–C11 range, with a LOD of
about 0.1 µg/L.

A similar experimental setup was applied, with satisfying performances, for the
detection of 2-furaldehyde in transformer oil and wine samples [40,41], 2,4,6-trinitrotoluene
(TNT) in water [42], L-nicotine in aqueous solution [43], for the simultaneous detection
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of dibenzyl disulfide and 2-furaldehyde in electrical transformers insulating oil [44], and
recently for SARS-CoV-2 in swab and physiological solutions [45].

Always using the spin-coating of the prepolymeric mixture of MIPs, Dibekkaya
et al. [46] proposed an SPR sensor to detect cyclic citrullinated peptide antibodies (anti-
CCP). A pre-complex was prepared by adding acrylamide monomer (Aam) to anti-CCP.
Then, the SPR sensor was obtained by reacting the pre-complex with the cross-linker and
the initiator/activator pair, forming a nanofilm monolayer.

Another interesting work is that proposed by Ayankojo et al. [47]; in this case, a hybrid
inorganic-organic MIP film selective for amoxicillin was prepared and integrated with an
SPR sensor. The film was obtained by a sol-gel procedure and employing tetraethoxysi-
lane as an inorganic precursor, methacrylamide as the organic functional monomer, and
vinyltrimethoxysilane as a coupling agent. Prepared in this way, the MIP-based SPR plat-
form permitted the highly sensitive and selective amoxicillin determination showing a
detection limit down to 70 pM and the possibility to discriminate the target analyte among
structurally similar molecules both in synthetic buffer solutions and tap water samples
with good reproducibility of the measurements.

The MIP layer’s thickness can also be monitored by constraining the pre-polymerization
mixture between two flat surfaces and applying continuous pressure during the polymer-
ization step. This method is called microcontact imprinting. One of the surfaces functions
as the substrate for the resulting MIP, while the other is functionalized with the tem-
plate molecule. This method permits a surface imprint of the polymer [48], and it is
particularly of interest for imprinting high molecular weight molecules, such as microor-
ganisms or biomolecules [48–50]. For example, a microcontact-imprinted SPR sensor for the
pathogenic bacteria S. paratyphi was developed by Perçin et al. [49]. To begin, preparation
and modification of glass slides were undertaken. Amino groups were introduced with
3% 3-amino-propyltriethoxysilane (APTES). Then, the amino groups were derivatized by
glutaraldehyde, and S. paratyphi cells were added to the glass surface. In parallel, the gold
surface of SPR chips was modified with allyl mercaptan (CH2CHCH2SH). The microcontact
imprinting of S. paratyphi onto the SPR chips was then realized. The aminoacid-modified
acrylate N-methacryloyl L-histidine methyl ester (MAH) was mixed with a Cu(II) salt to
form a Cu(II)-MAH complex. Then, 2-hydroxyethyl methacrylate (HEMA), ethylene glycol
dimethacrylate (EGDMA), and azobis-isobutyronitrile (AIBN) were added and the obtained
solution was placed on the SPR chip. The glass slide with immobilized S. paratyphi was
placed in contact with the monomer solution on the SPR chip, and UV-vis polymerization
was performed. Figure 4 shows a scheme of this microcontact imprinting process [49].
With the proposed SPR sensor, the recognition of S. paratyphi was achieved with a de-
tection limit (LOD) of 1.4 × 106 CFU/mL. The sensor’s selectivity was verified using
Escherichia coli, Staphylococcus aureus, and Bacillus subtilis as competing bacterial strains.
Additionally, experiments with the target microorganisms in apple juice were undertaken.
The strong results highlighted the sensor’s potential for S. paratyphi detection in water
and food samples.

A similar approach was employed by Bergdahl et al. [50] for in vivo detection of
a bacterial factor (RoxP) secreted by the skin. Figure 5 depicts a scheme of the sensor
preparation by microcontact imprinting.

The MIP composition was optimized, characterizing five different polymeric mixtures.
The best performances were achieved with 2-Hydroxyethyl methacrylate as monomer
and poly(ethylene glycol) dimethacrylate as a cross-linker, obtaining a MIP-chip with a
detection limit of about 0.2 nM. This study offers an effective sensor for detecting and
quantifying RoxP as a marker for oxidative stress on the skin.

A surface-grafted MIP film obtained by radical photopolymerization combined with
microcontact imprinting aimed at developing a BSA (Bovine Serum Albumin) SPR sensor
was proposed by Kidakova et al. [51]. The reversible addition-fragmentation chain transfer
(RAFT) controlled-living radical polymerization method was applied since it allowed
better control of the thickness and composition of molecularly imprinted polymer film, as



Chemosensors 2023, 11, 144 6 of 22

previously verified [52–54]. With the perspective of preparing a MIP film of protein with
homogeneous cavities confined on the surface, microcontact imprinting was the elected
strategy [55–57]. By this synthetic approach, a thin film of polymethacrylate molecularly
imprinted with BSA was placed directly in contact with the SPR chip surface. The sensor
response was pseudo-linear in a restricted range of BSA concentration (from 2.5 nM to
25 nM) with a detection limit of about 6 nM. In any case, the simple synthetic procedure is
promising for developing MIP-based sensors for other proteins of clinical interest.
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As described below, in-situ polymerization of molecularly-imprinted thin films was
generally obtained by different approaches like drop-coating, spin-coating, or layer-by-
layer deposition and recently mixed methods based on nanotechnology. Few papers
and reviews have addressed the electrochemical methodology. Molecular imprinting
performed by this technique is appealing for developing sensors for different applications
and based on different transduction, including SPR devices. Compared to the previously
described methods, the MIP electrosynthesis can often be performed in aqueous solutions
and allows film thickness control via electrochemical parameters [58]. Generally, the MIP
electropolymerization on SPR sensors requires a three-electrode cell: the working electrode
is the gold chip surface, the reference is a classical Ag/AgCl electrode, and the counter
electrode is a platinum wire or graphite rod.
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by microcontact imprinting. (A) Glass cover slip surface modification and RoxP immobilization;
(B) gold chip surface modification with the monomer; (C) microcontact of the RoxP stamp with the
monomer-treated gold chip and UV imprinting (Reproduced with permission from [50], Copyright ©
2019, American Chemical Society).

Adopting this approach, Choi et al. [59] proposed a MIP-based SPR sensor for the
mycotoxin zearalenone. The MIP film was obtained by electropolymerization of pyrrole
onto the gold surface of the SPR chip in the presence of zearalenone molecule as the
template. The linear response was obtained in the range of 0.3–3000 ng/mL. The detection
limit and the recovery for corn samples spiked with 30 ng/g of analyte were 0.3 ng/g and
89%, respectively, similar to those achieved by classical enzyme-linked immunosorbent
assay (ELISA). The selectivity was also proved by testing structurally related analogs of
zearalenone, highlighting the strong affinity of the MIP for the studied mycotoxin.

Functionalized terthiophenes were also exploited for MIP electrosynthesis. Permites
et al. proposed the modification of SPR chips by electropolymerized MIPs (e-MIPs) starting
from carboxyl functionalized-terthiophene monomers. The sensors were developed for
theophylline [60,61], paracetamol, and naproxen [61]. Analogous monomers were em-
ployed by Hubilla et al. [62] to prepare an e-MIP-based SPR sensor for histamine detection.
The fabricated sensor showed a good linear range from 15 to 500 µg/mL, with a detection
limit of 2.0 µg/mL. The high selectivity for histamine was verified by testing histamine
analogs such as L-histidine, putrescine, and cadaverine.

An e-MIP prepared in situ by electropolymerization of 3-aminophenylboronic acid
on the gold surface on an SPR chip was proposed to detect Staphylococcal Enterotoxin
B [63]. The sensors showed very high sensitivity: a linear response from 3.2 fM to 25.6 fM
and a detection limit of 0.05 fM were obtained. Interference studies with the homologs of
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Staphylococcal Enterotoxin B, such as Staphylococcal Enterotoxin A and C, demonstrated
the high affinity of the MIP’s cavities for the target analyte.

The same group [64] proposed another interesting study for the detection of T-2 toxin,
a bio-toxin potentially used as a biological weapon for terrorist purposes. In this case, a
π-conjugated MIP with nanopatterns was prepared on the gold surface of the SPR chip
by in situ electropolymerization of 3-aminophenylboronic acid as functional monomers.
3-aminophenylboronic acid was selected since the boronic acid moiety permits reversible
electrostatic and covalent interactions with the template molecules as a function of the
pH and solvent polarity. The very low detection limit obtained (0.1 fM) makes the device
promising since the sensor can detect T-2 toxin below the concentrations recommended by
the American subcommittee.

Bartold K. et al. proposed e-MIP-based SPR chips to determine genetically rele-
vant oligonucleotides [65,66]. 2-(cytosin-1-yl)ethyl 4-bis(2,2′-bithien-5-yl)methylbenzoate
and 4-bis(2,2′-bithien-5-yl)methylphenyl-2-guanine ethyl were employed as functional
monomers, and a peptide nucleic acid (PNA) as the template due to the sequence selectivity
and affinity to complementary RNA and DNA single strands. In particular, the devel-
oped chemosensors aimed to identify genetically relevant GC-rich (guanidine = G and
cytosine = C) oligonucleotides (cancer biomarkers present in the bloodstream as cell-free
DNA), so C-term-GCGGCGGC-N-term single-stranded PNA was synthesized.

A scheme of the e-MIP synthesis and the binding of the target analyte is shown
in Figure 6.
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Figure 6. Scheme of the e-MIP using C-Term-GCGGCGGC-N-Term Single-Stranded PNA as a
template and its application for sensing the 5′-GCGGCGGC-3′ analyte. (Reprinted with permission
of [66] Copyright © 2018, American Chemical Society).

Table 1 summarizes the performances of the MIP-film-based sensors mentioned above.
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Table 1. Summary of the MIP film-based SPR sensors described in Section 2.1.

Analyte MIP Composition Platform Dynamic Range Cross-Sensitivity LOD Ref.

Caffeine,
Theopylline,

Xanthine
PMMA-EGDMA 1 SPR chip 0.4–6 mg/L

Dyphilline,
Hydrochlorothiazide, Nicotin

acid, phenylbutazone,
Theobromide

0.4 mg/mL [35]

PFA 2 VBT-PFDA-EDMA 2 POF-SPR 9 0.1–4 mg/L nd 1.33 × 10−4 mg/mL [39]
2-furaldehyde MAA-DVB 3 POF-SPR 9 9–30 ppb nd 9 × 10−3 mg/mL [40,41]

TNT MAA-DVB 3 POF-SPR 9 nd 2,4-dinitrotoluene,
1,3-dinitrobenzene 1.1 × 10−4 mg/mL [42]

L-nicotine MAA-DVB 3 POF-SPR 9 0–0.001 M nd 30 mg/mL [43]
Dibenzyl disulfide,

2-furaldehyde MAA-DVB 3 POF-SPR 9 2·10−15–10−13 M nd 7.24 × 10−3 mg/mL [44]

SARS-CoV 2 Aam-TBAm-HEMA 4 POF-SPR 9 nd nd 0.058 µM [45]

Amoxicillin MAAM-VTMOS-TEOS 5 SPR chip 0.1–2–6 nM Ampicillin, norfloxacin,
sulfamethizole, doxycycline 73 pM [47]

S. Paratyphi MAH-HEMA-EGDMA 6 SPR chip 2.5·106–15·106

cfu/mL nd 1.4 × 10−6 CFU/mL [49]

RoxP 7 HEMA-PEGMA 7 SPR chip nd nd 0.2 nM [50]
Bovine serum

albumin DEAEM-BAA 8 SPR chip 2.5–25 nM Human serum albumine 5.6 nM [51]

Mycotoxin
Zearalenone Pyrrole SPR chip 0.3–3000 ng/L

α-zearalenol, β-zearalenol,
zearalanone, and
α-zearalanone

0.3 ng/g [59]

Theopylline TTCA 10 SPR chip 10–50 µM 1-napthalene sulfonic acid
sodium salt, acetanilide 3.36 µM [60]

Paracetamol,
Naproxene TTCA 10 SPR chip nd

caffeine,
theobromine,3-aminophenol,

and 4-aminobenzoic acid
nd [61]

Histamine TTCA 10 SPR chip 15–500 µg/mL Histidine, Cadaverine,
Putrescine 2 µg/mL [62]

Staphylococcal
enterotoxin B

3-aminophenyl
boronic acid SPR chip 3.2–25.6 fM Caffeine, Theobromine 0.05 fM [63]

Oligonucleotides 2-(cytosin-1-yl)ethyl 4-bis(2,2′-
bithien-5-yl)methylbenzoate SPR chip 3–80 nM nd 200 pM [64,65]

T 2 toxin 3-aminophenyl
boronic acid SPR chip 2.1–33.6 fM Ricin, Curcin, Arbin,

MicrocistinLR 0.1 fM [66]

1 Polymethyl methacrylate, Ethylene glycol dimethacrylate, 2 Perfluorinated alkylated substances, (Vinylben-
zyl)trimethylammonium, 1H,1H,1H,2H,2H-perfluorodecyl acrylate, Ethylene dimethacylate, 3 Methylacrylic
acide, Divinylbenzene. 4 Acrylamid, N-tert-butylacrylamide, 2-hydroxymethyl methacrylate, 5 Methacrylamide,
vinyl-trimethoxysilane, tetraethoxysilane, 6 N-methacryloyl L-histidine methyl ester, 2-hydroxymethyl methacry-
late, ethylene glycol dimethacrylate, 7 Bacterial factor, 2-hydroxymethyl methacrylate, dimethacrylate (average
Mn 550), 8 Dietthylaminoethyl methacrylate, methlenebis(acrylamide), 9 Plastic Optical Fiber-SPR, 10 Carboxyl
functionalized-therthiophene.

2.2. NanoMIP-Based SPR Sensors

Before now, MIPs have generally been integrated into SPR sensors through a film
layer. However, in recent years, attempts have been devoted to immobilizing the so-called
nanoMIPs (MIP nanoparticles) onto the gold surface of the SPR chips [67–75].

For example, Sari et al. [67] proposed an SPR nanosensor for selective and rapid
detection of erythromycin in aqueous solutions. Molecularly-imprinted nanoparticles
were obtained by the two-phase mini-emulsion polymerization method [76] and then
immobilized onto the gold surface of the SPR chip. Erythromycin is a macrolide broad
spectrum antibiotic, and it was demonstrated that its residues might cause toxic effects
on public health [77,78]. Hence the importance of its dosage in environmental samples.
The developed sensor was applied for selectively determining erythromycin in aqueous
samples. The detection limit obtained was about 0.3 mg/L. The selectivity of the nanosensor
was verified in aqueous solutions containing the following competing agents: spiramycin,
kanamycin sulfate, and neomycin sulfate. Tests on the repeatability of the measurements
with this nanosensor have produced satisfactory results. Given the good performance, the
low cost, and the rapid response, the sensor is promising for erythromycin detection in
environmental waters.

The same approach was applied by Yılmaz et al. [68] to develop a nanoMIP-based SPR
chip for the pesticide atrazine, by Erdem et al. [71] to realize a nanosensor for enterococcus
faecalis detection, and by Rahtuvanoğlu et al. [72] to develop a biosensor for histamine
determination in food samples.
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A rationally designed nanoMIPs coupled with an SPR sensor for detecting glycopep-
tide antibiotics in milk products was realized by Altintas [69] using the natural glycopeptide
vancomycin as the target analyte. Figure 7 shows a scheme of the nanoMIP preparation
and its immobilization on the gold surface of the SPR sensor. The nanoMIP particles were
prepared by a solid phase synthesis. The prepolymeric mixture was dripped on glass beads,
then a UV polymerization was carried out. Low-affinity nanoparticles were discarded
by a cold wash, while those at high-affinity were collected (see Figure 7A). The obtained
nanoMIPs were covalently immobilized on the gold SPR chip surface via the amine cou-
pling reaction with the carboxylic group of the 11-mercaptoundecanoic acid (MUDA)
present as a self-assembled monolayer (SAM) on the gold surface (see Figure 7B) [79]. Pre-
liminary studies were performed with vancomycin not conjugated with gold nanoparticles
(AuNPs, see Figure 7B); however, the detection limit of 50 µg mL−1 was insufficient to
quantify trace levels of the analyte in milk samples. Consequently, to increase the sensor’s
sensitivity, vancomycin was conjugated with AuNPs, obtaining a detection limit of 4.1 ng
mL−1 and a linear concentration range from 10 to 125 ng mL−1. The great selectivity was
verified by comparative investigations with nanoMIPs and nanoNIPs. Cross-reactivity
tests with other drugs demonstrated the high specificity of the sensor towards the target
analyte vancomycin. The coupling of the nanoMIPs with SPR chips once again proved the
potentiality of these sensors for a cheap, reliable, and rapid detection of contaminants in
environmental and biological samples.
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Similar nanoMIPs synthesis and immobilization technique were used by Ashley et al.
to develop an SPR nanosensor for α-casein detection in milk samples [70].
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Cennamo et al. [73–75] developed plasmonic biosensors combined with deformable
nanoMIPs prepared by exploiting the hydrogel synthesis by precipitation-polymerization
in solution [80]. The mild conditions of this precipitation-polymerization employing
acrylamides were necessary for imprinting biomacromolecules. The nanoMIPs synthesis
involved acrylamide (Aam), methacrylic acid (MAA), and N-t-butylacrylamide (TBAm) as
functional monomers. N, N-methylenebisacrylamide (BIS) was used as a cross-linker and a
mix of ammonium persulfate and N,N,N,N-tetramethylethylenediamine was employed as
the polymerization initiator.

In [73], nanoMIPs for sensing human serum transferrin (HTR) were synthesized.
Plastic optical fiber (POF) was used to develop a D-shaped POF SPR platform. When
coupled to the POF-SPR platform, the nanoMIPs deformations induced by the interaction
with the analyte amplified the resonance shift, allowing the HTR detection with ultra-low
sensitivity. Indeed, the realized sensor responded linearly in the HTR concentration range
from 1.2 fM to 1.8 pM with a detection limit of 1.2 fM.

A nanoplasmonic sensor chip was proposed in [74]. It was based on gold nanograting
realized on a PMMA substrate and faced with soft nanoMIPs for selective recognition of
Bovine Serum Albumin (BSA). Even in this case, the characteristic deformable properties of
the nano-MIPs enabled a significant enhancement of the biosensor’s detection limit (LOD
of about 3 fM).

The most recent sensor is that proposed in [75]. The paper described the development
of an SPR platform using silica light-diffusing fibers (LDFs) functionalized with nanoMIPs
for detecting the protein human serum transferrin (HTR). Figure 8 shows a scheme of the
sensor’s operating principle.
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The innovative approach of combining an SPR-LFD platform with nanoMIPs permit-
ted the realization of a selective sensor with an ultra-low detection limit for HTR of about
4 fM. The main advantage of this kind of chip is the simpler fabrication. Indeed, the sensor
preparation required only a gold nanolayer deposition on the LDF, opening the opportunity
to scale up the production of these devices for different analytes.

The above-described devices are summarized in Table 2.
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Table 2. Summary of the nanoMIP-based SPR sensors described in Section 2.2.

Analyte MIP Composition Polymerization Method Platform LOD Dynamic
Range

Cross
Sensitivity Ref.

Erythromycin MAA-EGDMA-HEMA 1 Two-phase mini-emulsion
polymerization SPR-CHIP 0.3 mg/L (6.8–68.1) × 10−6

mol dm−3 nd [67]

Atrazine MAA-EGDMA-HEMA 1 Two-phase mini-emulsion
polymerization SPR-CHIP 0.7134 ng/mL 0.5–1.5 ng mL−1 Simazine,

Amitrole [68]

Glycopeptide
antibiotics EGDMA-TRIM 2 Solid phase synthesis SPR-CHIP 4.1 ng/L 10–200 µg Kg−1 Teicoplanin,

Artemisinin [69]

α-Casein NIPAm-BIS-APM-TBAm-AA 3 Solid phase synthesis SPR-CHIP 127 ng/mL 0.5–8 ppm BLG 8,
BSA 9 [70]

Enterococcus
faecalis MAH-HEMA-EGDMA 4 Two-phase mini-emulsion

polymerization SPR-CHIP 1.05 × 102

cfu/mL
2 × 104–1 × 108

cfu mL−1
E. coli, B. subtilis,

S. aureus [71]

Histamine MAH-HEMA-EGDMA 4 Two-phase mini-emulsion
polymerization SPR-CHIP 0.58 ng/mL 0.001–10 µg mL−1

Histidine,
Tryptophan,
Dopamine

[72]

HTR 5 Aam-MAA-TBAm-BIS 6 Solution precipitation
polymerization POF-SPR 7 1.2 fM 1.2 fM–1.8 pM nd [73]

BSA AaM-MAA-TBAm-BIS 6 Solution precipitation
polymerization POF-SPR 7 3 fM 2 fM–0.1 pM α-lactalbumin,

myoglobin [74]

HTR AaM-MAA-TBAm-BIS 6 Solution precipitation
polymerization POF-SPR 7 4 fM 8–280 fM PEP, HRP [75]

1 Methacrylic acid, Ethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate, 2 Ethylene dimethacy-
late, Trimethylopropane trimethacrylate, 3 N-Isopropylacrylamide, N,N-methylenebis(acrylamide), N-(3-
aminopropyl)methacrylamide, N.tert-butylacrylamide, acrylic acid, 4 N.methacryloyl-(L)-histidine-methylester,
2-hydroxyethyl methacrylate, Ethylene glycol dimethacrylate, 5 Human Serum Albumin Acrylamide, Methacrylic
acid, N-t-butylacrylamide, N,N’-methylenebisacrylamide, 6 Acrylamide, Methacrylic acid, N-t-butylacrylamide,
N,N’-methylenebisacrylamide, 7 Plastic Optical Fiber-SPR, 8 β-Lactoglobulin, 9 Bovine serum albumin.

2.3. MIP-Coated Nanoparticles-Based LSPR and SPR Sensors

Recent progress in nano-optics allowed the development of sensors based on LSPR
signals of nanostructures. LSPR is produced by light when it interacts with metal nanopar-
ticles with dimensions smaller than the incident wavelength. As in SPR, when the surface
plasmons are confined to a nanoparticle with a size comparable to or less than the light
wavelength, coherent localized plasmon oscillations occur with a resonant frequency de-
pendent on the composition, size, geometry, separation distance of nanoparticles, and
surrounding dielectric medium [81,82].

Gold nanoparticles (AuNPs) have been intensely studied in the past decade thanks to
their remarkable properties, which make them helpful in developing sensors and biosen-
sors. However, AuNPs alone are often unsuitable for sensing applications. Modifying
their surface with inorganic or organic functionalities is essential to improve stability and
selectivity. Among the recognition receptors, MIPs are of particular interest since their char-
acteristics of merit include easy synthesis, high stability, and low cost. Hybrid structures
obtained by coupling AuNPs with MIPs represent the new trend in developing plasmonic
sensors with high sensitivity and specificity [83]. Moreover, MIP-based LSPR sensors are
compatible with microfluidic systems, reducing the size and making the optical devices
portable and available for in situ and point-of-care analyses [84].

The first surface-imprinted LSPR sensor based on gold nanorods for protein detection
was proposed by Abbas et al. in 2013, employing a sol-gel synthesis and using siloxane
copolymerization [85]. A scheme of the nanosensor preparation is shown in Figure 9.

Neutrophil gelatinase-associated lipocalin (NGAL), a biomarker for acute kidney
injury, was employed as a target template for a proof of concept development of the sensor.
LSPR activity of the imprinted nanorods enabled the monitoring of the imprinting process
and also the detection of the protein capture and release at physiological concentrations.
The good results opened a new perspective on MIP-based LSPR nanosensors for biomedical
applications as diagnostic tools.

More recently, Hu et al. synthesized a shell of a sol-gel MIP on gold nanorods for
target proteins to investigate the role of aromatic interactions in molecular recognition [86].
As template molecules, three proteins with different aromatic amino acid functionalities
were selected. MIPs were prepared on gold nanorods using monomers of diverse aromatic
groups. The results showed a protein-dependent enhancement of selectivity and sensi-
tivity due to the presence of aromatic functionalities in the imprinted polymer network.
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Higher enhancement in sensitivity was found for proteins with more aromatic amino acid
groups, highlighting the need for a fine selection of functional monomers in synthesizing
molecularly imprinted polymers.
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Guerreiro et al. proposed an LSPR sensor to evaluate wine astringency as an alterna-
tive method to sensorial analysis [87]. In particular, the nanosensor combined LSPR with
surface-modified gold nanodisks by molecularly imprinted polymers. The study aimed to
simulate astringency, determined by the tannins of the wine, in the mouth by imitating the
biological system. For the gold nanodisks’ surface modification by molecular imprinting,
salivary proteins were used as template molecules, thiophenecarboxylic acid, (vinylben-
zyl)trimethylammonium and methacrylic acid as functional monomers, and EGDMA acted
as a cross-linker. The sensor’s response was expressed in pentagalloyl glucose (PGG) units
and the linearity was verified from 1 to 140 µmol/L PGG. The sensor was also applied
to wine samples demonstrating a good agreement with the data obtained by sensorial
analysis. The correlation between astringency and wine composition was also assessed,
highlighting the role of anthocyanins in pigmentation and astringency.

An LSPR biosensor based on hydrogel-coated silica core-gold nanoshells was proposed
by Culver et al. for the detection of protein biomarkers of chronic dry eyes, such as
lactoferrin and lysozyme [88]. Poly(N-isopropylacrylamide-co-methacrylic acid) hydrogel
acted as molecular recognition units for the target proteins. Lactoferrin and lysozyme
exhibit a high isoelectric point, so electrostatic interaction with the negatively charged units
in the hydrogel and the positively charged proteins occurred. This interaction provoked a
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red shift in the LSPR wavelength, increasing alongside the increase of protein concentration.
Figure 10 depicts a scheme of the sensing mechanism. The developed biosensor is promising
for screening both protein biomarkers of chronic dry eyes.
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MIP-based LSPR gas sensors were also developed by the group of Prof. Hayashi [89,90].
MIP-coated gold nanoparticles were applied for LSPR sensing of α-pinene vapor [89].

α-pinene is a monoterpene that can be emitted by paper and pulp industries and fragrance
manufacturers. Its reaction in the atmosphere produces particulates that form a blue haze
and reduce visibility. Moreover, free radicals are formed which are responsible for the
depletion of the ozone layer. α-pinene vapor becomes a human nuisance due to its intense
odor [91–94]. Therefore, its detection is very important. The sensor developed in [89]
was obtained by covering gold nanoparticles with a molecularly imprinted polymer film
prepared with α-pinene as the template, methacrylic acid as the functional monomer, and
ethylene glycol dimethyl acrylate as the cross-linker. A red shift of the nanoparticles’
plasmon absorbance peak occurred thanks to the MIP’s coating, proportional to α-pinene
vapor concentration. LSPR response was verified to be reproducible, reversible, and rapid.

The same authors also proposed a nanocomposite-imprinted LSPR sensor for volatile
cis-jasmone in plants. Detecting this volatile compound allows for monitoring plants’
growth pressure, which is especially helpful in sensing attacks by herbivores. The sensor
was prepared by spin-coating titanium molecularly imprinted sol-gel onto gold nanoislands,
as shown in Figure 11.

The gas molecules were detected by monitoring the variations in absorption spectra of
the MIP-modified gold nanoislands due to the refractive index variation, according to the
LSPR phenomenon. The detection limit obtained was 3.5 ppm. The good performances of
the sensor were promising for its application to determine cis-jasmone in agriculture.
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Chegel et al. proposed MIP-based LSPR nanochips for explosives analogs detection
in vapor and liquid phases [95]. The approach focused on the development of nanochips
consisting of a random array of gold nanoislands immobilized on glass slides. For obtaining
the MIP coating, the gold nanochip surface was first functionalized with a monolayer of
3-mercaptopropyl(diethyl)carbamodithioate as an initiator of UV polymerization. Then,
the UV-induced polymerization was performed using an acrylamide functional monomers
mixture and the explosive analog 4-nitrophenol as a template. 4-nitrophenol was employed
since its similar structure to that of trinitrotoluene (TNT) explosive. A detection limit of
1 pM in the aqueous phase and 0.1 ppm in the gaseous state was achieved. The nanochip
demonstrated some degree of selectivity, being sensitive to explosive analogs with struc-
tures similar to the template (1-nitronaphthalene, 5-nitroisoquinoline, and 4-nitrotoluene).
Optimization of the sensors has to be done, in particular, to improve the molecular im-
printing synthesis to increase the number of recognition cavities and tune the thickness of
the polymer to enhance selectivity and response time.

Recently, Wang et al. developed an LSPR biosensor based on a polydopamine MIP
for enrofloxacin residues detection in chicken meat [96]. The target analyte is a fluoro-
quinolone antibiotic of a broad antibacterial spectrum, classified as an emergent contam-
inant. Consequently, selective and sensitive methods for enrofloxacin determination are
crucial [96–99]. The polydopamine-based MIP film was prepared in an aqueous solution
by self-polymerization at room temperature with a mixture of dopamine as the functional
monomer and enrofloxacin as the template. To amplify LSPR signals, conjugates with a
protein (bovine serum albumin) were prepared and used in competing tests. The time
of analysis was about 20 min. The sensor responded to enrofloxacin in a detection range
from 25 to 1000 ng/mL with a detection limit equal to 61 ng/mL. The reusability was also
verified, and the sensor can be regenerated seven times without losing performance. The
MIP-modified chip was applied to detect the target analyte in spiked chicken meat samples
obtaining good recovery (between 80 and 95%). Thanks to the high sensitivity, stability,
and selectivity, the developed biosensor is promising for in situ analysis of enrofloxacin
residues in food and environmental samples.

Table 3 summarizes the nanosensors described in this paragraph.



Chemosensors 2023, 11, 144 16 of 22

Table 3. Summary of the MIP-coated nanoparticles-based LSPR sensors described in Section 2.3.

Analyte MIP Composition Polymerization
Method Nanoobjects LOD Dynamic Range Cross-Selectivity Ref.

Proteins TMPS-APTMS 1 Sol-Gel Au nanorods 0.32 µg/mL 0.25 nM–16 µM Hemoglobin, BSA 6 [85]
Aromatic
proteins TMPS-APTMS-TMPhs 2 Shell Sol-Gel Au nanorods 0.5 µg/mL 0.9–1.5 nM HAS 7, BSA 6 [86]

Polyphenols TPCA-MAA-EGDMA-MA 3 Surface
polymerization Au nanodisks 1 µM 1–100 µM nd [87]

Lactoferrin
Lysozyme PNM 4 Hydrogel Silica core-Au

nanoshells 32 µg/mL nd nd [88]

α-pinene vapor MAA-EGDMA 5 Bulk
polymerization

Gold
nanoparticles

glass
0.8 ppm 3.8–46.4 ppm nd [89]

Explosives Acrylamide mixture Surface
polymerization

Gold
nanoislands

1 pM water
0.1 ppm vapor 1 pM–100 µM nd [95]

Enrofloxacin Polydopamine Self bulk
polymerization

Gold
nanoparticles

chip
61 ng/mL 0–100 ng/mL DANO 8, TETR 9,

PHTH 10 [96]

1 Trimethoxypropylsilane, (3-aminopropyl)trimethoxysilane, 2 Trimethoxypropylsilane, (3-aminopropyl)
trimethoxysilane, Trimethoxyphenylsilane, 3 Thiophenecarboxylic acid, Methacrylic acid, Ethylene glycol
dimethacrylate, Methyl acrylate, 4 poly(N-isopropylacrylamide-co-methacrylic acid), 5 Methacrylic acid, Ethy-
lene glycol dimethacrylate, 6 Bovine serum albumin, 7 Human serum albumin, 8 Danofloxacin, 9 Tetracycline,
10 Phthalic acid.

The localized plasmon of metal nanoparticles, particularly those of gold and silver,
were extensively used to amplify SPR signals. The coupling of the nanoparticles’ localized
plasmon with the surface plasmon wave affects the plasmon energy and, consequently, the
enhancement of the SPR shifts occurs [100].

For example, Frasconi et al. [101] proposed an SPR sensor for antibiotics obtained by
synthesizing gold nanoparticles modified with a capping monolayer of the electropolymer-
izable thioaniline units and phenylboronic acid ligands. After electropolymerization on the
SPR gold surface of the functionalized nanoparticles in the presence of the target antibiotic
as the template, molecularly-imprinted recognition sites were obtained. The obtained
sensor was applied to antibiotics detection in milk samples with good performances in
terms of low detection limit (200 fM), high selectivity, and sensitivity.

The same approach was applied to develop SPR sensors for the selective detection
of amino acids, in particular for a chiroselective determination of glutamic acid [102]. By
co-functionalizing the thioanline-modified gold nanoparticles with cysteine units, elec-
tropolymerizable AuNPs able to bind amino acids through complementary zwitterionic
interactions were produced, enabling the synthesis of imprinted materials for different
amino acids.

Additionally, an analogous procedure was employed for developing SPR sensors for
enantioselective detection of mono- and disaccharides [103].

An AuNPs-decorated MIP–based SPR sensor to detect Aflatoxin M1 in milk samples
was recently proposed [104,105]. The AuNPs were functionalized with MIP nanofilm and
linked to the gold surface of the SPR chip previously coated with allyl mercaptan. For the
MIP synthesis, N−methacryloyl−l−phenylalanine was selected as a functional monomer,
ethylene glycol dimethacrylate as a cross-linker, and Aflatoxin M1 as the template. A
detection limit of 0.4 pg/mL and a good linear range (between 0.0003 ng/mL and 20.0
ng/mL) was achieved, demonstrating the promising performance of the sensor.

Selective and sensitive detection of the neurotransmitter dopamine in aqueous solu-
tions and biological samples was obtained by MIP-functionalized AuNPs on the surface of
an SPR sensor [106]. N-Methacryloyl-(L)-cysteine methyl ester and N-methacryloyl-(L)-
phenylalanine methyl ester were employed as functional monomers, and 2-hydroxyethyl
methacrylate and ethyleneglycol dimethacrylate were the cross-linkers. This SRR biosensor
could be a potential alternative to existing methods for dopamine determination thanks
to the ease and cost of preparation, low solvent consumption, small sample amount, and
rapid analysis time.

Table 4 summarizes the performances of the over-cited AuNPs-decorated MIP–based
SPR sensors.
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Table 4. Summary of the AuNPs-decorated MIP–based SPR sensors described in Section 2.3.

Analyte MIP Composition Platform Dynamic Range Cross
Sensitivity LOD Ref.

Noemycin, Kanamycin,
Streptomycin, Enrofloxacin Thioaniline SPR chip 2 × 10−6–20 nM nd 200 fM [101]

Amino acids Thioaniline-cysteine SPR chip 0.002–4 µM nd 2 nM [102]
Mono-, disaccharides Boronic acid SPR chip 10−6–200 nM nd 40 ppb [103]

Aflatoxin M1 N−methacryloyl−l−phenylalanine SPR chip 0.0003–20 ng/mL Aflatoxin B1, citrinin,
ochratoxin A 0.4 pg/mL [104,105]

Dopamine
N-Methacryloyl-(L)-cysteine methyl

ester, N-methacryloyl-(L)-phenylalanine
methyl ester

SPR chip 0.01–0.075 ppb
0.15–0.5 ppb

(±)-epinephrine
hydrochloride,

L-norepinephrine
hydrochloride

0.091 ppb [106]

2.4. MIP-Based SPR Imaging Sensors

MIP-based SPR imaging sensors employ a surface-sensitive optical technique to detect
two-dimensional spatial phase variation due to the sorption of biomolecules on a sensing
surface obtained by highly-selective MIPs films [107]. SPR imaging permits multiple
analyte detection thanks to the multiple MIP-film sensing spots on the SPR chip.

In 2006, Lee et al. proposed a microfluidic chip integrated with an array of MIP films
for SPR imaging of specific bioanalytes [107]. The microfluidic chip was fabricated using
micro-electro-mechanical-system technology and comprised of micropumps/microvalves,
microchannels, and a micromachine-based temperature control system. The MIP films
were prepared using methacrylic acid as the functional monomer, divinylbenzene as a
cross-linker, and progesterone, cholesterol, and testosterone as templates. Pre-polymeric
mixtures were spin-coated on the SPR gold surface and UV polymerization was carried
out. The developed MIP-based SPR microfluidic chip could be promising for nano-sensing
applications and for detecting biomolecules at a low molecular weight.

Lautner et al. presented micropatterned surface-imprinted polymers for protein
recognition obtained by photolithographic technique [108]. Avidin-imprinted poly(3,4-
ethylenedioxythiophene)/poly(styrenesulfonate) conducting polymer microbands were
prepared directly on the SPR chip surface. The interaction of the micropatterns MIPs’ cavi-
ties with the protein was determined straightforwardly with SPR imaging with sensitivity
comparable to or higher than fluorescence imaging.

Microelectrospotting for electrodeposition of MIP microarrays on the gold surface of SPR
imaging chips was proposed by Bosserdt et al. [109] for protein analysis. The spotting pin
surrounded the monomer-template (protein) mixture that, after contact with the gold surface,
was in-situ electropolymerized forming spots of about 500 µm diameter. As a proof-of-concept
of the procedure, scopoletin was employed as the monomer and ferritin as the template. It
was demonstrated that microelectrospotting of MIPs combined with SPR imaging could be a
versatile platform for label-free protein recognition and analytical determination.

Luo et al. proposed an SPR imaging chip with a MIP array fabricated through step-
by-step polymerization using a photomask [110] for multiplex antibiotics detection. An
SPR analysis of two different antibiotics (ciprofloxacin and azithromycin) was performed,
obtaining a specific cross-reactive response pattern to ciprofloxacin and azithromycin,
demonstrating the feasibility of the employed technology for multiplex analyte detection.

Table 5 summarizes the figures of merits of the above-described sensors.

Table 5. Summary of the MIP-based SPR imaging (SPRi) sensors described in Section 2.4.

Analyte MIP Composition Platform Dynamic Range Cross Sensitivity LOD Ref.

Progesterone,
cholesterol, testosterone Methacrylic acid SPRi chip nd nd 0.1 µM [107]

Proteins poly(3,4-ethylenedioxythiophene)/
poly(styrenesulfonate) SPRi chip 8 × 10−4–0.5 mg/mL Streptavidin, neutravidin,

and extravidin 125 nM [108]

Proteins Scopoletin SPRi chip nd nd nd [109]
Enrofloxacin
Sulfapyridine

Chloramphenicol
Itaconic acid SPRi chip 0.15–20 µg/L

Ciprofloxacin, ofloxacin,
azithromycin, dopamine,

penicillin

0.3 µg/L
0.29 µg/L
0.26 µg/L

[110]
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3. Conclusions

The MIP-based plasmonic sensors discussed in the present review highlight the de-
mand for devices for high sample throughput analysis avoiding time-consuming sample
preparation techniques and bulky, expensive methods.

In recent years, the development of MIP-based plasmonic chemosensors and biosen-
sors for a wide range of applications has significantly increased. The main advantages of
MIP-based plasmonic platforms include very low detection limits, high sensitivity and
selectivity, rapid responses, and low-cost instrumentations.

However, some drawbacks must be solved, like enhancement of reproducibility, sensi-
tivity improvement, and the expansion MIP-based plasmonic sensors to a wide range of
sectors. Improving reproducibility is essential for the enhancement of the sensors’ perfor-
mance. On the other end, effort must be committed to overcoming some MIPs’ weaknesses,
like the irregular shape of the polymer, heterogeneous bead sizes, and unspecific cavities.

Unfortunately, to date, MIP-based sensors are studied and developed only at the
academic level and their applications remain at the proof-of-concept stage.

Given the advantages of these sensors, such as the high selectivity and sensitivity,
potential for miniaturization, and quick responses, practical applications in different fields
should be assumed.
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