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Abstract: In coastal water monitoring, abrupt pH changes might indicate different pollution sources.
Existing sensors for pH monitoring in coastal waters at low cost are mainly based on a glass membrane
and a reference electrode. Virtual sensors are elements capable of measuring certain parameters based
on data from other parameters or variables. The aim of this paper is to propose the use of a virtual
pH sensor based on measuring different physical effects of H+ on the electromagnetic field generated
by an inductor. Double inductors based on two solenoids of 40 and 80 spires are used as sensing
elements. Samples with pH from 4 to 11 are used, and the effect of temperature is evaluated using
samples from 10 to 40 ◦C. The induced voltage and the delay of the signal are measured for powering
frequencies from 100 to 500 kHz. These data of delay, induced voltage, frequency, and temperature
are included in a probabilistic neural network to classify these data according to the pH. The results
indicate low accuracy for samples with a pH of 11. A second analysis, excluding these data, offered
correctly classified cases of 88.9%. The system can achieve considerable high accuracy (87.5%) using
data gathered at a single frequency, from 246 to 248 kHz. The predicted versus observed data is
correlated with a linear model characterized by an R2 of 0.69, which is similar to the ones observed in
other virtual sensors.

Keywords: soft sensor; physical sensor; inductor; coastal water; seawater; acidification; water
pollution; ocean

1. Introduction

Water quality monitoring is vital for many activities, such as agriculture, industry,
and environmental monitoring. According to [1], the chemical parameter most frequently
measured worldwide is the pH value. The different purposes and scenarios suppose
different requirements for pH sensors. While in most industries, high precision and accu-
racy are needed to control industrial processes, which involve chemical [2] or biochemical
reactions [3], in other cases, the robustness and low cost of the sensors are more impor-
tant. There is a vast variability of applications in which pH is measured, such as for
cement pastes [4,5], wastewater [6,7], food quality [8,9], food packaging [10,11], agriculture
soils [12,13], agriculture irrigation [14,15], aquaculture [16,17], and environmental moni-
toring [18,19] among others. The required precision for pH monitoring in different areas
differs. While extremely fine equipment is needed for some applications, for example,
in medicine or industrial processes, other applications might not require high precision.
According to [20], the desired precision of a pH sensor is ±0.2 units of pH, but it could be
acceptable with ±0.6 units, and it is considered a poor precision for ±0.8 units. Moreover,
the sensors’ precision might differ along their dynamic range, with a maximum sensitivity
of around 8 for marine and 6 for bioprocesses monitoring [21]. Thus, there is a massive
variability of requirements for pH sensors. In the case of marine monitoring, depending
on the purpose, the requirements might differ, while for the acidification process linked
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to climate change, accuracy might be 0.01 units; for abnormal situations, the detection
precision of 1 unit or 0.5 units might be sufficient.

Deploying the sensors underwater is a task that requires advances in isolation, adapt-
ing the electronic circuits to power the sensor and receive its signal, and adding other
elements, such as the node and other sensors. Due to the effect of the pressure of water on
the sensor, many studies focused on using different materials, such as hydrogel, have been
carried out [22]. Furthermore, the use of robotic systems to monitor underwater parameters
has increased [23]. Finally, after the development of the devices, it is necessary to establish
a network of underwater wireless sensors that allows the transmission and collection of
environmental monitoring data [24].

This paper focuses on the pH monitoring of water for coastal zone monitoring to detect
an abrupt abnormal situation in seawater caused by human activities. These might include
illegal dumps in irrigation channels and runoff of agricultural activities [25], industrial
accidental or illegal discharges in sewage grids or rivers [25], malfunctioning of wastewater
treatment plants and emissaries [25,26], incorrect or uncontrolled operation of aquaculture
facilities [27], dragging in ports [25–27], or illegal or accidental dumps from ships [26,27].
For these cases in which continuous and nearly real-time monitoring is required, the use of
a pH sensor is the sole option. Physical sensors are recommended for sensors placed in
the sea and around aquaculture facilities [28]. The use of physical sensors supposes the
use of no reagents, membranes, or chemical or biochemical elements in the sensor. The
benefits of physical sensors are mainly their robustness and low maintenance requirements,
which allow long-term and real-time monitoring in remote areas. In order to create a dense
monitoring network, it is necessary to ensure a low cost of devices to avoid the economic
barriers to effective environmental monitoring.

The use of glass membrane characterizes the following commercial probes: Aqua
TROLL 600 Multiparameter Sonde (from InSitu, Fort Collins, CO, USA) [29], HI-12303
(from Hanna Instruments, Woonsocket, RI, USA) [30], MPS-D8/Qualilog8 (from SEBA
Hydrometrie, Kaufbeuren, Germany) [31], Combination pH/ORP Sensors (from HACH,
Loveland, CO, USA) [32], SMR04 series pH Analyzer (from AQUAS, Taipei, Taiwan) [33],
and Pro Series 1001 pH Sensor (from YSI, Yellow Springs, OH, USA) [34]. The low robust-
ness of these sensors is not the most suitable for harsh environments such as coastal or
polluted waters. The glass electrode needs to be cleaned regularly, and the sensor needs to
be recalibrated. Considering biofouling’s high and fast effect in natural water bodies, the
glass electrodes’ cleaning needs might be problematic for long-term monitoring.

As far as the authors are concerned, no commercial probes are based on physical pH
measurements in natural waters. Even though there are alternatives to the glass membrane
sensors, such as the ones based on Optical Sensing and Imaging of pH Values [1] or the
Metal oxides-based electrochemical pH sensors [35], their use is not adapted for seawater
quality monitoring. The most common physical methods for water quality monitoring are
the optical, acoustic, and electromagnetic effects. Considering that the pH is measured as
the amount of H+ present in water and the fact that H+ are colorless ions with a positive
charge, the electromagnetic method is preferred. The inductor, also known as an induction
coil, can be used in a variety of applications, including electrical motors, generators,
transformers, and inductors in electronic circuits. The coils used for the aforementioned
purposes have ferromagnetic cores. Nonetheless, coreless copper coils can be used as
sensors [36,37]. The use of inductive coils as physical sensors have been presented in the
literature mainly for conductivity measurement [38–40] based on the induced Peak to Peak
Voltage (Vpp) and the frequency.

In recent years, the concept of virtual sensors or soft sensors has appeared. The virtual
sensors are sensing elements that are capable of measuring specific parameters based on the
use of data measured from other parameters or variables as input variables for an Artificial
intelligence (AI) tool, which operates and provides the value of the seek variable as the
output [20,41]. This type of sensor is extremely useful when the required sensors for the
variable monitoring are costly, cannot be adapted into a Wireless Sensor Network (WSN),
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or have too high maintenance requirements. This is the case for pH monitoring in seawater.
Some examples of virtual sensors can be found for many chemical parameters in water,
such as calcium [42], oxygen content [43], nitrogen and phosphorus [44], and phosphorus
and chemical oxygen demand [45].

The aim of this paper is to propose the use of a virtual pH sensor based on measuring
different physical effects of H+ on the electromagnetic field generated by an inductor. The
induced coils used in this paper are based on the ones presented in [38], composed of two
solenoids with 40 and 80 spires of enameled copper of 0.4 mm with no core. In this case, the
delay is measured as an additional physical variable of the electromagnetic signal. Water
calibration samples with six different pHs, from 4 to 11, are prepared in the laboratory
to test the copper coil. The samples were measured at different temperatures to evaluate
and compensate, if necessary, for the effect of temperature on the measurement. Vpp and
delay in the induced coil were measured using an oscilloscope. A generator was used to
power the powered coil at 3.3 V and frequencies from 100 to 500 kHz. The frequencies were
selected according to the results of [38]. After data gathering, data are statistically analyzed,
and AI is used to classify these data according to the water pH, similar to virtual sensors.
The objectives, and the main novelties of the paper, are the following:

• Test a virtual pH sensor with low maintenance and low cost in laboratory conditions
for future use in water quality monitoring in natural water bodies.

• Evaluate if measuring the Vpp and delay of a generated magnetic field of a water core
coil can be used as input data for the virtual pH sensor.

• Identify the most suitable frequency for the inductor operation.
• Assess any potential effect of temperature in the virtual sensor to determine whether

temperature correction is necessary.

2. Materials and Methods
2.1. Laboratory Equipment

The laboratory equipment used to carry out the study is commercial laboratory equip-
ment. In this case, a commercial pH meter (HI98129) has been used to check the pH of the
samples. The accuracy of this is ±0.05 pH [46].

A magnetic stirrer (RSLab-11c) was used to homogenize the solutions. In addition, this
device allows the maintenance of the temperature of the sample. Regarding the temperature
variation of the samples, a laboratory water bath was used to heat and cool the samples. The
samples’ temperature was measured using a digital thermometer (VENTIX ST-9263A). The
accuracy is ±1 ◦C [47]. The samples were prepared in 1000 mL Erlenmeyer and decanted
into 600 mL beakers. This has allowed the coil to be introduced into the sample.

A power supply has been used to feed the coil used, and an oscilloscope allows
visualizing of the electrical signals and changes in the different media.

2.2. Reagents

The reagents used were 37% hydrochloric acid to establish the values of the acid pH
scale. For the basic samples on the pH scale, 0.1 mol/L sodium hydroxide was used.

2.3. Coil Description

In order to develop the proposed device, it is used 2 coils of different sizes coiled over
a PVC pipe and introduced into the water. The diameter of the PVC tube is 2.5 cm.

A coil, also known as an inductor, is an electronic device able to store energy in a
magnetic field when an electrical current flows through it. The functioning of two coils can
be understood by examining the concept of mutual inductance. As Parra et al. shown [38],
the principle of operation of this sensor is based on the concept of mutual inductance
between a powered coil (Lpower) and an induced coil (Linduced). In this case, the sensor
has two coils with lengths Hpowered and Hinduced and a number of spires of Npowered and
Ninduced.with a given section (S). Additionally, the coils lack a ferromagnetic core. Instead
of that, the internal part of the coils is occupied by water with concentrations of dissolved
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salts with a relative permeability µr_water. Equations (1) and (2) show the mathematical
expression of the inductance of both coils.

Lpowered(H) = µr
Npowered

2·S
Hpowered

(1)

Linduced(H) = µr
Ninduced

2·S
Hinduced

(2)

On the other hand, the mutual inductance between two coils is determined by the
number of turns in each coil, the size and shape of the coils, and the distance between
the coils. When the current in the first coil changes, it creates an electromotive force and
opposes the current change. The mutual inductance between two coils can be increased by
increasing the number of turns in the coils, bringing the coils closer together, or making
the coils larger. The mutual inductance Lm between two coils can be calculated using the
following expression:

Lm(H) = k
Npowered·Ninduced

d
, (3)

where k is a constant depending on the type of core used, and d is the distance between the
coils. Mutual inductance can also be positive or negative, depending on the orientation
of the coils. If the coils are oriented in such a way that the magnetic flux generated by
one coil passes through the other coil in the same direction, the mutual inductance is said
to be positive. On the other hand, if the magnetic flux passes through the other coil in
the opposite direction, the mutual inductance is said to be negative. Table 1 shows the
measures of the coils, while Figure 1a shows a schematic of the disposition of both coils
and their features. Finally, the distance between coils is 2 mm. The physical aspect of the
coil during the measurements can be seen in Figure 1b. These coils have been based on
previous studies. These studies show that the number of spires and the distance between
the coils provide the most suitable values [38].

Table 1. Description of coils composing the sensor.

Coil Section (mm) Length (mm) Wire Section (mm) N◦. Spires Material

Powered 25 32 0.4 80 Enameled copper wire
Induced 25 16 0.4 40 Enameled copper wire
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2.4. Samples Preparation

Different samples of different pH values (4, 5, 7, 8, 9, and 11) were prepared with
distilled water. Buffer samples with pH values 4, 7, and 9 were used. A sachet of the buffer
compound was added to 250 mL of distilled water to prepare these samples. After carrying
out the dissolution, it was brought to a final volume of 500 mL. This volume allows the
coil to be fully immersed. The rest of the pH values were adjusted using reagents such as
hydrochloric acid and sodium hydroxide. To obtain the pH samples of 5, 8, and 11, the
pH of the distilled water was adjusted using the acid and the base, respectively, until the
desired pH was obtained.

Regarding the temperature, four different values were established (10, 20, 25, and
40 ◦C). The choice of these temperatures is due to the need to establish two extreme
temperature values: a low temperature of 10 ◦C and a high temperature of 40 ◦C. The
temperature of 20 ◦C is the ambient temperature in situ in the laboratory. Finally, the
standard temperature, widely used in different fields for the development of tests, 25 ◦C, is
tested too.

The beakers were sealed using Parafilm. This fact allows us to minimize the exchange
of gases with the atmosphere. Regarding the control of temperature and pH, they were
taken at the beginning, and the end of each sampling, and the average pH was calculated.
Since measures were conducted over a short period of time, there were no big differences
in temperature. These data-gathering times were below 5 min.

Table 2 shows the exact pH values for each solution depending on temperature.
However, the integer values have been set due to the sensitivity of the new sensor.

Table 2. pH measures according to temperature.

Integer Value of pH for
the

Analyses

pH of Samples for Each Temperature

10 20 25 40

4 4.1 4.0 4.18 4.24
5 5.3 5.2 5.1 5.3
7 6.9 6.9 6.96 7.02
8 7.98 8.03 7.9 8.0
9 8.98 8.73 8.8 8.92

11 10.85 10.98 11.0 10.94

Three different water samples were used to verify the proposed sensor: distilled water,
water and irrigation channel, and seawater. A pH ramp was conducted with all water
samples, including pH values between 7 and 9. The pH of the water samples was modified
by adding reagents in the natural water and by CO2 exchange with the atmosphere for the
distillate sample. The pH values were taken as integer values for verification.

2.5. Coil Powering

A function generator to create a sinus wave of 5 Vpp at different frequencies has been
used to power the system and measure the results. This signal is in charge of inducing a
current in the second coil. Using a digital oscilloscope, it is possible to measure the induced
signal and the delay. Figure 2 shows the connection diagram of the coils, the function
generator, and the oscilloscope.
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2.6. Measuring Procedure

A set of frequencies to be tested for measuring the samples has been defined. First,
the frequency at which the induced voltage is maximum has been identified; this is the
Peak Frequency (PK). Based on previous studies [38], the response of the sensors is the
maximum close to the PK. Thus, the tests started from 100 kHz to 500 kHz, measuring the
induced voltage every 10 kHz. Nonetheless, these data were gathered every 1 kHz close to
the peak frequency.

2.7. Data Processing and Analyses

The steps followed for data processing are defined in this subsection. First, X-YY plots
were carried out to represent the Vpp and Frequency data of the tested coil for different
pH and temperature values. The same graphs were created to identify the relationship
between delay and frequency with pH and temperature. This is conducted to visualize
these data and to check if this graphic suggests a possible correlation between Vpp or delay
and pH value.

After visualizing these data from the X–Y plots, a two-way ANalysis Of VAriance
(ANOVA) is selected to evaluate the influence of pH, frequency, and temperature on the
obtained values of Vpp and the delay. Then, a multivariate analysis is performed to assess
the correlation between the factors above (temperature, frequency, and pH) with delay
and Vpp. The last step is to include the gathered data into a Probabilistic Neural Network
(PNN) to classify these data according to the pH based on different input variables. In this
step, the impact of temperature, delay, frequency, and Vpp on the accuracy of the PNN is
considered. With these results, it will be possible to evaluate if the tested methodology can
be used in the laboratory to classify the pH with all obtained data.

Nonetheless, to be used as a sensor, some adjustments are needed. First, it is necessary
to filter these data according to the most common pH values in natural water bodies. In
addition, the input information about the used frequencies will also be reduced, including
only the frequencies for the best working range. In real applications, changing the frequency
of the powering signal might be challenging. According to previous related work, the
best working range is close to the PK. Thus, the input information in the system has been
limited to frequencies close to the PK for evaluating the performance of the classification.

The last step will be identifying the sensor’s best Working Frequency (WF). This is
necessary since the electronic configuration of the probe will allow its operation only at a
certain frequency. To compare the performance of classification for the different frequencies,
the percentage of correctly classified cases with a PNN is used to define the WK.

3. Results
3.1. General Overview of Results

In the following graph (see Figure 3), the frequency in kilohertz (kHz) is plotted
against the peak-peak voltage (Vpp) for different pH measurements. Note the maximum
voltage is obtained when the frequency is around 220 kHz. Therefore, it is established that
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this is the working frequency for the coil used, also known as the working frequency zone.
On the other hand, regarding the pH, it is observed that pH 9 and 11 present a higher peak
than the rest of the values. The Vpp data indicated that at pH 8, the induced voltage is
the lowest among tested solutions. According to the obtained data, it seems that there is a
relationship between the pH value and Vpp since the values appear grouped. However,
the obtained Vpp for the tested pH values is not listed in increasing or decreasing order.
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In Figure 3, the effect of temperature is presented. As in Figure 4, the highest voltage
peak that coincides with the working frequency is observed. It is observed that there is no
relationship between temperature and voltage since the temperatures are not grouped. It is
observed that higher voltage occurs for the temperature of 40 ◦C.
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Figure 4. Vpp for different frequencies according to the temperature value. Data include the
repetitions performed for the different pH values.

The following graph (see Figure 5) shows the frequency versus the delay in millisec-
onds and the different pH values. No apparent differences are observed between the values
obtained. However, it is observed that the retardation for pH values 5 and 9 is farther away.
In Figure 6, the effect of temperature is seen. The effect of temperature on the retardation
for the different pH values cannot be observed in this graph.
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Figure 6. Delay for different frequencies according to the pH value. Data include the repetitions
performed for the different pH values.

3.2. ANOVAs and PNN with All the Data

In this subsection, the results of the two-way ANOVA for Vpp and delay are analyzed.
Then, the PNN output is presented and analyzed.

First, the results of the two two-way ANOVA for Vpp and Duncan’s Multiple Range
Test for Temperature and pH are presented in Tables 3–5. Table 3 includes the Summation
of Squares (SS), the Degrees of freedom (Df), the Mean Square (MS), the F-value (F), and the
p-value. The results summarized in Table 3 indicate that all factors significantly affect the
variability of the Vpp according to the p-values, which are lower than 0.005. Tables 4 and 5
include the number of cases and the mean Vpp value. In addition, the groups generated
according to the mean values are indicated by superscript letters. The groups were defined
according to the value for Duncan’s Multiple Range Test. The tests were repeated twice,
one for each factor, the pH or the temperature. The results in Table 4 pointed out that there
are three groups for the temperatures, temperature 25 ◦C and temperature 20 ◦C in the
same group. Meanwhile, Table 5 shows the results of grouping Vpp data according to the
pH values. In this case, four groups are found, and pH values of 8 and four are included in
the same group.
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Table 3. Two-Way ANOVA results for Vpp with all gathered data.

Source of Variation SS (/107) Df MS(/105) F p-Value 1

Temperature 1.31835 3 43.945 8.38 <0.0000
pH 40.3099 5 806.197 153.71 <0.0000

Frequency 259.894 58 448.093 85.43 <0.0000
Error 64.5657 1231 5.24498
Total 368.557 1297

1 Results for 95% of confidence.

Table 4. Duncan’s Multiple Range Test for Temperature of Two-Way ANOVA results for Vpp with all
gathered data.

Temperature (◦C) Cases Mean Vpp Value

10 354 1837.21 a

20 354 1956.36 b

25 354 1965.19 b

40 236 2152.07 c

a Different letters indicate different groups.

Table 5. Duncan’s Multiple Range Test for pH of Two-Way ANOVA results for Vpp with all gathered data.

pH Cases Mean Vpp Value

11 177 1563.97 a

8 177 1636.48 ab

5 236 1676.77 ab

4 236 1771.17 b

7 236 2062.17 c

9 236 3155.67 d

a Different letters indicate different groups.

The results of the two two-way ANOVA for the delay and Duncan’s Multiple Range
Test for Temperature and pH are presented in Tables 6–8. According to the p-values of
Table 6, all factors significantly affect the delay’s variability. The results in Table 7 indicate
that there are three groups for the temperatures. Nonetheless, all temperatures are classified
differently. Regarding Table 8, the second Duncan’s Multiple Range Test results pointed out
that there are only three groups for the pH. The pH data equal to 5, 8, and 11 are classified
in the same group.

Table 6. Two-Way ANOVA results for the delay with all gathered data.

Source of Variation SS SS (/107) Df MS SS (/106) F p-Value 1

Temperature 2.2366 3 7.45532 6.02 0.0005
pH 14.2699 5 28.5398 23.06 <0.0000

Frequency 104.076 58 17.9442 14.50 <0.0000
Error 152.37 1231 1.23778
Total 274.215 1297

1 Results for 95% of confidence.

These initial results suggest that even though the two studied factors, temperature, and
pH, significantly affect both Vpp and delay, it might not be possible to classify the samples
using a single parameter (Vpp or delay). Thus, for the combination of both parameters and
the factors which can be easily measured with existing physical sensors, the temperature
is used as the input neurons in a PNN. The frequency is also added as an input neuron
since it affects the delay and Vpp. The first scheme for the first PNN tested can be seen
in Figure 7. In this case, all data are used for the classification; the PNN is trained with
jackknifing, which is 0.01797 and assumes an equal previous probability and equal cost of
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error for all groups. The confusion matrix, which summarises the results when all data are
used, can be seen in Table 9.

Table 7. Duncan’s Multiple Range Test for Temperature of Two-Way ANOVA results for the delay
with all gathered data.

Temperature (◦C) Cases Mean Vpp Value

10 354 140.984 a

25 354 269.954 ab

40 236 411.832 bc

20 354 473.888 c

a Different letters indicate different groups.

Table 8. Duncan’s Multiple Range Test for pH of Two-Way ANOVA results for the delay with all
gathered data.

pH Cases Mean Vpp Value

11 177 −0.560028 a

8 177 0.161441 a

5 236 82.464 a

9 236 304.29 b

7 236 778.511 c

4 236 780.122 c

a Different letters indicate different groups.
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Considering the experience in the past with similar PNN and data [48], the reduction
in input neurons is evaluated. Thus, the temperature and the frequency are deleted
individually and jointly in three new PNNs. The results of the PNN when temperature,
output voltage, and delay are used are shown in Table 10. It is possible to see that the
percentage of correctly classified data increases to 56.24%. In this case, the jackknifing
value is 0.0148. When the frequency, delay, and output voltage are the input neurons, the
percentage of correctly classified data reaches 73.57%. These data can be seen in Table 11,
and the jackknifing value is 0.133.
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Table 9. Classification results of PNN using all cases and temperature, frequency, Vpp, and delay as
input neurons.

Current pH Cases
Classified as pH

4 5 7 8 9 11

4 236 45.76%
(108) 0% 46.19% (109) 0.85% (2) 6.36%

(15)
0.85%

(2)

5 236 1.27%
(3) 43.22% (102) 0.85%

(2) 27.54% (65) 6.36%
(15)

20.76%
(49)

7 236 49.15%
(116) 0.42% (1) 44.07%

(104) 0.42% (1) 5.93%
(14) 0%

8 177 0.56%
(1)

23.16%
(41) 0% 6.21% (11) 2.82%

(5)
67.23%
(119)

9 236 8.47%
(20)

10.17%
(24)

9.75%
(23)

2.54%
(6)

68.64%
(162) 0.42% (1)

11 177 0.56%
(1)

22.03%
(39) 0% 66.10%

(117) 0% 11.30%
(20)

Total correctly classified 39.06%

Table 10. Classification results of PNN using all cases and temperature, Vpp, and delay as input neurons.

Current pH Cases
Classified as pH

4 5 7 8 9 11

4 236 62.29%
(147)

2.97%
(7)

30.93%
(73)

1.27%
(3)

1.69%
(4)

0.85%
(2)

5 236 2.54%
(6) 52.97% (125) 2.97%

(7) 14.83% (35) 6.78%
(16)

19.92%
(47)

7 236 27.12%
(64) 2.97% (7) 66.10%

(156) 1.27% (3) 2.12%
(5)

0.42%
(1)

8 177 2.26%
(4)

23.16%
(15) 0% 44.07% (78) 2.26%

(4)
42.94%

(76)

9 236 2.97%
(7)

8.05%
(19)

12.71%
(30)

6.78%
(16)

65.68%
(155)

3.81%
(9)

11 177 1.69%
(3)

12.99%
(23)

0.56%
(1)

66.10%
(77)

2.26%
(4)

38.98%
(69)

Total correctly classified 56.24%

Table 11. Classification results of PNN using all cases and frequency, Vpp, and delay as input neurons.

Current pH Cases
Classified as pH

4 5 7 8 9 11

4 236 82.63%
(195)

0.42%
(1)

16.10%
(38) 0% 0.42%

(1)
0.42%

(1)

5 236 0% 63.14% (149) 0.42%
(1) 13.56% (32) 6.78%

(16)
16.10%

(38)

7 236 36.44%
(86) 0% 61.02%

(144) 0% 2.12%
(5)

0.42%
(1)

8 177 0.56%
(1)

2.26%
(4) 0% 75.14% (133) 0.56%

(1)
21.47%

(38)

9 236 3.81%
(9)

2.12%
(5)

2.54%
(6)

0% 91.53%
(216) 0%

11 177 0.56%
(1)

5.65%
(10)

0.56%
(1)

26.55%
(47) 0% 66.67%

(118)
Total correctly classified 73.57%

Finally, if only delay and the output voltage are used, the percentage of correctly
classified data drops to 68.49%, see Table 12. The jackknifing value for that last case is
0.006. It is important to remark that in all cases, the samples with pH 11 and pH 8 are the
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ones with the higher percentage of incorrectly classified data. The differences in correctly
classified cases among the different evaluated input neurons indicate that including delay,
output voltage, and frequency is the one that offered the most accurate results. It can be
caused by the experimented difficulties in maintaining the temperature stable along the
measures. Thus, the temperature data case supposes a noise in the PNN.

Table 12. Classification results of PNN using all cases and Vpp and delay as input neurons.

Current pH Cases
Classified as pH

4 5 7 8 9 11

4 236 73.73%
(174)

3.81%
(9)

19.49%
(46) 0.42% (1) 1.27%

(3)
1.27%

(3)

5 236 1.27%
(12) 55.93% (132) 3.39%

(8) 10.17% (24) 8.90%
(21)

16.53%
(39)

7 236 24.15%
(57) 4.24% (10) 67.37%

(159) 0.42% (1) 2.12%
(5)

1.69%
(4)

8 177 1.13%
(2)

3.95%
(7)

0.56%
(1) 71.75% (127) 1.69%

(3)
20.90%

(37)

9 236 1.69%
(4)

8.05%
(19)

5.51%
(13)

3.81%
(9)

78.81%
(186)

2.12%
(5)

11 177 1.13%
(2)

12.43%
(22)

0.56%
(1)

22.03%
(39)

1.13%
(2)

62.71%
(111)

Total correctly classified 68.49%

3.3. General Overview of Results of the Selected Range

Figure 8 shows these obtained data for the selected range. In the selected range, these
obtained data are only those obtained in the area of the working frequency. In this case, the
Vpp values for each pH value in the frequency range are represented. It is observed that
the pH values appear grouped and that pH 9 is the one with the highest Vpp value. On the
other hand, pH 8 is the one that shows the lowest Vpp values.
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Figure 8. Vpp for the selected frequencies according to the pH value. Data include the repetitions
performed for the different temperatures.

In Figure 9, the effect of temperature is shown. It is observed that the temperature
values are grouped and that the temperatures 20 ◦C and 25 ◦C present a higher voltage for
a particular pH value.



Chemosensors 2023, 11, 215 13 of 23

Chemosensors 2023, 11, x FOR PEER REVIEW 13 of 23 
 

 

The PF varies along the tested pH values. This confirms the above information that there 
is no apparent linear regression between pH and obtained data. Thus, other types of ap-
proaches are used for further analyses. 

 
Figure 8. Vpp for the selected frequencies according to the pH value. Data include the repetitions 
performed for the different temperatures. 

 
Figure 9. Vpp for the selected frequencies according to the temperature value. Data include the 
repetitions performed for the different pH values. 

 
Figure 10. Delay for the selected frequencies according to the pH value. Data include the repetitions 
performed for the different temperatures. 

0

1

2

3

4

5

6

7

8

9

230 235 240 245 250

Vp
p 

(V
)

Frequency (kHz)

4 5 7 8 9 11

0

1

2

3

4

5

6

7

230 235 240 245 250

Vp
p 

(V
)

Frequency (kHz)

10 ºC 20 ºC 30 ºC 40 ºC

-6

-4

-2

0

2

4

6

230 235 240 245 250

De
la

y 
(µ

s)

Frequency (kHz)

4 5 7 8 9 11

Figure 9. Vpp for the selected frequencies according to the temperature value. Data include the
repetitions performed for the different pH values.

Figure 10 represents the selected frequency range against the delay for the different
pH values. It is observed that when the frequency values are higher and close to the
working frequency, the delay values go from positive to negative values. As in Figure 11,
the frequency is a function of the delay considering the temperature. No relationship with
temperature is observed in this graph.
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Figure 10. Delay for the selected frequencies according to the pH value. Data include the repetitions
performed for the different temperatures.
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Figure 11. Delay for the selected frequencies according to the temperature value. Data include the
repetitions performed for the different pH values.
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The Vpp data and delay obtained at the PF for the different pH values can be seen in
Figure 12. The PF has been selected according to the Vpp at a pH of 7; the PF is 242 kHz. The
PF varies along the tested pH values. This confirms the above information that there is no
apparent linear regression between pH and obtained data. Thus, other types of approaches
are used for further analyses.
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3.4. ANOVAs and ANN with Selected Data

This subsection analyses the results of the two-way ANOVA for Vpp and delays for
these selected data. Then, the PNN output is presented and analyzed for all selected data.
Finally, the evaluation of the possibility of a single-frequency use for the classification of
pH is detailed.

Initially, the two two-way ANOVA results for Vpp and Duncan’s Multiple Range
Test for temperature and pH are presented. These results can be seen in Tables 13–15.
Regarding data from Table 13 pointed out that the three factors have a significant effect on
the variability of the Vpp; all p-values are lower than 0.005. On the one hand, in Table 14,
three groups are found, and data from 20 and 40 ◦C are classified into the same group. On
the other hand, data from Table 15 indicate three groups, some merging data from different
pH levels.

Table 13. Two-Way ANOVA results for Vpp with selected data.

Source of
Variation SS (/107) Df MS (/106) F p-Value

Temperature 6.06042 3 20.2014 24.40 <0.0000
pH 22.9289 4 57.3222 69.23 <0.0000

Frequency 41.9108 20 20.9554 25.31 <0.0000
Error 25.3368 306 0.827999
Total 102.38 333

1 Results for 95% of confidence.

Table 14. Duncan’s Multiple Range Test for Temperature of Two-Way ANOVA results for Vpp with
selected data.

Temperature (◦C) Cases Mean Vpp Value

10 83 326.848 a

25 105 847.02 b

40 41 1287.07 c

20 105 1439.08 c

a Different letters indicate different groups.



Chemosensors 2023, 11, 215 15 of 23

Table 15. Duncan’s Multiple Range Test for pH of Two-Way ANOVA results for Vpp with selected
data.

pH Cases Mean Vpp Value

8 63 9.33551 a

5 63 266.996 ab

9 42 585.956 b

4 83 1968.77 c

7 83 2043.96 c

a Different letters indicate different groups.

To conclude the ANOVAs, the results of the two two-way ANOVA for the delay and
Duncan’s Multiple Range Test for Temperature and pH when selected data are used are
presented in Tables 16–18. According to Table 16, again, all factors significantly affect the
delay’s variability. Table 17 indicates that there are three groups for the temperatures. The
temperatures of 20 and 25 ◦C are classified in the same group. Finally, the results of Table 1
pointed out that there are five groups for the pH, one for each pH value.

Table 16. Two-Way ANOVA results for the delay with selected data.

Source of Variation SS (/107) Df MS (/105) F p-Value

Temperature 1.35745 3 45.2485 42.47 <0.0000
pH 33.4439 4 836.098 784.68 <0.0000

Frequency 6.34787 20 31.7393 29.79 <0.0000
Error 3.26051 306 1.06552
Total 48.6782 333

1 Results for 95% of confidence.

Table 17. Duncan’s Multiple Range Test for Temperature of Two-Way ANOVA results for the delay
with selected data.

Temperature (◦C) Cases Mean Vpp Value

10 83 3224.96 a

20 105 3576.92 b

25 105 3587.66 b

40 41 3923.76 c

a–c Different letters indicate different groups.

Table 18. Duncan’s Multiple Range Test for pH of Two-Way ANOVA results for the delay with
selected data.

pH Cases Mean Vpp Value

8 63 2514.51 a

5 63 2674.03 b

4 83 3095.34 c

7 83 3751.87 d

9 42 5855.87 e

a–e Different letters indicate different groups.

The results from these statistical analyses indicate that the classification of data ac-
cording to the two-way ANOVAs when data are filtered improved. A reduction in data
variability due to deleting one of the pH samples and focusing on the frequencies close
to the PF improved the results. The simplified data are now used as input for the PNN.
According to the results of the previous subsection, the comparison of correctly classified
cases for the different input information is presented in Table 19. Comparing the results
of Table 19 with the results of initial PNNs, Tables 8–11, it is possible to affirm that the
percentage of correctly classified cases has improved considerably. As in the other case, the
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accuracy improves when the temperature is excluded from input data (87.42% of correctly
classified cases compared with 85.63%). In this case, the maximum percentage of correctly
classified cases, 88.92%, is attained when only delay and output voltage are used.

Table 19. Correctly classified cases with PNN using different input information for the selected data.

pH Cases Correctly Classified
All Vpp, Delay, and Temperature Vpp, Delay, and Frequency Vpp and Delay

4 83 98.7952 96.3855 96.3855 95.1807
5 63 66.6667 69.8413 58.7302 66.6667
7 83 98.7952 95.1807 89.1566 87.9518
8 63 60.3175 65.0794 93.6508 96.8254
9 42 100.0 100.0 100.0 100.0

Total 334 85.63 85.63 87.42 88.92

Finally, to select the best WF, PNNs are calculated for each of the frequencies in the
PNN of Table 18. The results can be seen in Figure 13, which represents the correctly
classified cases for these data corresponding to each frequency in the x-axis. When all data
are used, 88.92% of cases are correctly classified. The best WF are 246, 247, and 248 kHz.
For those frequencies, the correctly classified cases are 87.5%. There is a reduction in less
than 1.5% of cases. Any of these frequencies is recommended for the pH monitoring sensor.
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Figure 13. Correctly classified cases with the PNN when a single frequency is used.

3.5. Verification with New Water Samples

The results for the new water samples are presented in terms of correctly classified
cases with the ANN model obtained at 274 kHz. When the obtained Vpp and delays for
water samples with diverse pH values of all water sources are included in the verification,
the percentage of correctly classified cases decrease to 33%. When only data about distilled
water, which pH varies due to the CO2 exchange with the atmosphere and which has a
similar composition to calibration samples, the percentage reaches 83%. In this case, the
errors were linked to the values which were a bit below 7. It might be caused because
this stage is when the pH varies faster due to the exchange of CO2 with the atmosphere,
which might impact the measurements. In natural and water samples, it might not be a
problem since natural water use is equilibrated with the atmosphere. This suggests that
more experiments are needed to ensure an acceptable percentage of classified cases with
different water sources.
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4. Discussion
4.1. General Findings

The utmost relevant results are the following:

• The use of Vpp and delay of the generated magnetic field of a water core coil used as
input data for the PNN can serve as a virtual pH sensor, attaining 88.9% of correctly
classified cases and 83% in the verification tests with new samples.

• The best WF for the inductor is 246, 247, and 248 kHz; any of these frequencies offer
the same percentage of correctly classified cases in the PNN.

• The differences between using a single frequency, see frequencies above, and using a
range of frequencies represent a decrease lower than 1.5% of the correctly classified
cases with the PNN.

• Even though, according to two-way ANOVA results, the temperature significantly
affects the variation of delay and Vpp, once data of both Vpp and delay are introduced
in the PNN, the results improve when the temperature is excluded from the input
neurons. The improvement of correctly classified cases when the temperature is
excluded represents 43% when all data are used and 2% when selected data are used.

This paper’s main novelty is identifying a copper coils-based virtual sensor for pH
monitoring, being the first pH virtual sensor for water samples. This covers an impor-
tant gap in the current literature since virtual sensors were applied for multiple chemical
parameters but not for pH so far. The impact of this virtual sensor for coastal water moni-
toring in locations in which probes are cleaned, calibration, and membrane replacement
will suppose better sensor networks for water quality. The low cost of these sensors and
their low maintenance needs will increase the available information about water quality,
helping the water managers to; (i) manage their valuable resources properly, (ii) classify the
environmental impacts suffered along the coastal line, and (iii) identify abnormal situations
in marine reserves using early warning systems.

As mentioned before, existing pH sensors are based on the use of chemical reactions of
the use of electrodes and membranes, such as the glass membrane. Several proposals have
appeared in recent years due to the requirements of pH monitoring in different areas and
the high maintenance requirements of the glass membrane pH sensors. Those proposals
are based on different chemical and photochemical reactions of H+ with the sensor. For
that purpose, a wide variety of chemical compounds are used; in Table 20, a summary of
some of those sensors is outlined. The aim of adding Table 20 is to compare the accuracy
of existing pH sensors, their calibration range, and the inclusion of temperatures in the
calibrations, among others, with the proposed sensor and calibration conducted in this
paper. All the included sensors are developed for liquid monitoring. Although all the
sensors are developed for liquid monitoring, some cannot be adapted or included in WSN
since they are for a single-use or the preparation conditions prevent their use for water
quality monitoring. These proposals for pH monitoring are based on the use of polymers
introduced in the samples and the posterior use of fluorescence measuring. Thus, these
proposals cannot be used in WSN since the continuous need for reagents (polymer and
others) is not compatible with the WSN [49–51]. Moreover, these reagents might be toxic
or harmful to aquatic life and the environment. Other examples are based on sol-gel
polymers, and their maintenance needs are incompatible with the water quality monitoring
in WSN [52,53].
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Table 20. Summary of recent pH sensors.

Operation
Principle

Possibility to
WSN

pH Range (N◦

of Tested pHs)
Temperature Range

(N◦ of Temperatures) Classification Accuracy Year Ref.

Polymer +
Flourescense No 2–11 (17) - Two regression models R2 = 0.99 2018 [49]

Polymer +
Flourescense No 3.8–8.7 (5) 9.85–69.85 Regression model R2 = 0.99 2019 [50]

Polymer +
Flourescense No 4–12 (9) - Regression model R2 = 0.99 2022 [51]

Polymer +
Flourescense No 9–13 (5) - Regression model R = 0.98 2019 [52]

Polymer +
Flourescense No 0.04–8.69 (16) - Regression model R2 = 0.99 2020 [53]

Polymer +
Refractive

index
Apparently yes 1–12 (5) 20–40 (5) Linear regression - 2018 [54]

Electrode +
Potentiometric Yes 6–9 (4) - Regression model R2 = 0.98 2019 [55]

Polymer +
Potentiometric Yes 6.09–8.92 (4) - - - 2022 [56]

Electrode +
Potentiometric Yes 4.3–9 (5) 25–45 (3) Regression model R2 = 0.99 2019 [57]

Electrode +
Potentiometric Yes 2–12 (6) - Regression model - 2020 [58]

ISFET Yes 2–10 (9) 23–53 (4) Regresion model R2 = 0.99 2021 [59]
Electromagnetic

field Yes 4–9 (5) 10–40 (4) PNN R2 = 0.69 2023 This work

There are other types of polymers that are not similar to the aforementioned ones.
The solutions presented in [54] are based on hydrogel-coated optical fiber surface plasmon
resonance. In this case, the polymer is immobilized with a thin silver film. Thus, according
to the structure of the sensor, it might be implemented in a WSN. Nonetheless, it will be
necessary to evaluate the performance of the sensor along with the time and the require-
ments in the light transmission measurement in the framework of a WSN for water quality
monitoring. Other pH-measuring solution sources are based on electrodes, such as [55–58].
Different types of elements are used for the creation of electrodes, such as graphite [55,56],
palladium [57], and even a combination of different elements [58]. These cases are easier
to adapt to its use in a WSN. These sensors can be used for a long time, and since their
response is a change in the potentiometric variable of the electrode, they can be easily
integrated into a sensor node. Finally, the most typical solutions for pH monitoring in WSN
are the Ion Sensitive Field-Effect Transistors (ISFET) [59]. The ISFET sensors have been
used in WSN in recent years as the best solution for pH measurement. Nonetheless, the
use of metallic elements, the miniaturized size of the sensing element, its dependence on
the temperature, and other aspects of this type of sensor make the ISFETs an incomplete
solution for some environments. The water turbidity and the presence of phytoplankton
and epiphytes make its operation difficult in natural aquatic environments.

Among the presented solutions in Table 20, very few have considered the effect of
temperature. The authors of [50,54,57,59] studied the effect of variations in temperature
on the pH measurement. Only in [49,59] the temperature compensation is necessary. The
obtained results suggest that the temperature explains part of the variability of delay and
Vpp, the parameters measured. Nevertheless, when both parameters are combined in the
PNN, the temperature is not necessary for the correct data classification.

Considering the pH range used for the calibration of the proposed sensor, 4 to 9, is
aligned with some of the used ranges in other publications, such as [50,55–57]. In addition,
these values cover the expected pH values in seawater samples, between 7 and 8, according
to [60]. In this work, lower pH values are included in order to cover the expected punctual
pH values due to acidification processes linked to pollution events from industries, which
might drop even to 3.6 [61] and the acidification of the oceans due to CO2 [62].
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The presented solutions for pH monitoring represent the existing efforts in the existing
literature. Even though many papers can be found in which a pH sensor is used for water
quality monitoring, very few show the design and calibration of the sensing element. Several
examples of pH monitoring solutions can be found in the following review [1,35,63–65]. Other
examples of pH monitoring based on imaging can be found in [66–68]. Nevertheless, these
methods are based on the specific characteristics of the studied area and the colored organic
matter, which is the main source of pH. However, these methods become useless for general
water monitoring.

Finally, regarding the classification approach and attained accuracy, the differences
in the classification of chemical sensors and the fact that the proposed sensor is a virtual
sensor prevent a fair comparison. Thus, no comparison is made with the sensors in Table 20.
The comparison of accuracy is conducted with other virtual sensors for other parameters
and alternative methods for pH monitoring. The R2 of these methods is much lower
than the ones reported in Table 20. Some examples of R2 values of regression models
of alternative ways of pH monitoring are 0.89 [67] and 0.69 [68]; in both cases, pH was
estimated according to the hyperspectral images of the water body. However, as mentioned
before, this method cannot be used for general water quality monitoring. Focusing on the
virtual sensors, the following R2 can be found for calcium from 0.94 [42], NO3 0.89 [69],
total reactive phosphorus 0.32 [69], total phosphorus 0.74 [69] and 0.71 [45], chemical
oxygen demand 0.70 [45]. The proposed virtual pH sensors have an R2 of 0.69. This value
is similar to other virtual sensors.

4.2. Limitations of Presented Results and Possible Future Solutions

The most relevant limitation of the proposed work is the relatively lower accuracy
compared with existing methods. The proposed sensor correctly classifies 88.9% of cases.
Testing coils will improve this relatively low accuracy with other configurations in future
work. In conductivity meters based on inductors, the coil configuration changes improve
accuracy. In addition, more calibration samples will be used to add more data for the PNN
and improve its accuracy.

Among other samples with different pH and different temperature levels, the effect
of additional parameters, such as salinity, turbidity, organic matter, and dissolved oxygen,
will be considered. Thus, the proposed sensor system will be able to evaluate the effect of
other parameters and the need for compensations. All data will be included in the PNN in
order to increase the dataset.

The other limitation is the use of artificial samples and buffers. Nonetheless, most of
the papers surveyed in Table 18 used buffers. In order to improve the accuracy of the pH
sensor in natural seawater, in future work, samples of seawater, freshwater, and brackish
water will be collected and used for the evaluation of sensor performance. The first step
will consist of creating several pH ramps in water samples with different ionic strengths
and generating different ANN models for each type of water. Thus, we will combine
the pH sensors with other sensors to characterize the type of water in order to apply the
corresponding ANN. A second step can consist of creating a general ANN with all pH
ramps being the type of water one of the inputs for the ANN.

Regarding durability, the sensors based on copper coils have been tested many times.
Even though data about their durability in underwater environments, existing data about
their durability in other environments demonstrated that sensors could be used after
many years. In underwater environments, factors such as biofouling, sediments or organic
matter deposition, or the accumulation of air bubbles in the core might be a challenge. The
biofouling will alter the behavior of the sensor; it is expected that the effect of biofouling
in the sensor will drift in the measurements. It can be possible to model this drift and
correct it. Anyway, the most efficient solution is to evaluate methods to reduce biofouling
as performed in other sensors, such as using UV light [70] or magnetic mechanisms [71].
Considering that the sensors are based on electromagnetic fields, it must be evaluated if
generated magnetic field can limit the biofouling growth.
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Finally, the last limitation which will be overcome in the subsequent studies is the
measurement of additional physical parameters. Regarding the inductor, the delay and the
Vpp are already measured. In previous studies, the Vpp was related to the conductivity [38],
but the delay has no relation with conductivity according to the existing literature and other
conducted experiments. Additional parameters, such as frequency, can be measured in the
future. Nonetheless, in this experiment and previous ones, no differences in frequencies
are detected. No other physical parameters can be measured in the double inductor system.
Thus, the other physical parameters might include optical effects such as light abortion at
different wavelengths.

5. Conclusions

One of the main parameters measured in water quality monitoring is pH. Considering
the wide variety of scenarios in which pH is measured, the requirements for pH sensors
are variable. Most pH sensors and probes are based on a glass membrane, which must
be cleaned after data collection. Moreover, these types of sensors need calibration from
time to time. Therefore, using virtual sensors is a good option for this environment. In
addition to their low cost, these virtual sensors are low maintenance and might not need to
be calibrated.

This paper describes developing and calibrating a virtual pH sensor to detect ab-
normal situations in coastal areas. For this, an inductor has been tested as a virtual pH
sensor. Therefore, samples with different pH values (4, 5, 7, 8, 9, and 11) and at different
temperatures (10, 20, 25, and 40 ◦C). Finally, a pH range has been selected, and the value of
pH 11 has been eliminated. When data from a selected dataset, without a pH value of 11
and focusing on the range of frequencies with better accuracy, is used as the input layer, the
percentage of correctly classified cases reaches 85.63%. When the temperature is excluded
from the analyses, the percentage of correctly classified cases improves to 87.42%. When
only the delay and output voltage data are used, the percentage of correctly classified is
88.92%. It has been obtained that the best WF for the selected coil is 246, 247, and 248 kHz.
For those frequencies, the percentage of correctly classified is 87.50%.

In future work, the sensor will be tested with different pH and temperature values to
generate a larger dataset for the PNN in order to achieve higher precision and accuracy,
including intermediate values of already tested solutions and new solutions with pH values
of 6 and 10. Other types of sensors, such as oxidation-reduction and conductivity sensors,
will be jointly deployed to detect possible interferences between the sensors. Measures will
be established in different study areas. In the subsequent experiments, the deployment of
the used probe to detect the pH will be conducted in different underwater environments
to evaluate the durability and stability of the probe. Finally, the design of an electronic
circuit that allows the implementation of the virtual sensor in natural environments and its
subsequent adaptation into a sensor node of a WSN will be assessed.

Author Contributions: Conceptualization, J.L.; methodology, S.S.; formal analysis, S.V.-T.; inves-
tigation, S.V.-T.; resources, J.L. and S.S.; data curation, L.P.; writing—original draft preparation,
S.V.-T., S.S. and L.P.; writing—review and editing, S.S., L.P. and J.L.; supervision, J.L. and S.S.; project
administration, J.L. and S.S.; funding acquisition, J.L. and S.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is partially funded by the Conselleria de Innovación, Universidades, Ciencia
y Sociedad Digital through the “Expresiones de Interés de Proyectos de Investigación Alineados
con Thinkinazul” project GVA-THINKINAZUL/2021/002 and by the “Programa Estatal de I+D+i
Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica
y de Innovación 2017–2020” project PID2020-114467RR-C33/AEI/10.13039/501100011033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Chemosensors 2023, 11, 215 21 of 23

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy constraints.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applica-

tions. Chem. Rev. 2020, 120, 12357–12489. [PubMed]
2. Majhi, P.K.; Kothari, R.; Arora, N.K.; Pandey, V.C.; Tyagi, V.V. Impact of pH on Pollutional Parameters of Textile Industry

Wastewater with Use of Chlorella pyrenoidosa at Lab-Scale: A Green Approach. Bull. Environ. Contam. Toxicol. 2021, 108, 485–490.
[PubMed]

3. Ziara, R.M.; Miller, D.N.; Subbiah, J.; Dvorak, B.I. Lactate wastewater dark fermentation: The effect of temperature and initial pH
on biohydrogen production and microbial community. Int. J. Hydrogen Energy 2018, 44, 661–673.

4. Galan, I.; Müller, B.; Briendl, L.G.; Mittermayr, F.; Mayr, T.; Dietzel, M.; Grengg, C. Continuous optical in-situ pH monitoring
during early hydration of cementitious materials. Cem. Concr. Res. 2021, 150, 106584.

5. Briendl, L.G.; Grengg, C.; Müller, B.; Koraimann, G.; Mittermayr, F.; Steiner, P.; Galan, I. In situ pH monitoring in accelerated
cement pastes. Cem. Concr. Res. 2022, 157, 106808.

6. Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review.
Chem. Eng. J. 2017, 320, 608–633.

7. Goulart, D.A.; Pereira, R.D. Autonomous pH control by reinforcement learning for electroplating industry wastewater. Comput.
Chem. Eng. 2020, 140, 106909. [CrossRef]

8. Sabzi, S.; Arribas, J.I. A visible-range computer-vision system for automated, non-intrusive assessment of the pH value in
Thomson oranges. Comput. Ind. 2018, 99, 69–82.

9. Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Arribas, J.I. Non-destructive visible and short-wave near-infrared spectroscopic data
estimation of various physicochemical properties of Fuji apple (Malus pumila) fruits at different maturation stages. Chemom. Intell.
Lab. Syst. 2020, 206, 104147.

10. Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural
food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol. 2020, 105, 93–144.

11. Tirtashi, F.E.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Cellulose/chitosan pH-responsive indicator incorporated
with carrot anthocyanins for intelligent food packaging. Int. J. Biol. Macromol. 2019, 136, 920–926.

12. Jiao, S.; Lu, Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural
ecosystems. Environ. Microbiol. 2019, 22, 1052–1065. [PubMed]

13. Zhou, W.; Han, G.; Liu, M.; Li, X. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land
uses in Mun River Basin, Northeast Thailand. PeerJ 2019, 7, e7880. [PubMed]

14. Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali-Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H. Assessment of water quality
at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere
2018, 219, 76–88.

15. van Rooyen, I.L.; Nicol, W. Optimal hydroponic growth of Brassica oleracea at low nitrogen concentrations using a novel
pH-based control strategy. Sci. Total Environ. 2021, 775, 145875.

16. Huan, J.; Li, H.; Wu, F.; Cao, W. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquac. Eng.
2020, 90, 102088.

17. Gao, G.; Xiao, K.; Chen, M. An intelligent IoT-based control and traceability system to forecast and maintain water quality in
freshwater fish farms. Comput. Electron. Agric. 2019, 166, 105013.

18. Staudinger, C.; Strobl, M.; Breininger, J.; Klimant, I.; Borisov, S.M. Fast and stable optical pH sensor materials for oceanographic
applications. Sensors Actuators B Chem. 2019, 282, 204–217.

19. Jiang, L.-Q.; Carter, B.R.; Feely, R.A.; Lauvset, S.K.; Olsen, A. Surface ocean pH and buffer capacity: Past, present and future. Sci.
Rep. 2019, 9, 18624.

20. Wencel, D.; Abel, T.; McDonagh, C. Optical Chemical pH Sensors. Anal. Chem. 2013, 86, 15–29.
21. Paepae, T.; Bokoro, P.N.; Kyamakya, K. From Fully Physical to Virtual Sensing for Water Quality Assessment: A Comprehensive

Review of the Relevant State-of-the-Art. Sensors 2021, 21, 6971. [PubMed]
22. Ren, J.; Liu, Y.; Wang, Z.; Chen, S.; Ma, Y.; Wei, H.; Lü, S. An Anti-Swellable Hydrogel Strain Sensor for Underwater Motion

Detection. Adv. Funct. Mater. 2021, 32, 2107404. [CrossRef]
23. Cao, Q.; Wang, R.; Zhang, T.; Wang, Y.; Wang, S. Hydrodynamic Modeling and Parameter Identification of a Bionic Underwater

Vehicle: RobDact. Cyborg Bionic Syst. 2022, 2022, 9806328. [PubMed]
24. Gola, K.K.; Gupta, B. Underwater sensor networks: ‘Comparative analysis on applications, deployment and routing techniques’.

IET Commun. 2020, 14, 2859–2870.
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