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Abstract: Xylene gas is highly toxic, can irritate the skin, and is also very harmful to the body.
Therefore, it is necessary to prepare sensors that can accurately detect xylene. In this paper, NiTiO3

nanoparticles were synthesized by the hydrothermal method and used to modify NiO, and a NiTiO3-
modified NiO (NiTiO3-NiO) nanosheet material was successfully prepared. Its microstructure and
internal composition were observed and analyzed by various characterization methods. When
detecting 100 ppm xylene gas at the optimum temperature, comparing the response level of the
NiTiO3-NiO sensor with that of a pure nickel oxide sensor, the former was 20 times that of the latter,
and the sensitivity was greatly improved. In a 100 ppm xylene gas environment, the response level of
the sensor reached 21, the minimum detection limit was 1 ppm, and the recovery time was 135.75 s.
NiTiO3 is a perovskite-structured material, with many active sites and good catalytic properties that
promote redox reactions.

Keywords: xylene; hydrothermal method; gas sensor; perovskite

1. Introduction

Xylene is a volatile organic compound, which is colorless and transparent, insoluble
in water, but soluble in ethanol. Xylene gas has certain toxicity, which is irritating to the
skin and mucous membranes. Wallpaper, paints, coatings, and dyes used in decoration
generally contain xylene, which is also an important raw material for organic chemicals. In
general, breathing under the condition of xylene concentrations greater than 200 mg/m3

air for 8 h will produce poisoning symptoms [1,2]. Long-term use will do great harm to the
body [3–5]. Therefore, it is very urgent and necessary to find a rapid and accurate method
for detecting xylene. So far, many detection methods have been used to detect xylene,
such as spectroscopy, biosensors, and gas sensors. Among them, the gas sensor method is
very common [6–8]. Gao et al. [9] prepared Sn-doped NiO hierarchical structures via the
hydrothermal method to detect xylene. Li et al. [10] successfully prepared Au nanoparticles
loaded with WO3 nanoflower materials for the detection of xylene, using a hydrothermal
method.

Semiconductor gas sensors based on metal oxide materials are widely used due to
their series of advantages, such as high sensitivity, low production cost, and portability [11].
It is well known that the sensors with n-type material properties have greater response
values than semiconductor gas sensors with morphological p-type materials. However, the
types of gases that can be clearly distinguished by sensors based on n-type materials are
still limited, mainly because the selectivity of the sensors needs to be improved [12–15].
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NiO, which is common in p-type materials, is used in this paper. Shailja et al. [16] prepared
an Al-doped NiO sensor, and the response value of the sensor to 10 ppm toluene could
reach 29 at 180 ◦C. Gao et al. [17] made a SnO2-modified NiO sensor to detect 100 ppm
toluene with a response value of 66.2 and a minimum detection limit of 10 ppb. NiO is
a p-type semiconductor material, and sensors made of NiO have high catalytic activity
for VOCs [18]. It has a wide band gap range and is adjustable. In addition to this, it is
chemically very stable [19–21]. NiO has been found to have outstanding catalytic activity
during the oxidation of volatile organic compounds [22]. NiO has a catalytic effect on redox
reactions. Its catalytic activity is very high, which makes it an excellent sensor for detecting
VOC gases [23–25]. It has excellent performance when used as a gas sensor. However,
a sensor made of pure NiO also has disadvantages, such as low response value. Feng
et al. [26] prepared NiO nanotubes to detect xylene, and the response value of pure NiO
nanotubes to 200 ppm gas was below 3.1. Chen et al. [27] used a pure NiO sensor to detect
100 ppm toluene and xylene at 230 ◦C, and the response value was less than 2.

Therefore, other materials are considered for use to improve performance [28,29]. The
general structural formula of perovskite materials can be summarized as ABO3, where
divalent cations usually exist at site A and tetravalent cations usually exist at site B. The
type and radius of the ions at A and B sites will affect the overall structural stability [30,31].
Perovskite materials have a high optical absorption coefficient and high carrier mobility.
The appearance and change of cation vacancies in perovskite structured materials can
provide space for gas adsorption. Perovskite structural materials contain a large number
of oxygen vacancies, which can adsorb or desorb a large amount of oxygen and promote
redox reactions. Perovskite structural materials have high catalytic activity [32,33], and
NiTiO3 is a typical perovskite structure material, which has great research prospects and
potential. NiTiO3 materials are widely used in batteries and photocatalysis [34,35]. In
past studies, few people have combined titanium-based perovskite materials with NiO
materials. NiTiO3 has good catalytic activity. It is low-cost and easy to obtain. It has great
application value in photocatalysis, gas sensors, cathode materials for lithium-ion batteries,
and so on [36].

In this paper, nickel titanate-modified nickel oxide materials were successfully synthe-
sized by the hydrothermal method. The materials prepared by this method combined the
advantages of NiTiO3 and NiO. The addition of NiTiO3 greatly improved the performance
of NiO sensors.

2. Materials and Experimental Details
2.1. Materials Overview

All reagents, such as methenamine, Ni(NO3)2·6H2O, C16H36O4Ti, ethylene glycol
and so on, could be used without further purification. The water used throughout the
experiment was ultrapure.

2.2. Synthesis Methods

In total, 20 mL ethylene glycol was added to 10 mL water and stirred well. Then,
0.56 g methenamine and 0.58 g Ni(NO3)2·6H2O were added into the solution and stirred
for 0.5 h. We poured the solution into the reactor and put it into the oven manufactured by
Shanghai Yiheng, setting the oven temperature to 150 ◦C for 4 h. At the end of the reaction,
the reactants were poured into centrifuge tubes and centrifuged, then dried after washing
several times with water and ethanol. The dried material was baked in an oven at 60 ◦C.
Finally, the material was calcined, and the muffle furnace used in this process was made
by Shanghai Yiheng. As shown in Figure 1, the sample was roasted in a Muffle furnace at
800 ◦C for 2 h to obtain unmodified NiO.
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Figure 1. Experimental process diagram of preparing NiTiO3-NiO material.

We repeated the process described in B, adding tetrabutyl titanate (2 at%, 10 at%,
25 at%) to the process, and then poured the solution into the reactor with the temperature
and duration set as above. After the end of the reaction, centrifugation and drying were
performed. The drying temperature was 60 ◦C. Finally, the sample was put into a muffle
furnace and calcined at 800 ◦C for 2 h. NiTiO3-NiO could be obtained.

2.3. Summary of Characterization Methods

Firstly, the material was scanned by XRD and compared with the standard card to
determine the kind of material. The morphologies of NiO and NiTiO3-NiO samples were
observed by SEM, and the composition and proportion of elements were observed by EDS.
Then, the internal structure was observed by TEM, and the valence state of elements in the
material was examined by XPS.

2.4. Gas Sensing Performance Data Test Platform

The sensor model used in the experiment is shown in Figure 2. Before testing the
properties of the sensor, the material should be coated on the ceramic tube of the sensor.
The base of the sensor was made of rubber, and the base was inserted into the bottom of
the air chamber during the test. The length of the ceramic tube was approximately 4 mm,
the diameter was about 1 mm, the spacing between the gold electrodes was approximately
2 mm, and the resistance value of the resistance wire used was 30 Ω. During the heating
process, the resistance value remained unchanged. In total, 2 mg NiTiO3-NiO material
was put into a 1.5 mL reagent tube, then 5 uL of anhydrous ethanol was added to the
tube, and the reagent tube was placed on the upper part of the shaker to disperse the
mixture until it was gel-like, and the gel-like mixture was evenly coated on the sensor by
pipetting with a pipette, so that the coated material had a uniform thickness and smooth
surface, and the coated sensor was well marked. The thickness of the material on the sensor
was 1503 um and the surface was smooth. Four sets of experiments were done. When
testing the data, three sensors were prepared for each set of experiments, and multiple
repeatable measurements were made. The material was applied evenly every time, so there
was not much difference in the equipment. The details of the test platform can be seen in
Figure 2. The rubber base of the sensor contained six electrodes, which were connected to
the top of the platinum electrodes and both ends of the resistance wires. The two electrodes
welded together with the resistance wire were connected to a DC power supply, and the
temperature applied to the sensor could be adjusted by controlling the power supply. The
digital source meter was connected with four platinum wires, and the resistance changes of
the sensor were transmitted to the computer through Labview software. The air chamber
had an air inlet and an outlet, and before each test, the valve connecting the air chamber
was opened, the synthetic air inside the cylinder entered the gas chamber through the
valve, and after the reaction was stable, the valve was opened to completely drain the gas.
This ensured that the environmental conditions were the same for each test and that the
air was clean. The gas sensor was placed in the cube in Figure 2, and various test gases
were introduced into it through the syringe. After the gas measurement was completed,
synthetic air was blown into it to discharge the organic gas. In this paper, the sensor was
measured using a current source with a current set at 1 × 10−8 A. The response value of
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the gas sensor is represented by S, and S is the ratio of the resistance values of the sensor.
The resistance was high in the target gas and low in the air.
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Figure 2. Schematic of the gas sensor and the testing device.

3. Characterization Results and Data Analysis
3.1. Characterizations

Figure 3 shows the SEM diagram for characterizing the microscopic morphology of the
product. It could be seen from Figure 3a that the prepared NiO had a large blocky structure
and uneven distribution. Figure 3b is the SEM image of NiTiO3 added to the NiO sample
with an atomic ratio of 2%. This sample had a lamellar structure composed of particles,
and a large gap could be observed in the middle. In Figure 3c, the 10% NiTiO3-NiO sample
particles were combined to form a lamellar structure with a smaller and more uniform gap
in the middle, while in Figure 3d, 25% NiTiO3-NiO samples formed a lamellar structure
with particles tightly combined. Under the same synthesis conditions, the morphology of
the 10% NiTiO3-NiO sample was more regular, uniform, and dispersed, and the active sites
were further increased, which was beneficial to increasing the gas diffusion path, shortening
the reaction time and improving the gas characteristics of the sensor. In order to further
analyze its microstructure and phase composition, HRTEM was used to analyze it. The
HRTEM image of the 10% NiTiO3-NiO sample is shown in Figure 3e, which distinguished
different lattice planes. The (200) and (111) lattice spacing of NiO were 0.21 nm and 0.24 nm,
respectively, and the (110) lattice spacing of NiTiO3 was 0.25 nm. This is in good agreement
with the results of the XRD analysis.

Figure 4 shows the uniform distribution of elements O, Ni, and Ti in the 10% NiTiO3-
NiO samples. The above results were consistent with the outcomes of EDS and XRD.
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Figure 4. Elemental mapping images of 10% NiTiO3-NiO (a) O, Ni, and Ti; (b) O; (c) Ni; (d) Ti.

In Figure 5a, we can see the XRD figures of the prepared NiO and NiTiO3-NiO. Among
them, diffraction peaks (111) and (200) corresponded to JCPDS card No. 71-1179 at 2θ
angles of 37.245◦ and 43.275◦. The diffraction peak (110) in the sample corresponded to
the spectrum of nickel titanate. In addition, no other diffraction peaks were found, which
indicates that the synthesized samples were of high purity.
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Figure 5. (a) XRD images of pure NiO, 2% NiTiO3-NiO, 10% NiTiO3-NiO, and 25% NiTiO3-NiO;
(b) EDS analysis of the 10% NiTiO3-NiO.

In the XRD diagram of NiTiO3-NiO, the diffraction peaks of NiTiO3 can be seen,
which also matched with JCPDS card No. 76-0335. When the content of NiTiO3 added to
the material increased, the diffraction summit of NiTiO3 gradually sharpened. Adding
NiTiO3 did not destroy the lattice structure of NiO. The XRD patterns of 2% NiTiO3-NiO,
10% NiTiO3-NiO, and 25% NiTiO3-NiO showed the diffraction peaks of NiO, which were
matched with NiO (JCPDS card No. 71-1179). No other obvious impurity peaks were
detected.

The chemical composition of the material was analyzed by EDS, as shown in Figure 5b.
The results show that 10% NiTiO3-NiO fully contained O, Ni, and Ti elements, and there
was no interference from other clutter elements. The content percentages of O, Ni, and Ti
elements are shown in Figure 5b.
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The valence state and elemental composition of the compounds were determined
by XPS. Calibration was performed with carbon-contaminated C1s (284.8 eV). The XPS
measurement of 10% NiTiO3-NiO can be seen in Figure 6. It can be seen from Figure 6a
that NiO was composed of Ni and O elements, and the 10% NiTiO3-NiO material was
composed of Ni, Ti, and O elements.
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As shown in Figure 6b, the Ni 2p spectrum of pure NiO had two main peaks at
871.14 eV and 853.39 eV. Due to spin site splitting, the two peaks belonged to Ni 2p1/2
and Ni 2p3/2, respectively. The peak binding energies of Ni 2p1/2 and Ni 2p3/2 in 10%
NiTiO3-NiO samples were 871.52 eV and 853.85 eV, respectively, while those in pure NiO
samples were 871.14 eV and 853.39 eV, respectively. There were two main peaks in the Ti 2p
spectrum of 10% NiTiO3-NiO. Due to spin site splitting, the two peaks belonged to Ti 2p1/2
and Ti 2p3/2, respectively. The Ti 2p1/2 and Ti 2p3/2 binding energy peaks were 462.55 eV
and 456.55 eV, respectively. After adding NiTiO3, the peak value of binding energy shifted,
which was the result of electronic interaction.

3.2. Gas Sensing Properties

Xylene was used as the main detection gas. The sensitive characteristics of the sensor
were closely related to the working temperature. Therefore, the most suitable temperature
for sensor operation should be determined before studying the gas response characteristics
of NiO. The response values of the four sensors to 100 ppm xylene gas between 275 ◦C and
400 ◦C could be seen in Figure 7a.
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As shown in Figure 7a, the curve of 10% NiTiO3-NiO rose and then decreased, with the
highest response value at 387 ◦C. The main reason was that when the operating temperature
was poor, the xylene gas molecules were underactive, and did not get enough energy for the
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reaction. As the operating temperature increased, the surface reaction between xylene and
the oxygen adsorbed on the surface was accelerated, leading to an increase in the response
value. However, when the temperature was too high, the xylene molecule received too
much energy and the vibration caused it to be difficult to adsorb on the sensor surface,
causing the response value to decrease. The maximum response value at 387 ◦C reached
23, which was much higher than that of unmodified NiO (1.13). The sensitivity of the
material to xylene was significantly improved after modification with NiTiO3. In Figure 7a,
the results suggest that the presence of NiTiO3 could greatly improve the performance
of the NiO sensor in detecting xylene, which might be due to the more uniform internal
distribution and larger specific surface area of the 10% NiTiO3-NiO sensor. This improved
performance might be due to the introduction of NiTiO3, which increased the average pore
size of the 10% NiTiO3-NiO sensor so that oxygen molecules and xylene gas molecules
could enter the material more quickly and promote the reaction.

In addition, the sensitivity of two sensors to different VOC gases at the optimum oper-
ating temperature was also investigated, as shown in Figure 7b, including triethylamine,
benzene, formaldehyde, methyl methanol, isopropanol, and xylene. It could be seen from
the figure that the 10% NiTiO3-NiO sensor was more sensitive to xylene than the other
gases. The 10% NiTiO3-NiO sensor showed a great improvement in sensing performance
for xylene gas, while the response to other gases did not change much. The response values
of pure NiO sensors did not vary much for different target gases, which was due to the
strong cross-sensitivity of the sensors. The 10% NiTiO3-NiO sensor widened the gap of
response values between xylene and other gases while improving the response values, and
NiTiO3 reduced the cross-sensitivity of the original NiO sensor.

In addition, based on the excellent performance of the 10% NiTiO3-NiO sensor for
xylene gas, its dynamic response curves for different ppm xylene gases were also inves-
tigated in Figure 8. When the xylene gas concentration increased, the response value of
the sensor also increased. In addition, the results were fitted. The relationship between
gas concentration and response value was linear, which shows that the sensor had a great
positive detection range and good stability.
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In Figure 9b, we can see the repeatability test curve of a 10% NiTiO3-NiO sensor for
100 ppm xylene gas. After many cycles of testing, the resistance of the 10% NiTiO3-NiO
sensor had no obvious attenuation. At 100 ppm xylene gas, the sensor’s response value
was almost constant. The response time and recovery time changed little in each process,
which indicates that the continuity of the sensor was great. After calculation, the recovery
time of the sensor was 135.75 s and the response time was 133.5 s. As shown in Figure 9c,
repeated sensing performance measurements on xylene gas at 100 ppm for one month were
performed to estimate the effectivity of the 10% NiTiO3-NiO sensor. It was found that the
gas sensing response of the sensor maintained good stability, staying above 20. This stable
and good characteristic lays a solid foundation for NiTiO3-NiO to be a good candidate
material for xylene detection in the future.
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The sensitivity of the 10% NiTiO3-NiO sensor was greatly improved, and its selectivity
was outstanding. Moreover, the continuity of the sensor was excellent, and after a long
time, it could still maintain good stability. However, the recovery time and response time
were relatively long; the sensor could react quickly to the gas, but it took some time to
reach the equilibrium state of response, and this could be improved in the future to make it
respond and recover quickly.

The xylene gas sensing performance of the prepared NiTiO3-NiO gas sensor was
compared with the previously studied materials, and the results are shown in Table 1.

3.3. Gas Sensing Mechanism

NiO is classified as a p-type semiconductor material, and its gas sensing mechanism
can be explained by the space charge layer model. When the NiO or NiTiO3-NiO sensor
was in the air, molecules of oxygen adsorbed on the material would cause electrons in the
conduction band to be transferred and form different types of oxygen ions (O2−, O−, O2

−),
forming a whole accumulation layer on the surface of NiO, and reducing the resistance.
When xylene was detected, the xylene molecules reacted with adsorbed oxygen-negative
ions, releasing electrons back into the material, thus reducing the carrier concentration and
increasing the resistance. The reaction process was as follows [37,38]:

O2(gas)→ O2(ads) (1)

O2(ads) + 4e− → 2O2−(ads) (2)
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(C6H4CH3CH3)ads + 21O2−(ads)→ 8CO2(gas) + 5H2O(gas) + 42e− (3)

On the other hand, for the NiTiO3-NiO material, the reason for the improvement in
gas sensing performance was the existence of the p-n heterojunction [39–41]. As shown
in Figure 10, when the p-type material NiO and the n-type material NiTiO3 contacted
each other, a p-n heterojunction would be formed. Between NiO and NiTiO3, holes and
electrons would move in opposite directions; holes would move from the surface of NiO
to NiTiO3, and electrons would move from the surface of NiTiO3 to NiO. This caused the
band near the surface of NiO to bend downward, and the band near the surface of NiTiO3
to bend upward, eventually reaching an equilibrium Fermi level. Therefore, an electric field
was formed in the space charge layer where NiO and NiTiO3 were contacted. The holes
on the surface of NiO would be neutralized with the electrons on the surface of NiTiO3.
Finally, the electron depletion layer would be formed at the junction of NiO and NiTiO3,
which would further increase the amount of adsorbed oxygen. As such, when the material
was in contact with xylene gas, more electrons would be released back into the composite,
improving its properties.

Table 1. Xylene gas sensors that have been reported.

Materials Concentration
(ppm)

Temperature
(◦C)

Response
(Rg/Ra)

Response
Time/Recovery

Time (s)
Reference

2 at% W-NiO 200 375 8.7 178/152 [26]
NiGa2O4-NiO 100 230 16.3 - [27]

0.5 at% Ag/TiO2 100 375 6.5 5/2 [42]
In-doped ZnO 100 420 10.1 - [43]

α-MoO3/α-Fe2O3 100 206 6.9 87/190 [44]
10% α-Fe2O3/Bi2WO6 100 260 13.5 20/40 [45]

10% NiTiO3-NiO 100 387 24 31/148 this work
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The catalytic ability of NiTiO3 with a perovskite structure also contributed to its
improved performance. In the field of catalysis, NiTiO3 is a new excellent catalytic ma-
terial with extremely strong catalytic activity that can promote the redox reaction. The
sensing performance was very much improved at the same operating temperature, and
this improved performance was mainly due to the catalytic effect of NiTiO3 modification.
When xylene molecules were adsorbed on the surface of the catalyst material, they reacted
with oxygen that was not chemisorbed in the oxygen vacancy, and eventually, carbon
dioxide and water were generated and separated from the surface of the material. On
the other hand, Ti ions have a defective catalytic effect, and the large numbers of defects
in perovskite-type NiTiO3 provide very good conditions for catalysis. In the structure of
perovskite-type materials, the B site is usually a transition metal element, which acts as the
position with activity. Its valence state is usually mixed, and it generally will have very
strong oxidizing or reducing properties.

Moreover, the addition of NiTiO3 increased the specific surface area of the material,
which led to an increase in oxygen adsorption sites and promoted the reaction. The
increased oxygen molecular content adsorbed on the material surface could accelerate
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the combination with xylene molecules, and the redox reaction was accelerated, which
eventually led to a great improvement in the sensing performance of the material. Further,
the addition of NiTiO3 led to a large increase in adsorption sites, which increased the
adsorption of xylene, and the selectivity of the sensor to xylene was improved.

4. Conclusions

In this paper, nickel oxide materials modified with nickel titanate were successfully
prepared via the hydrothermal method, and the microscopic morphology and properties
of the materials were analyzed by a series of characterization methods. The presence of
trace amounts of nickel titanate was also confirmed. At an optimal temperature of 387 ◦C,
the 10% NiTiO3-NiO sensor had a high response to 100 ppm xylene gas—up to 20 times
that of the pure nickel oxide sensor. In addition, it had good selectivity and was stable. The
improvement in NiTiO3-NiO sensor performance could be mainly attributed to the surface
oxygen adsorption, heterojunction effect, and high catalytic activity of the perovskite-type
structural material. As a gas sensing material for the detection of xylene gas, NiTiO3-NiO
has great potential and application prospects.
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