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Abstract: A flexible pH sensor based on using iridium oxide (IrOx) as the sensing film was developed
by the roll-to-roll (R2R) process. The inert and biocompatible properties of IrOx make it a desired
metal oxide for pH-sensing applications. The flexible substrates being continuously processed by
the R2R technique provides the advantages of scalability, reconfigurability, resiliency, on-demand
manufacturing, and high throughput, without the need for vacuum systems. Potential sweeps
by cyclic voltammetry across the IrOx film against commercial and planar Ag/AgCl electrodes
validated the reversible electrochemical mechanisms. Multiple IrOx electrodes showed similar output
potentials when continuously tested in the pH range of 2–13, indicating good fabrication uniformity.
For practical applications, planar IrOx/Ag-AgCl pairs developed on polyimide substrates were
tested, with a good linear fit within pH 2–13, achieving Nernstian responses of around−60.6 mV/pH.
The pH sensors showed good repeatability when analyzed with hysteresis, drift, fluctuation, and
deviation as the stability factors. The selectivity of the interference ions and the effect of temperature
were studied and compared with the reported values. The electrodes were further laminated in a
process compatible with the R2R technique for packaging. The flexible sensors were tested under
flat and curved surface conditions. Tests in artificial sweat and viscous solutions were analyzed
in the Clarke error grid, showing reliable pH-sensing performance. The materials used during the
manufacturing processes were sustainable, as the active materials were in small amounts and there
was no waste during processing. No toxic chemicals were needed in the fabrication processes. The
cost-effective and efficient materials and the fabrication process allow for rapid production that is
necessary for disposable and point-of-care devices. Flexible electronics provide a platform for device
and sensor integration and packaging, which enables Internet-of-things (IoT) network applications.

Keywords: flexible; pH sensor; iridium oxide; roll-to-roll; sustainable

1. Introduction

Rapid progress in thin film processing and flexible electronics has increased the
demands and applications for a low cost, simple manufacturing, a high throughput, and
integration techniques [1–4]. Conventional semiconductor fabrications rely on ultraviolet
lithography processes, which are costly and only accessible by large organizations. Devices
developed in research laboratories or by startup companies are typically only made in small
quantities, especially during the prototyping stages. However, the fundamental challenges
lie in transferring the lab-scale fabrication techniques to high-throughput industrial-scale
manufacturing when the products go to mass production [4]. Roll-to-roll (R2R) fabrication
processes were improvised for their simplicity with lower capital equipment expenses [5–8],
higher throughputs [9], and a cost-effective alternative for printing lab-on-a-chip (LoC)
devices [10–12].

The R2R process requires a substrate to roll and flex, making the paper- and polymer-
material substrates desired choices. Notable electronics manufactured by R2R techniques
are flexible solar cells, LEDs, and fuel cells [13–16]. The flexible substrates enable large-scale
solar energy harvesters [17], radio frequency identification (RFID) antenna printing, and chip
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bonding in commercial applications [18]. For example, Wang et al. developed a paper-based
RFID antenna to enable Internet-of-things (IoT) applications [19]. Microchannels and arrays
can also be patterned by R2R processes [20,21], and Liedert et al. demonstrated microfluidic
devices that were developed on polymer films [22]. Electrochemical sensors developed by
the R2R process were reported for glucose and carbofuran detection [23,24]. Martin et al.
reported a wearable microfluidic device for sweat sampling from the epidermis layer [25],
and similar applications were reported by other groups for skin applications [26,27].

With the growing demands for disposable electrochemical sensors, R2R techniques
provide the advantages of lower manufacturing costs and a quick means to reconfigure
fabrication materials and/or printing patterns and ensure uniform deposition. For dis-
posable sensors, paper and polymer substrates are preferred for their cost-effectiveness,
flexibility, and/or conformability on skin or in clothing and textiles [28,29]. Paper-based
substrates require a low temperature budget. Selective laser sintering and photonic curing
help to achieve higher conductivities at low temperatures but operate on a high amount of
power [30–33]. New deposition methods with wet plating at room temperature overcome
such limitations [34–36]. Iridium oxide (IrOx) was synthesized as an H+-ion selective
membrane for targeted applications [37]. The wide pH-sensing range and inert proper-
ties of IrOx are advantageous for the bioelectrode for wearable, implantable [38–42], and
harsh-environment sensing electrodes [43]. Experimental studies showed Nernstian to
super-Nernstian responses of IrOx fabricated by radio-frequency (RF) sputtering [44–46],
electroplating [47–49], and sol-gel processes [50,51]. RF sputtering uses high-purity targets,
and the sputtered material falling outside the substrate region is wasted. For electroplating
and sol-gel, material waste is minimized as the deposition quantity is equal to consumption.
Electroplating allows the conformal deposition of metal and oxide layers on fabric-like
materials [52,53]. However, nanoparticle colloid suspensions used as coating solutions
are operation-intensive. Sol-gel is an inexpensive coating process and allows for thin-film
deposition on flexible substrates such as textiles [54–56] and polyimide [57,58]. Multiple
coatings can be easily applied for thicker layers without adding additional facility costs.
The economical coating process with sol-gel for flexible and large-area substrates provides
fundamental compatibility for scaling. Oxidation after the coating is applied to convert the
materials; thus, the thermal tolerance of the substrate should be taken into consideration.

Our group previously demonstrated flexible IrOx-based pH sensors that were pro-
duced by a lab-scale sol-gel process on flexible polyimide films with a glass-transition
temperature of 400 ◦C [57,58]. This manuscript reports the pH performance produced
by a R2R process compatible with industry-scale manufacturing methods. Previously,
dip coating in the sol-gel solution was used, which did not require vacuum or spinning
apparatuses. The dipping tank can be scaled with the film substrate’s size. Robotic arms to
control the dipping speed and multiple repeated dip-and-dry processes were utilized to
reach the desired thickness and uniformity [57,58].

The R2R process aims to produce a uniform IrCl3 layer to be converted to IrOx by
oxidation. The IrOx film is used as a working electrode (named KWE) for pH sensing. This
work presents the pH characterization of the planar electrodes that were mass-produced on
flexible polyimide films by R2R against reference electrodes, named KREs. Prepared with
the stencil printing technique, a layer of Ag/AgCl paste was applied on the same polyimide
substrates. Ag/AgCl offers stable potentials and is a sustainable material, since it can be
reused and recycled with negligible toxicity after treatment [59]. Such an automatic stencil
technique is preferred for microelectronic packaging because of its use without waste and
high throughputs [60].

The low-cost perspective of R2R-fabricated devices enables disposable sensors for
point-of-care diagnostics [61–63]. The IrOx and Ag/AgCl electrode pair on a flexible planar
substrate can be used for non-invasive pH sensing on the skin or minimally invasive
probing of a tissue’s pH, besides their uses in portable point-of-care sensing devices or
instruments as a replaceable element. IrOx and Ag/AgCl are also versatile and stable as
base electrodes for biomarker sensing, such as sodium chloride, lactic acid, L-glutamate,
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and dopamine [64–68]. With the advances in R2R-fabricated electronics such as RFID,
energy harvesters and storage, sensing electrodes made by R2R have great promise for
integration into flexible systems that can address a variety of applications.

Potentiometry studies of the IrOx-based KWE against a commercial glass-rod reference
electrode (named CRE) were conducted in standard buffer solutions for confirmation. Com-
mercial glass-rod-based reference electrodes are non-disposable, per a standard method,
which was used to characterize the IrOx KWE alone. Applications utilize the IrOx KWE
and Ag/AgCl KRE pairs. Initial cyclic voltammetry (CV) and potentiometry analysis were
in the pH range of 5–8, targeting biological applications such as skin pH sensing [69–71],
which validated their sensing performance. Sensitivity, hysteresis, stability, cationic inter-
ferences, and temperature dependence were investigated for the electrode pairs. Electrodes
were then packaged in a flexible and bendable plastic material, so they can conform to the
skin for pH sensing. The packaged electrodes were tested in artificial sweat to detect pH
changes for sweat monitoring applications. Biofluids, especially from skin wounds, such
as plasma, serum, and blood are viscous [72–74]. The devices were then tested in viscous
solutions for a repeatability investigation. The performance results were illustrated in the
Clarke error grids to show their reliability.

2. Materials and Methods
2.1. Roll-to-Roll Printing

Polyimide-based working electrodes were prepared by a roll-to-roll (R2R) process,
which allows for high throughput and material-use efficiency. The precursor solution
was prepared by mixing iridium (IV) chloride hydrate (Sigma Aldrich, St. Louis, MO,
USA) with ethyl alcohol (Supelco, Bellefonte, PA, USA) and acetic acid (80%, LabChem,
Zelienople, PA, USA), as illustrated in Figure 1a. The polymeric film was obtained from
Sheldahl (Northfield, MN, USA). Base metal layers of gold (Au) and copper (Cu) with
thicknesses of 90 nm and 18 nm, respectively, were deposited on flexible polyimide (125 µm
thick) that has a glass-transition temperature of 400 ◦C. Iridium oxide (IrOx) was used as
the pH-sensitive film prepared by the sol-gel process.
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Figure 1. The manufacturing process of IrOx pH sensors by roll-to-roll (R2R) process involves several
steps: (a) precursor solution, (b) printing process on polyimide substrate with gold as a conductive
layer, (c) picture of mass-printed electrodes, (d) oxide layer formation, and (e) tests in different
solutions.

Figure 1b shows a type of R2R technique, known as the flexographic process, that was
adopted for thin-film layer printing [75,76]. A 125 µm thick carrier foil was used to enhance
registration accuracy on the flexible polyimide. The anilox roller had a cell transfer volume
of 5 mL/m2 with a 5 m/min printing speed for layer evenness. A plate size of 25 × 240 mm2

allowed for printing 480 electrodes per sheet with an electrode size of 2 × 15 mm2. The
printing processes were conducted in VTT Technical Research Centre of Finland Ltd., which
was contracted with SensTek LLC in Oakland, CA, USA. The mass-printed samples shown
in Figure 1c were oven-dried at 120 ◦C for 1 h. A programmable oven was used to ramp up
the temperature to 325 ◦C, at a rate of 1 ◦C/min for oxide formation, as shown in Figure 1d.
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Samples were heated at 325 ◦C for 4 h with an external meter to monitor temperature
fluctuations. After the oxide formation, the sample was cooled to room temperature
at the same cooling rate of −1 ◦C/min. The IrOx layer thickness was estimated to be
800 nm, which was measured at multiple points using a surface profilometer (Veeco Dektak,
Allentown, PA,USA). Material characterization by surface electron microscopy (SEM) of
IrOx film developed at 325 ◦C was previously reported by our group [77].

The reference electrodes (KREs) were prepared by an automated stencil method on
the same polyimide film with Au and Cu deposited. A stainless steel doctor blade with a
moving speed adjusted to 1 inch/s at a 45◦ angle was used across the stencil. Commercial
Ag/AgCl paste (ASLCo.,Tokyo, Japan) was stencil-printed on a 6′′ × 6′′ flexible polyimide
sheet. The samples were then heated to 120 ◦C for 10 min to dry. The measured thickness
of the film was 13 µm. The KWE and KRE electrodes were individualized from the
mass-printed batch by a singulation process. A laser-cutting machine protoLaser (LPKF
R4, Naklo, Germany), adjusted to a speed of 500 mm/s and a channel width of 200 µm,
produced electrode sizes of 2 mm × 15 mm. The stencil process was conducted at the
NextFlex Technology Hub in San Jose, CA, USA, which was contracted by SensTek LLC
(Oakland, CA, USA). Silver epoxy (MG Chemicals, Ottawa, ON, Canada) was used to attach
copper wires on the gold surface of the electrodes for signal transduction. The electrodes
were connected to analog input pins of a data acquisition device (National Instruments,
Austin, TX, USA) for electrical measurements, as shown in Figure 1e.

2.2. Materials and Tools

Standard buffer solutions (Fisher Scientific, Waltham, MA, USA) of different pH levels
were used during the electrochemical and pH characterization studies. Custom-made
buffers were prepared by adding sodium chloride salt (NaCl) (Sigma, St. Louis, MO, USA)
into standard buffers. Two types of custom-made buffers were prepared: pH solutions with
the same salt concentration of 0.05 M NaCl salt and salt-added solutions with the same
conductivity of 46 mS/cm. The purpose was to achieve a more stable output reading by in-
creasing solution conductivity. A digital benchtop meter (Orion, Fisher Scientific, Waltham,
MA, USA) was used for pH and conductivity measurements. Potassium chloride (KCl)
(LabChem, Zelienople, PA, USA) and magnesium chloride (MgCl2) (Sigma, St. Louis, MO,
USA) salts were used for cation interference in the selectivity study. A digital thermometer
(Elitech, San Jose, CA, USA) was used to track temperature change from 3.8 ◦C to 50 ◦C.
Cyclic voltammetry analysis (CV) was performed in a three-electrode cell system using an
electrochemical analyzer (CH Instruments, Bee Cave, TX, USA). A commercial glass-rod
Ag/AgCl reference electrode (Basi, West Lafayette, IN, USA) filled with 3 M NaCl solution
was utilized for CV experiments and working electrode investigation.

A thermal laminator (Amazon, Seattle, WA, USA) was used to package the electrodes
and create insulation wells around the sensing area. Electroanalytical tests were performed
on laminated sensors using artificial sweat (Reagents, Belmont, NC, USA) with an original
pH value of 4.7. The artificial sweat was made of sodium bicarbonate (NaHCO3), NaCl,
potassium carbonate (K2CO3), and traces of lactic acid (C3H6O3), urea (CH4N2O), and
acetic acid (CH3COOH). The abundance of ionic concentration was, therefore, expected to
produce a discrepancy in output potentials compared to buffer solutions that are mostly
made from phosphate groups. Hydrochloric acid (HCl) (LabChem, Zelienople, PA, USA)
and sodium hydro oxide (NaOH) (Sigma-Aldrich, St. Louis, MO, USA) were used to
change pH values. Starch powder (Carolina, Burlington, NC, USA) was used to create
viscous fluids, and a viscometer tube of size 200 (CANNON, State College, PA, USA) was
used for viscosity measurements.

3. Results and Discussion
3.1. Performance of the Polyimide-Based Working Electrode

Figure 2a shows the potential responses of the R2R IrOx KWE tested against a commer-
cial reference electrode (CRE). Each test lasted for 1 min in standard buffer solutions from
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pH 2 to 13. Electrodes were cleaned in deionized (DI) water before every pH test, which
was intended to remove residues that may change the electrochemical equilibrium. To
investigate fabrication uniformity, three KWE electrodes (S1, S2, and S3) were continuously
tested for two cycles. One cycle means tested in a sequence from acid to alkaline and back to
acid in the order of pH 2-4-7-10-13-10-7-4-2. In Figure 2a, all three electrodes demonstrated
similar output potentials in different pH solutions against the CRE. It should be noted
that the CRE is assumed to produce identical reference potentials in all buffer solutions
and with repeatability, when moved from one solution to another. However, in reality, the
glass-rod membrane in the CRE may be affected by ionic residues when it was switched
between different solutions. The potential variations were observed when two identical
CREs were switched between buffer solutions. The ideal outputs should have been zero in
all conditions, but the observed non-zero variations seemed to be random. Thus, it was
concluded that the CRE may also contribute to some output variations, when used with
the KWE. The KWE surfaces may also be affected by such ionic residues. These effects
contributed to hysteresis, as defined in [77], and were observed in Figure 2a.
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Figure 2. (a) Potential response of the R2R IrOx-based working electrode (KWE) vs. a commercial
reference electrode (CRE). (b) Nernstian responses obtained from averaged potentials of 3 sensors
tested in acid-to-alkaline and alkaline-to-acid sequences for two test cycles. One cycle here means
tested in the sequence pH 2-4-7-10-13-10-7-4-2.

Overall, the temporal potential responses to pH were consistent for the three different
IrOx electrodes. The sensitivities, tested in acid-to-alkaline or alkaline-to-acid sequences,
for the two cycles are shown in Figure 2b. The output potentials from Figure 2a for S1,
S2, and S3 were averaged in two individual cycles and used to obtain the sensitivities for
different test sequences. A linear slope for the responses was assumed to be in the pH range
of 2–13 and defined as the sensitivity. The electrode produced similar Nernstian responses
regardless of the test sequence. The Nernstian behavior of IrOx films fabricated by dipping
and oxidized at 325 ◦C was previously reported in detail by our group [68,77]. R2R printing
produced similar results as dip coating. Due to better film uniformity, we observed better
repeatability of the measurement results. For cycle 1, the sensitivities were −59.8 and
−60.9 mV/pH, for the acid-to-alkaline and alkaline-to-acid tests, respectively, while, for
cycle 2, they were −62.5 and −62.8 mV/pH, respectively. The slightly higher sensitivities
for cycle 2 may be due to surface hydration, as the devices stayed in the solution longer.
Madeira et al. demonstrated that hydrated films produced higher Nernstian responses
compared to dehydrated films [78]. The pH-sensing mechanism for an amorphous IrOx film
was reported to exhibit Nernstian responses depending on the degree of hydration [79,80].

Hysteresis (dV), as previously defined in [77], is the standard error of the settled
potentials measured at the same pH level in one cycle, as illustrated in Figure 3a. Since the
responses might have drifts in potential from the moment the electrodes were immersed
in a solution, the outputs were compared with fixed time points after the electrodes were
switched. The recording was at seven samples per second and continued for one minute
in each solution. With the data obtained from Figure 2a, at the 6th s after the electrodes
were moved from the previous solution to a new one, Figure 3b shows a higher level of
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hysteresis in the alkaline range. The “±” ranges were calculated with respect to the average
of three output potentials at a specific pH level for the individual sensor. This can be
explained by the slower diffusion of the larger OH− ions at the buried sites compared to
that of the H+ ions [81]. Hysteresis has been reported in other metal oxides [82–86]. For
example, a higher dV in the alkaline region was also observed using Al2O3 metal oxide
as a sensing film [87]. The highest dV at pH 7, particularly for S1, can be explained by
the equal numbers of OH− and H+ groups in the solution counteracting on the electrode
surface, which was also previously observed for porous polypropylene membranes [88]. If
any residue of the OH− and H+ groups was left on the surface from the previous solution
before the electrodes entered pH 7, the additional residues produced a more obvious effect
of hysteresis. The output potential at a specific pH level was used with the sensitivity
curve to find the dpH from the dV. Among the three electrodes, the highest pH change
(dpH) produced by hysteresis (dV) at pH 2, 4, 7, 10, and 13 were 0.1, 0.2, 0.3, 0.32, and 0.25,
respectively. In a wide pH range of 2–13, hysteresis (dV) did not create a drastic pH change
and showed good repeatability. The electrode after continuous tests at pH 2 and 13 showed
good repeatability of the Nernstian response.
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Figure 3. (a) Definition of hysteresis (dV). (b) The highest hysteresis potentials of individual electrodes
between cycle 1 and cycle 2.

3.2. Cyclic Voltammetry Analysis

Cyclic voltammetry (CV) analysis was performed in a commercial phosphate buffer
solution (PBS) with a pH value of 7.4 and salt (NaCl) concentrations of 0.137 M NaCl.
The reason to use PBS that contained NaCl was to validate the electrode voltammetry
performance in a solution related to biological environments. KWE was used as the
working electrode (WE), and a platinum foil with a diameter of 1.3 cm was used as the
counter electrode (CE). The potential sweeps were between −0.8 V to +1 V at a scan rate of
30 mV/s. Figure 4a,b show the CV curves of KWE against the rigid commercial reference
electrode (CRE) and the flexible Ag/AgCl KRE electrode.

Figure 4a shows the results of the case when the KWE was tested from its dry state
before it was submerged into the PBS solution. Figure 4b shows the results of the case
when the KWE was placed in the buffer pH 2 solution for 30 min before it was switched to
PBS. The pH 2 solution served as a precondition to mimick a hydrated and used electrode.
The similar voltammograms of KWE vs. KRE compared to KWE vs. CRE in Figure 4
show that the flexible polyimide KRE electrodes paired with IrOx KWE can generate suf-
ficient electrical currents, similar to the glass-rod CRE. Similar curve shapes during the
anodic and cathodic scans suggest reversible electrochemical mechanisms. A compari-
son of Figure 4a,b shows preconditioning at the strong pH 2 level does not change the
electrochemical equilibrium.
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Figure 4. KWE vs. CRE and KWE vs. Ag/AgCl KRE in phosphate buffer solution (PBS) tested from
(a) dry state and (b) preconditioned at pH 2.

3.3. Analytical Characterization of KWE vs. KRE

The KWE vs. KRE pairs were tested for two cycles in custom-made buffer solutions
from pH 5 to pH 8. Electrodes were first tested in these buffers with the same salt con-
centration of 0.05 M added to prevent unstable potential readings due to low solution
conductivity in the commercial buffer solutions. Each cycle was tested in the sequence of
5-6-7-8-7-6-5. The pH range was limited because of targeted applications in biologically
relevant solutions, particularly for sensing on the skin. The distance between electrodes
was fixed at 2 mm. Electrodes were again tested for one minute and were cleaned in
deionized (DI) water before every test intending to remove residues. The blue curve in
Figure 5a indicates that the electrode pair was first preconditioned in a strong acid of pH
2, whereas the red curve indicates when the electrodes were tested from their dry state
directly in a pH 5 solution. Both types of tests showed distinct potentials in every pH test
with good consistency. It was noted that pH 5 and 6 potentials became the same as their
respective values after the first half cycle, as the electrodes experienced hydration in the
first two tests, although the outputs at pH 5 and 6 for the first two tests showed larger
differences. The inset shows a Nernstian response of −60.6 mV/pH in the pH range from
pH 5 to 8 for both the dry and preconditioned electrodes.
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Figure 5. (a) Potential response of KWE vs. KRE in pH 5 to 8 custom-made buffers after the electrode
was preconditioned at pH 2 (blue) and from a dry state (red). The inset shows a Nernstian response
with good linearity. (b) The definition of stability is categorized by V′, ∆V, and δV. (c) The highest V′,
∆V, and δV for pH 2 preconditioned and dry-state cases.

Stability is a practical issue caused by inherent factors such as fabrication processes
and random factors such as vibrations in the micro-environment. Poor stability produces
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measurement errors and compromises pH accuracy. Huang et al. previously categorized
potential stability into the parameters of potential fluctuation (∆V), potential drift (V′), and
potential deviation (δV), as illustrated in Figure 5b [77]. ∆V is defined as the maximum
potential fluctuations within a measurement period. It is typically in a small range, which
may be caused by vibrations and fluidic disturbance after the electrodes are switched
in solutions.

Drift (V′) is defined as the time-dependent change between the initial and stabilized
potential values. It was reported that it was caused by oxidation states on the metal oxide
electrode surface and the interactions of electrochemically active species such as oxygen in
solution [89,90]. Deviation (δV) is defined as the potential difference between two cycles
tested at the same pH levels. It is different from hysteresis (dV), which is defined as the
potential difference at the same pH levels for the same test cycle.

Figure 5c shows the stability, as defined by ∆V, V′, and δV in Figure 5b. The KWE–KRE
electrode pairs produced the highest ∆V, V′, and δV of 3.7 mV, 4.5 mV, and 8.8 mV, re-
spectively, for the preconditioned (at pH 2) electrodes, and of 4 mV, 10.5 mV, and 6.8 mV,
respectively, for the electrodes initially at the dry state. The measured values were com-
parable with the previously reported values of 1 mV, 10 mV, and 5 mV for IrOx-Ag/AgCl
by the sol-gel dipping method [77]. With an averaged sensitivity of −60.6 mV/pH, ∆V,
V′, and δV correspond to pH variations of 0.06, 0.07, and 0.15, respectively, for the pre-
condition state, and of 0.07, 0.2, and 0.13, respectively, for the dry state. Initial tests in
different pH solutions may cause output changes, even in equilibrium, possibly due to
charge variations on the electrode surface [91]. The low pH variations from ∆V and V′

mean our planar IrOx-Ag/AgCl electrodes can distinguish small changes. Similarly, the
low pH variation for δV shows good repeatability between different test cycles for the
roll-to-roll fabrication processes.

Two new pairs of electrodes were separately tested in pH from 2 to 7 and pH from
13 to 7, with salt added to adjust the solution conductivities to be the same at 46 mS/cm. In
the commercial pH buffer solutions, due to different compositions, their conductivities are
widely different. The value of 46 mS/cm was chosen because the highest conductivity of all
the buffer solutions we used in the tests was 46 mS/cm. The electrodes were tested for two
cycles. The purpose was to investigate linearity in a wider pH range of pH 2–13. Solutions
with low conductivity specifically affected linearity in a wide pH range because individual
output potential in a certain solution depended on its conductivity. For the comparisons to
be fair, the conductivities were equalized. The arrows in Figure 6 indicate the different test
sequences. The blue arrow indicates the test starts at pH 2, and the purple arrow indicates
the test starts at pH 13.

The sequences were 2-4-5-6-7-6-5-4-2 and 13-11-10-8-7-8-10-11-13. Then, each sequence
was repeated for a second cycle. The result from Figure 5a was also included, which had
two-cycle sequences of 5-6-7-8-7-6-5. The experiments were also to examine the inferences
of OH− and H+ on the surface as residues in acidic and alkaline environments, respectively.
Figure 6 shows a good linear fit in the pH range of 5–8 (blue), pH range of 2–7 (green),
and pH range of 13–7 (purple). The data labels overlapped with each other at the same
pH because of high repeatability. The differences in these groups are more at pH 7 and 8.
This phenomenon might be due to the ionic interference on the surface, as it went through
OH−- or H+-dominating solutions before pH 7 or 8. The measured hysteresis (dV) for the
individual electrode pairs tested at pH 2, 4, 5, 6, and 7 was ±7 mV, ±7.2 mV, ±3.2 mV,
±2.4 mV, and ±0.1 mV, respectively. In the alkaline range, at pH 13, 11, 10, 8, and 7, the dV
was ±6.8 mV, ±9.5 mV, ±8.8 mV, ±7.3 mV, and ±5.2 mV, respectively. The measured dV
for the skin pH range of pH 5, 6, 7, and 8 was ±2.1, ±1.1, ±0.1, and ±3.9 mV, respectively,
for the pH 2 preconditioned cases, and ±3.4, ±7.7, ±4.1, and ±0.4 mV, respectively, when
tested from the dry state. The hysteresis was evaluated within the same cycle. However,
two hysteresis values were obtained for two cycles, and the values presented above were
the larger ones. Again, the “±” range of the hysteresis was obtained from the maximum and
minimum values with respect to the average value of the output potential for a specific pH.
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3.4. Selectivity to Cationic Interference

To study the selectivity of our electrode, three types of interference cations were added
to the 50 mL custom-made buffer solutions prepared with the same salt concentration.
Figure 7 shows the potential responses without additional cationic interference and with
0.1 M additions of NaCl, KCl, and MgCl2.
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Figure 7. Measured sensitivities without cationic interference and with additional 0.1 M sodium,
potassium, and magnesium cations.

The electrode pairs of KWE–KRE were tested at pH 2, 4, and 7 for one minute and
cleaned in DI water before the next test. Additional ions created potential shifts, specifically
at pH 7, but the Nernstian responses were maintained. The increases in output potentials
can be explained by the solution pH changes. At pH 2, the abundant H+ ions made the
presence of additional Na+, K+, and Mg+2 insignificant. However, at pH 7, the additional
positive-charged ions made the solution seem more acidic and shifted the output potential,
specifically for the MgCl2 case. The measured pHs by the commercial pH meter with 0.1 M
NaCl, KCl, and MgCl2 added in the pH solution became 6.8, 6.79, and 6.24.

3.5. Effect of Temperature

The IrOx-Ag/AgCl electrode pairs were tested at four temperatures, 3.8 ◦C, 22 ◦C,
37 ◦C, and 51 ◦C, and at three pH levels, 2, 4, and 7. The solution temperatures were
monitored by immersing a probe connected to a temperature data logger (Elitech, San Jose,
CA, USA) in solutions that were heated or cooled in a water bath. The electrodes were
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tested for one minute and cleaned in DI water. Figure 8a shows that the output potential
monotonically decreases as the temperature increases, as indicated by the arrows at three
pH levels. The temperature dependency matches the redox mechanism in [77]. Figure 8b
shows temperature coefficients of −2.1, −2.9, and −3.1 mV/◦C measured at pH 2, 4,
and 7, respectively, compared to the previously reported theoretical values of −0.3, −0.8,
and −1.3 mV/◦C, respectively, and the measured values of −2, −0.3, and −0.7 mV/◦C,
respectively, for the IrOx electrodes made by sol-gel dipping in our group [77]. The
difference may be due to the different oxide states and the linear fitting of limited data
in [72]. The sol-gel dipping method created random nanoscale and microscale pores that
may affect heat dissipation on the film surface, producing different oxide states. Different
groups also reported similar values: −1.27 and −2 mV/◦C for IrOx- and palladium oxide
(PdO)-sensing films, respectively [92,93].
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Figure 8. (a) Potential responses at three pH and four temperature levels. Arrows indicate potential
monotonically decreases as temperature increases. (b) The inset shows temperature coefficients at
pH 2, 4, and 7.

3.6. Laminated Electrodes

Packaging R2R-made electrodes can utilize the advantage of the same R2R processes
such as lamination that can be integrated into the manufacturing flow. Laminating sheets
and double-sided sticky tape of thicknesses 76 µm and 114 µm were stacked as the pack-
aging and insulation layers. A packaged device within these layers is shown in Figure 9a.
A mechanical punch with a diameter of 2 mm was used to puncture holes and open the
sensing areas. The microwell depth was 114 µm. The KWE and KRE electrodes were on the
same substrate, with a spacing of 2 mm. The assembly films were passed through a thermal
laminator, as shown in Figure 9b. The process is suitable for large-scale films and can be
integrated into electrode-manufacturing processes. After batch processes, each packaged
device can be individualized by cutting with a sharp blade. The overall manufacturing
method is cost-effective, without the requirements of a vacuum environment or wafer
transfer. The use is illustrated in the cross-sectional views in Figure 9c,d, which show how
pH sensing is performed. Due to the flexibility of the substrate and packaging films, the
sensor can conform to a curved surface such as human skin. We estimated that a volume
of 300 µL sample solution dripped from a pipette on the microwells is needed to cross
over the wells for performance evaluation. A leak test was conducted to ensure that the
insulating tape can prevent the liquid from shorting the connection lines to the IrOx and
Ag/AgCl electrodes.
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Figure 9. (a) Electrode assembling process with open sensing areas, (b) lamination of electrode
assembly, (c) individual packaged electrodes after batch processing, and (d) cross-sectional view of
the pH-sensing protocol.

The laminated electrodes were tested under their flat and curved conditions. The
device in the curved condition was conformed on a plastic arc that had a curvature radius
of 8.5 mm. The sample liquid was dripped onto the overall sensing area, and the output
potentials were recorded for one minute in both conditions. DI water and medical cotton
wipes were used to clean and dry the device between the two solutions. A drop of
liquid stayed at the top of the arc to prevent it from sliding down. Figure 10a shows
similar potential responses at pH 2–7 for two cycles. One cycle here means a sequence
of pH 2-4-5-6-7-6-5-4-2. The Nernstian responses were −63.2 and −63.6 mV/pH for the
flat and curved conditions, respectively, as shown in Figure 10b. The device performed
similarly when it was bent. The plot in Figure 10b contains all the individual data points
for two cycles, with them overlapped at the same values. The hysteresis (dV) values
were obtained from the same pH in the first or second cycles. The hysteresis potentials
and their corresponding pH variations (dpH) were calculated for two cycles, as shown
in Table 1. The calibration curve obtained from the output potentials and solution pHs
was used to calculate the dpH. The dpH was in the range of 0.08–0.1, which was caused
by dV for the pH range of 2–7. The stability values categorized by ∆V, V′, and δV were
calculated for the worst cases, meaning the largest values among all conditions, as shown
in Table 1. The highest pH variations from pH 2 to 7 caused by potential fluctuation (∆V),
potential drift (V′), and potential deviation (δV) were 0.009, 0.09, and 0.1 mV, respectively,
and in the worst cases were 0.6, 6.3, and 6.9 mV, respectively. The worst pH variation
among all cases of dV, ∆V, V′, and δV in Table 1 is pH 0.1, which means that packaged
electrodes can accurately detect changes as small as pH 0.1 in aqueous solutions. The
similar sensitivities, low hysteresis, and good stability indicated by the values validate this
reliable fabrication process.

To further investigate the performance of the packaged sensors in practical scenarios,
the electrodes were tested in artificial sweat (Reagents, Charlotte, NC, USA) with the pH
levels adjusted from pH 4 to 9 by adding HCl or NaOH. The original pH value of the
artificial sweat was 4.7 and contained 185 mM of NaCl. To compare, the average NaCl
concentration in sweat is 40–60 mM [94]. The pH values of the adjusted artificial sweat
were measured by a commercial pH meter (Orion, USA). The artificial sweat was used as
a control material because it was not possible to ensure the uniformity of human sweat
from different persons or at different times. The tests were repeated five times at each
pH to gather statistically meaningful data. The Test1 data were used to establish a linear
calibration curve to find pH values for the measured potentials for Test2–Test5. The data
were analyzed in the Clarke error grid shown in Figure 11. All the pH values fall in
region A, showing an acceptable accuracy of the laminated R2R electrodes. The inset
shows distinct responses at pH 4, 4.5, 5, 5.5, 6, 6.5, 7, 8.2, and 9. Each test lasted for 30 s
after the respective solution was dripped on the sensing site. The potential responses for
artificial sweat were higher than the values in the buffer solutions due to the higher ionic
concentrations with added salt. For example, at pH 4, the output potential in artificial sweat
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was 0.48 V, compared to 0.37 V in buffer pH 4. The inorganic elements in artificial sweat,
NaHCO3 and K2CO3, had concentrations of 0.11 M and 3.473 mM, respectively. They
also increased the conductivities of the solutions and induced higher output potentials. In
practical applications, the shifted output potentials caused by salts at known concentrations
can be calibrated to achieve better accuracy, as previously demonstrated in aqueous and
viscous solutions [95].
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Table 1. Hysteresis (dV), pH variation (dpH), and stability.

pH Cycle 1 Cycle 2 Stability in mV
dV (mV) dpH dV (mV) dpH ∆V V′ δV

2 ±5.7 0.09 ±5.5 0.09 0.3 6.3 4.3
4 ±6.0 0.09 ±6.5 0.1 0.2 3.1 6.9
5 ±4.9 0.08 ±6.0 0.1 0.3 2.3 4.0
6 ±3.4 0.05 ±5.5 0.09 2.0 2.8 0.3
7 ±5.3 0.08 ±5.3 0.08 0.6 2.6 6.0
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Previous studies showed liquid viscosity plays a role in pH sensing [96]. In addi-
tion to being bulky and unsuitable for wearables, conventional glass-rod pH meters face
challenges with membrane clogging [97]. The planar electrode faces fewer issues, but
viscosity-dependent solution conductivity inevitably changes the output potentials. The
devices were tested in viscous solutions from pH 4 to 10 to investigate the responses of
laminated R2R sensors. The buffer solutions were first heated to 90 ◦C, and starch powder
was added to create a viscosity of 1.17 cP, which was close to the viscosity of human
blood [98], as measured by a viscometer (CANNON, State College, PA, USA). Next, NaCl
salt was added to the heated solution and mixed thoroughly to mimic the salt concentration
of 154 mM (0.9%) in human blood [99]. The output potentials were converted to pH, and
the results are shown in the Clarke error grid of Figure 12, with the inset showing distinct
outputs at different pH values. It was expected that the viscous solution containing ions
from the starch molecules changed the solution conductivities and affected the output
potentials [100]. The spreads of the outputs were larger than those in aqueous solutions.
The microwells in the laminated devices were also expected to conceal more residues,
resulting in higher hysteresis. It was observed that the converted pH values of the last
experiment data of Test3 became higher than those of Test2 and Test1. The highest pH
error observed was about 0.5. This was likely due to the ionic viscous deposits trapped
in the microwells. For application cases that monitor skin conditions, sudden changes
in pH across a wide range may not occur, so the effects from previous pH-level residues
are unlikely to create errors. However, the viscosity-added accumulation of salt in the
packaged sensor may have a pH-drifting issue.
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the calibration standard. Inset shows the same potential response of the same electrode tested three
times. All electrodes showed a distinct response at pH 4, 5, 6, 7, 8, and 10.

The pH-sensing performance of printing IrOx film by the R2R process is compara-
ble with our previously reported values from the sol-gel dipping processes [77]. For the
purpose of illustration, other exemplary pH sensors developed on conductive polymer
materials [101–104] and metal oxides [105,106] from the literature show comparable sen-
sitivities and linear ranges. as shown in Table 2. The sensitivity and linear range were
defined by the respective authors. In addition to buffer solutions, some compared results
with real-life samples. It should be noted that these reports were based on different testing
conditions, protocols, and solutions, so the results shown are for reference only.
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Table 2. pH-sensing performance reported in the literature.

Material Sensitivity (mV/pH) Linear pH Range Sample * Reference

IrOx
1 −60.6 2–7 and 13–7 A.S. 6 V.S. 7 This work

IrOx
1 −(51.1–51.7) 1.5–12.1 [77]

PANI 2 −58.7 5.45–8.62 [101]
PANI 2 −60.3 2.1–12 Orange [102]

PEDOT:BTB 3 −(62–67) 4–7 A.S. 6 [103]
PANI 2 −50 4–10 Keratinocyte cells [104]
WO3

4 −377.5 6.9–8.94 A.SW. 8 [105]
RuO2/Al2O3

5 −55.3 2–6 Beverages 9 [106]

* Samples used besides buffer solution. 1 Iridium oxide (IrOx) film developed on polyimide by thermal oxidation.
2 Polyaniline (PANI) on polymer substrates by wet chemical process. 3 pH-sensitive dye bromothymol electro-
plated on conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:BTB) synthetic cotton
and silk fibers. 4 Tungsten oxide (WO3) nanofiber with a differential amplifier. 5 Ruthenium oxide (RuO2) sputter-
deposited on aluminum oxide substrate (Al2O3). 6 Artificial sweat (A.S.). 7 Viscous solution (V.S.). 8 Artificial
seawater (A.SW.). 9 Beverages include wine, juice, milk, tea, and others.

4. Conclusions

This paper demonstrates a novel iridium oxide-based (IrOx) pH sensor manufactured
by roll-to-roll (R2R) processes, compatible with the currently available high-throughput
mass production equipment. The continuous printing process of R2R provides flexibility in
scaling between lab-scale and industrial-scale production.

The fabrication and characterization of the IrOx-Ag/AgCl electrodes prepared by
the R2R and stencil techniques showed good consistency among the different sensors. A
linear sensitivity of −60.6 mV/pH was achieved with different ranges of pH and different
testing sequences. Hysteresis (dV) investigated was ±7, ±7.2, ±3.2, ±3.5, ±5.2, ±7.3, ±8.8,
±9.5, and ±6.8 mV at pH 2, 4, 5, 6, 7, 8, 10, 11, and 13, respectively, corresponding to pH
variations (dpH) of 0.1, 0.12, 0.05, 0.06, 0.08, 0.12, 0.14, 0.15, and 0.1. The stability issues
were categorized by potential fluctuation (∆V), potential drift (V′), and potential deviation
(δV), and the worst pH variations of 0.07, 0.2, and 0.15, respectively, were found in the pH
range of 5–8. The measured hysteresis and stability demonstrate the fabrication uniformity,
reliability, and repeatability. The interference studies and temperature dependence are
comparable with the previously reported values. The laminated electrodes were made
with the same R2R procedures and tested in aqueous artificial sweat and viscous solutions.
Analytical studies of the laminated electrodes under flat and curved conditions showed
that the electrodes can be reliably used for skin pH sensing through further assessments in
the Clarke error grids.

The fabrication process and materials are sustainable, as the sensing materials con-
sumed are equal to those produced, so the waste is minimal. The reconfigurable, cost-
effective, and scalable manufacturing method features advantages for disposable and
integrated sensors, in which radio frequency integrated circuit (RFID) devices can be easily
packaged with the electrodes to provide interfacing and communication functions. The
sensing communication possibility opens new pathways for large-quantity deployment of
Internet-of-things (IoT) systems.
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