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Abstract: Imidacloprid (IMI) has been applied in agricultural production to prevent pests. It is
vital to detect IMI residues with high sensitivity for food safety. In general, nanomaterials have
driven the development of highly sensitive sensing platforms owing to their unique physical and
chemical properties. Nanomaterials play important roles in the construction of high-performance
sensors, mainly through sample pretreatment and purification, recognition molecules immobilization,
signal amplification, and providing catalytic active sites. This review addresses the advances in IMI
sensors based on the combination of nanomaterials and various analytical techniques. The design
principles and performance of different chromatographic, electrochemical, and fabricated optical
sensors coupled with nanomaterials are discussed. Finally, the challenges and prospects of sensors
based on nanomaterials for IMI analysis have also been incorporated.

Keywords: imidacloprid; nanomaterials; chromatographic methods; electrochemical sensors;
optical sensors

1. Introduction

In recent years, the market share of neonicotinoid pesticides has steadily increased in
the global insecticide market because of their relative low toxicity to mammals but high
activity against insects [1]. As a first-generation neonicotinoid pesticide, imidacloprid
(IMI, 1-((6-Chloro-3-pyridiny)methyl)-N-nitro-imidazolidinimine) was first introduced in
the 1990s. IMI is the largest-selling pesticide among neonicotinoid pesticides, and it is
widely used for seed treatment in agriculture to protect crops from pests. It acts on the
nicotinic acetylcholine receptor (nAChRs) by disturbing the central nervous systems of
insects [2]. However, the long lifetime and high dose uses of IMI lead to large residues in
environmental water, soil, and food, which could enter the human body through the food
chain and pose a potential risk to human health [3–5]. This has led to some related laws
being established to limit the maximum amount of IMI residue. For example, in 2018, the
European Union banned the use of IMI [6]. The Chinese national standard GB 2763-2021
stipulated that the maximum residues of IMI in Chinese cabbage were 0.2 mg/kg [7]. Thus,
it is particularly necessary to develop reliable methods for IMI residue detection.

Up until now, various analytical methods have been developed for pesticide detection,
including chromatographic techniques, electrochemical methods, and optical methods.
Each of them has its own advantages and disadvantages (discussed in detail in Part 3).
For example, efficient sample pretreatment methods are required before chromatographic
analysis [8]. The weaker electrochemical response of IMI on traditional bare electrodes
results in low sensitivity. Introducing nanomaterials into these analytical techniques can
overcome these shortcomings. With the advancement of nanotechnology and synthetic
methodologies, various nanostructure materials (NMs), including carbon-base materials
(graphene, carbon nanotubes, porous carbon, etc.), metal nanoparticles, metal oxides and
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sulfides, upconverting nanoparticles, metal-organic frameworks (MOFs), conducting poly-
mers, and their composites, have been designed and prepared [9–12]. These nanostructure
materials possess excellent physicochemical and plasmonic properties owing to their small
particle size and high surface area. These properties make them an essential part of the
field of analytical techniques [13–16]. Nanomaterials play roles in sensor construction by
enhancing catalytic activity, immobilizing biological entities (enzyme, antibody, aptamer,
etc.), signal amplification, purification, exaction, and separation [17–21]. This review aims
to cover the recent development of IMI sensors by combining these analytical techniques
with various nanomaterials (Scheme 1).
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2. The Metabolites of IMI

When pesticides are applied to crops, they are often converted into metabolites. In the
case of IMI, the degradation of IMI produces several metabolites, including imidacloprid-
olefin (IMI-olefin), urea-imidacloprid (IMI-urea), 6-chloronicotinic acid (6-CNA, or 6-chl),
5-hydroxy-imidacloprid (5-OH-IMI), desnitro-imidacloprid (DN-IMI), and nitro-methylene
analogue (CH-IMI) [25–30], etc. Their chemical structures are shown in Figure 1. The
metabolites produced by IMI are related to the environment, and they exhibit higher toxicity
than IMI. For example, in casing soil during mushroom cultivation, the main metabolites
were IMI-urea, IMI-olefin, and 6-CNA [31]. In honey, the concentrations of IMI-olefin
(5.6 ng g−1) and 5-OH-IMI (21.1 ng g−1) were higher than those of IMI (0.8 ng g−1) [32]. To
make matters worse, the metabolites are more toxic than IMI itself. For example, IMI-olefin
is twice as toxic as IMI [33]. Hence, the risk of IMI metabolites should be considered
comprehensively when evaluating the harm of IMI.
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3. Detection Methods
3.1. Sample Pretreatment and Chromatographic Analysis

The traditional chromatographic methods, including gas chromatography (GC), high-
performance liquid chromatography (HPLC), mass spectrometry (MS), gas chromatography-
tandem mass spectrometry (GC-MS), high-performance liquid chromatography-tandem
mass spectrometry (HPLC-MS), capillary electrophoresis-mass spectrometry (CE-MS), and
ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS),
can offer high accuracy and have been recognized as the gold standard for the detection of
many organic analytes [34–37]. However, owing to the wide use of insecticides, they may
exist in a variety of complex matrices, such as soil, food, Chinese medicine, etc., and the
interferences in these matrices often affect the accuracy and sensitivity of detection [38].
Therefore, the determination of pesticide residues generally includes two steps: sample
pretreatment and quantitative detection. Up to now, researchers have proposed versatile
sample pretreatment methods to extract targets from different samples, such as solvent
extraction, solid phase extraction (SPE), the QuEChERS method (the Quick, Easy, Cheap,
Effective, Rugged, and Safe method), etc. [8,39–42]. Nanomaterials could be used for the
extraction and enrichment of targets in complex matrices due to their small size, large spe-
cific surface area, and adjustable surface groups. At present, many types of nanomaterials
have been used in sample pretreatment processes, such as carbon-based nanomaterials [43],
polydopamine [44], MOFs [45,46], covalent organic frameworks (COFs) [47,48] and so
on [49]. So far, researchers have realized that the determination of IMI in complex sam-
ples is based on pretreatment and chromatographic analysis (Table 1). For example, Xu
et al. [50] proposed an UPLC-MS/MS method for IMI detection. Firstly, IMI was extracted
with UiO-66-NH2 as an adsorbent and acetonitrile as a desorption solution. Then, IMI
was treated by UPLC with a gradient eluting procedure and identified by electrospray
ionization (ESI) on a mass spectrometer. Moreover, this method successfully detected IMI
in fruit samples with satisfactory recovery. Kharbouche et al. [51] applied a mesoporous
material (MSU-1) as a sorbent to preconcentrate 218 pesticides in environmental waters and
subsequently determine them by UPLC-MS/MS. Mou et al. [23] used nitrogen and sulfur
co-doped carbon dots (N,S-CDs) as QuECHERS cleanup reagents in the complex samples
and determined multiple pesticides with a portable mass spectrometer (µ-MS) (Figure 2).
This method could achieve simultaneous detection of five kinds of pesticides. Besides,
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the metabolites of IMI were measured mainly by chromatographic analysis. For instance,
Sánchez-Hernández et al. [52] confirmed the existence of IMI and DN-IMI in honey and
maize crop samples by LC/QTOF-MS analytical techniques.
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Figure 2. A diagram of the experimental procedure using N,S-CDs as the purification material.
Reproduced from [23] with permission from Elsevier.

The quantitative detection of three metabolites, including IMI-olefin, 5-OH-IMI, and
6-chl, was achieved by Li et al. [53] using LC-QQQ/MS. The results showed that the
residual concentration of these three metabolites varied according to vegetable tissue and
exposure time. These results helped to understand the distribution of IMI and its metabolite
residues in leaf vegetables. Moreover, these chromatographic methods exhibited excellent
performance in the simultaneous detection of multiple analytes.

Table 1. Analytical performance of IMI detection based on chromatographic analysis.

Matrices Sample Pretreatment Analytical Technique Recovery LOD Reference

fruit SPE: UiO-66-NH2 UPLC-MS/MS 92.39% 0.04 µg L−1 [50]
groundwater SPE: MSU-1 UPLC-MS/MS 80–86% below 0.1 µg L−1 [51]

vegetables QuEChERS: N,S-CD µ-MS 82.2–109.7% 0.5–1.0 ng g−1 [23]

honey, tomato,
lettuce and Chinese

cabbage samples
SPE: a Fe3O4@Ph-HCP HPLC 80.1–111%

0.30–0.67 ng g−1

(honey), 1–1.5 ng g−1

(tomato,
lettuce and

Chinese cabbage)

[54]

lemon juice, honey SPE: b Rut-MOP HPLC 82–118%
0.03–0.04 ng mL− 1

(lemon juice),
2.5–3.0 ng g−1 (honey)

[55]

vegetable
c MSPE:

d (Fe3O4@COF-(NO2)2) HPLC 81.7–103.5% 0.04 ng mL−1 [56]

cucumber, tomato
and tap water

SPE:
e TPN/Fe3O4 NPs/GO HPLC 91.2–102.4% 0.17 µg L−1 [57]

honey anion exchanger-f DPX LC-MS/MS 72–104% 1.5 µg kg−1 [34]
wheat samples g D-µSPE: h CNPC HPLC 91–99% 0.056 µg Kg− 1 [58]

wheat, rice and fruit QuEChERS LC–MS/MS 94.1–103.3% - [59]

a Fe3O4@Ph-HCP: nitrogen-rich magnetic hypercrosslinked polymer; b Rut-MOP: hydroxyl-functional magnetic
porous organic polymer; c MSPE: magnetic solid phase extraction; d (Fe3O4@COF-(NO2)2): magnetic covalent or-
ganic framework containing the nitro groups; e TPN/Fe3O4NPs/GO: triazine-based polymeric network modified
magnetic nanoparticles/graphene oxide; f DPX: disposable pipette extraction; g D-µSPE: dispersive micro-solid
phase extraction; h CNPC: CuO nanoplate-polyaniline composite.
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3.2. Electrochemical Sensors

Recently, various electrochemical techniques have attracted much attention from
researchers due to their numerous advantages, including high sensitivity, low cost, and
easy preparation [60]. Hence, electrochemical methods have been used for constructing
sensors for IMI. The electrochemical detection performance of IMI is mainly dependent
on various electrode-modified materials, such as carbon composite, reduced graphene
oxide, β-cyclodextrin, bismuth film, silica film, molecularly imprinted polymers, biological
materials, and so on. There are mainly three electrochemical strategies for IMI detection:
direct detection, indirect detection (electrochemical sensors based on MIPs and biometric
recognition elements), and electrochemical ratio sensors.

3.2.1. Direct Electrochemical Detection

IMI is an electroactive molecule in which the nitro group can undergo two-electron
or four-electron reduction on an electrode surface. The direct electrochemical reduction
of IMI proceeded on various modified electrodes to improve the sensitivity (Table 2). β-
cyclodextrin (β-CD) has a hydrophobic internal cavity and a hydrophilic external surface,
which make it useful for capturing various molecules. Therefore, β-CD was extensively
applied for sensor construction. For instance, Pereira [61] developed an electrochemical
sensor for IMI based on β-CD film coated on a glass carbon electrode (GCE). The elec-
trochemical performance of IMI on β-CD/GCE was better than that on bare GCE due to
the encapsulating effect of β-CD for IMI. A variety of carbon materials, including carbon
nanotubes, carbon paste, graphene oxide (GO) or reduced graphene oxide (rGO), etc.,
have excellent electrochemical properties and are widely used in electrochemical sensors.
Urbanová et al. [62] constructed an IMI electrochemical sensor using GO-modified elec-
trodes. The proposed sensor could detect IMI at 10–200 µM with a limit of detection
(LOD) of 8.3 µM. Johnson et al. [63] established an electrochemical sensing platform for
several neonicotinoids using laser-induced graphene (LIG) that was prepared by a scalable
direct-write laser fabrication process. The LIG-based sensor exhibited a rapid response time
(~ 10 s) and excellent performance for IMI detection with a LOD of 384 nM. The composite
composed of CD and carbon also acted as electrode-modified materials for IMI reduc-
tion. Zhao et al. [64] fabricated an electrochemical sensor using rGO/CD-modified GCE
(Figure 3a). They found that rGO/α-CD/GCE possessed the best analytical performance
than other composites (rGO/β-CD and rGO/γ-CD) owing to the good supramolecular
recognition of α-CD toward IMI. In addition, electrochemically reduced GO (E-rGO) was
time-saving and cost-effective compared with rGO prepared by wet-chemical synthesis.
The obtained E-rGO/α-CD/GCE displayed a low LOD of 23 nM with a wider linear
range of 0.5–40 µM. Finally, this new sensor could detect IMI in brown rice with satisfac-
tory recoveries. Our group [10] developed an electrochemical sensor for IMI based on
raffia-derived porous carbon/polyaniline composite modified GCE (PRC@PANI/GCE).
The PRC@PANI exhibited high electrocatalytic activity for IMI, resulting in a fourfold
increase in electrochemical signal. This prepared sensor offers high sensitivity for IMI with
a LOD of 0.03 µg mL−1. Further, we constructed an antifouling electrochemical sensor
for IMI determination in complex samples based on mesoporous silica film (MSF) coat-
ing electrochemically reduced graphene oxide/GCE (ErGO/MSF/GCE) (Figure 3c) [65].
This prepared sensor showed excellent performance for IMI determination due to the
electrocatalytic activity of ErGO and the preconcentration ability of MSF towards IMI
(Figure 3d). Mutharani et al. [22] synthesized cerium sulfide with gum arabic carbon
flowers (Ce2S3/GACFs) through the hydrothermal method and employed it to monitor IMI
(Figure 3b). The obtained Ce2S3/GACFs had a high surface area, which provided many
electrocatalytic active sites for IMI reduction. This prepared sensor could detect IMI in a
wide linear range of 0.05–1266 µM with a LOD of 32 nM. Besides, other materials such
as TiO2 [66], bismuth film [67], graphene quantum dots/ionic liquid/multiwall carbon
naotubes (GQDs/IL/MWCNTs) [68] were also used to modify GCE and applied for IMI
determination. The nanomaterials can improve the electrochemical response of IMI mainly
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in two aspects: on the one hand, they can increase the active area of the electrode, and on
the other hand, they can catalyze the reduction of IMI.

Table 2. Analytical performance of IMI detection based on direct electrochemical reduction.

Electrode Materials Technique Linear Range LOD Reference

GO/GCE SWV a 10–200 µM 8.3 µM [62]
GO/GCE CV b 0.8–10 µM 0.36 µM [69]

NGE-N/GCE e DPV c 4–20.0 µM 0.55 µM [70]
LIG f SWV Not given 384 nM [63]

β-CDP/rGO/GCE g DPV 0.05–15.0 µM, 20–150.0 µM 0.02 µM [71]
E-rGO/α-CD/GCE LSV d 0.5–40.0 µM 20 nM [64]

β-CD/MWCNT-MEA h DPV 5.0–100.0 µM 0.629 µM [72]
RPC@PANI/GCE i CV 0.1–70 µg mL−1 0.03 µg mL−1 [10]

MSF/ErGO/GCE j CV 1.0–50 µg mL−1

50–400 µg mL−1 0.3 µg mL−1 [65]

Ce2S3/GACFs/GCE k DPV 0.391–274 µM 32 nM [22]
GQDs/IL/MWCNTs/GCE l DPV 0.03–12 µM 9 nM [68]

a SWV: Square-wave voltammetry; b CV: Cyclic voltammetry; c DPV: differential pulse voltammetry; d LSV: Linear
Sweep Voltammetry. e NGE-N: vitamin B3 reduced nitrogen-doped graphene; f LIG: laser-induced graphene;
g β-CDP:ββ-cyclodextrin polymer; h β-CD/MWCNT-MEA: β-cyclodextrin/multi-walled carbon nanotube (β-
CD/MWCNT)-modified microelectrode array; i RPC@PANI: raffia derived porous carbon and polyaniline;
j MSF/ErGO: mesoporous silica film/electrochemically reduced GO; k Ce2S3/GACFs: cerium sulfide with gum
arabic carbon flowers; l GQDs/IL/MWCNTs: graphene quantum dots/ionic liquid/multiwall carbon nanotubes.
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20 µg mL−1 IMI. Reproduced from [65] with permission from Elsevier.

3.2.2. Electrochemical Sensors Based on MIPs

Molecularly imprinted polymers (MIPs) are tailor-made synthetic materials with high-
affinity binding sites for a specific target molecule [73]. MIPs are prepared by mixing a target
molecule as a template with a cross-linking agent and an initiator. After polymerization, the
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template is removed, leaving the hole exactly the same as the target molecule. The forming
hole can rebind perfectly with the target molecule, allowing it to be specifically recognized
and detected target molecule. Therefore, sensors based on MIPs have been designed and
applied in various fields, such as environmental analysis [74], pharmaceutical analysis [75],
nucleic acid assay [76], and food safety [77]. For instance, the Zhou group [78] prepared
MIP on graphene oxide modified GCE by cyclic voltammetry, using IMI as the template
and o-phenylenediamine (o-PD) as the functional monomer (Figure 4a). The imprinted
electrode exhibited good selectivity toward IMI, detecting IMI in the concentration range of
0.75–70 µM with a LOD of 0.4 µM. The Wang group [79] synthesized MIP by chemical
method, using p-vinylbenzoic acid (VBA) as functional monomer, IMI as template molecule,
ethylene glycol dimethacrylate (EGDMA), and azobisisobutyronitrile (AIBN) as cross-
linker and initiator. The prepared MIP was dropped on polished GCE and applied for
IMI detection. This proposed sensor could detect IMI at 0.5–15 µM with a LOD of 0.1 µM.
Moreover, it was successfully applied to detect IMI in brown rice samples. Tang et al. [80]
prepared upconverting nanoparticles with a modified zeolite imidazolate framework and
MIPs composite (MIPs/UCNPs@ZIF-8) for constructing an electrochemiluminescence
(ECL) sensor. The obtained ECL sensor exhibited excellent performance for IMI detection
in a concentration range of 0.1 ng L−1 to 1 mg L−1 with a LOD of 0.01 ng L−1. Ma et al. [81]
developed an ECL sensor for trace detection of IMI based on an ultrafine mixed-valence
Ce-MOF (UMV-Ce-MOF) combined with MIP (Figure 4b,c). This proposed sensor could
detect IMI with high sensitivity and selectivity.
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from ACS.
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3.2.3. Electrochemical Sensor Based on Biometric Molecules

Except for MIP, some biometric recognition elements such as antibodies, enzymes,
and aptamers have been used to improve the selectivity of sensors. Timur et al. [82]
found an aptamer of IMI by the Systematic Evolution of Ligands by Exponential Enrich-
ment (SELEX) process, and an aptasensor was constructed for IMI detection in a range of
0.1–50 ng mL−1 with a LOD of 0.19 ng mL−1. Pérez-Fernández et al. [83] reported a com-
petitive immunosensor for IMI detection based on AuNPs-modified screen-printed carbon
electrodes (AuNPs-SPCE). In this work, a monoclonal antibody to IMD (mAb-IMD) was
immobilized on AuNPs-SPCE, and a competitive assay was performed between free IMI
and IMI labeled with horseradish peroxidase (HRP). The electrochemical reduction signal
of oxidized 3,3′,5,5′-tetramethylbenzidine (TMB) was associated with IMI concentration,
avoiding the use of secondary antibodies. This sensor exhibited excellent performance for
IMI determination, with a satisfactory low LOD, high selectivity, and stability. Furthermore,
this sensor was successfully applied in IMI analysis on a real sample, and the reliabil-
ity was also validated by HPLC-MS/MS. Table 3 concludes the analytical performance
of electrochemical IMI detection based on recognition elements such as MIP, antibodies,
and aptamers.

Table 3. Analytical performance of the electrochemical method for IMI detection based on recogni-
tion molecules.

Electrode Materials Recognition
Element Technique Linear Range LOD Reference

PoPD-RGO/GCE a MIP LSV 0.75–70 µM 0.4 µM [78]
GN/MIPs/GCE b MIP LSV 0.5–15 µM 0.1 µM [79]

GCE/TiO2NPs/IMD
imprinted

poly(levodopa)
MIP SWV 2.0–400 µM 0.3 µM [84]

UMV-Ce-MOF c MIP ECL 2–120 nM 0.34 nM [81]
MIPs/

UCNPs@ZIF-8/GCE d MIP ECL 0.1 ng mL−1 mg mL−1 0.01 ng mL−1 [80]

Gold electrode aptamer EIS f 0.1–50 n g mL−1 0.19 ng mL−1 [82]
AuNP-SPCE e antibody chronoamperometry 50–10,000 pM 22 pM [83]

SPCE antibody chronoamperometry 50–10,000 pM 24 pM [85]
a PoPD-RGO: imprinted poly(o-phenylenediamine) (PoPD) membranes at reduced graphene oxide (RGO);
b GN: graphene; c UMV-Ce-MOF: ultrafine mixed-valence Ce-MOF; d UCNPs@ZIF-8: upconverting nanoparticle
functional zeolite imidazolate framework; e AuNP-SPCE: gold nanoparticle-modified screen-printed carbon
electrodes (SPCE); f EIS: electrochemical impedance spectroscopy.

3.2.4. Ratiometric Electrochemical Sensor

The classical electrochemical sensor contains only a single electrochemical signal of
the target molecule, and its reproducibility is easily influenced by electrode properties or
the complex detection system. To overcome this limitation, ratiometric electrochemical
sensors involving the simultaneous measurement of two electrochemical signals at different
potentials have been developed. By introducing a built-in correction for the analyte’s signal,
the ratio electrochemical sensor greatly improves the reproducibility and reliability of
electrochemical detection. So far, ratio electrochemical sensors have been used to detect
metal ions, nucleic acids, proteins, biological small molecules, etc. [86,87]. The researchers
also applied the ratio sensing strategy for IMI detection. The Kan group [88] constructed a
ratio electrochemical sensor by electropolymerization of thionine and β-CD composite on
GCE for IMI determination, in which thionine as an internal reference element provides
a built-in correction. The current ratio of IMI and thionine was employed as the signal
for IMI detection, and it exhibited a good linear relationship in the concentration range of
0.04–10 µM. The Zou group [89] prepared a ratio electrochemical sensor coupled with a
MIP strategy for IMI detection, in which 6-(Ferrocenyl)hexanethiol (FcHT) is used as an
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inner reference and MIP as a molecular recognition receptor (Figure 5). The combination of
ratiometric strategy and MIP enhances the sensitivity and selectivity of the sensor.
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To sum up, researchers have developed a variety of electrochemical sensing strategies
based on nanomaterials for IMI detection. On the one hand, designing and synthesiz-
ing nanomaterials with controlled morphology or preparing hybrid materials to further
improve the electrocatalytic reduction of IMI is highly necessary. On the other hand, com-
bining the advantages of easy miniaturization of electrochemical sensors with specific
recognition elements, the establishment of hand-held electrochemical sensing devices with
high selectivity and sensitivity has great prospects.

3.3. Optical Sensors

Over the past decades, researchers have devoted intensive efforts to developing vari-
ous optical sensors due to their advantages, including simplicity, ultra-sensitivity, and high
selectivity. The principle of an optical sensor is based on the shift of the characteristic signal
caused by the interaction of the analyst with the substrate or with other optical molecules.
With the development of nanotechnology, many optical detection platforms have been
born. According to the different detection signals, multiple optical sensors, including
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fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman
spectroscopy (SERS), have been applied to detect IMI (Table 4).

3.3.1. Fluorescent Method

Recently, with the significant development of optical nanomaterials, fluorescence
sensing has dramatically benefited from various luminescent nanoparticles. For instance,
Tian et al. [90] developed two kinds of lateral flow immunoassay (LFIA) for IMI determina-
tion based on time-resolved fluorescent nanobeads and colloidal gold, respectively. The
proposed LFIAs achieved high accuracy and a low LOD for IMI analysis. Guo et al. [12]
established a competitive fluorescence resonance energy transfer (FRET) immunoassay for
IMI detection (Figure 6a). FRET occurred through the specific immunoreaction between
antigen/GO and mAb/up-converting nanoparticles, (UCNPs). The fluorescence intensity
of UCNPs was weakened by GO, and the florescent recovery of UCNPs is associated with
IMI concentration through the competitive mechanism. This sensor showed a wide range
of 0.08–50 ng/mL for IMI in the presence of other interferences. Li et al. [91] proposed
a fluorescence-based immunoassay (FIA) for IMI, in which multiple strategies were in-
volved (Figure 6b). In details, firstly, gold nanoclusters (AuNCs) were loaded on cobalt
oxyhydroxide (CoOOH) nanoflakes by electrostatic interaction, in which the fluorescence
intensity of AuNCs was suppressed by CoOOH by FRET. Secondly, the fluorescence of
AuNCs recovered due to the decomposition of CoOOH nanoflakes triggered by ascorbic
acid (AA), which was produced through enzyme-induced L-ascorbic acid-2-phosphate
(AAP) hydrolysis. Clearly, the fluorescence response of AuNCs was related to the ALP
activity labeled on the antibody. Thirdly, in the presence of IMI, the amount of labeled ALP
decreased due to competitive immunoreaction, resulting in a decrease in the fluorescence
intensity of AuNCs. The fluorescence change of AuNCs was related to the concentration of
IMI, so the quantitative detection of IMI could be realized (Figure 6c,d). This FIA protocol
was 60 times more sensitive than that of a conventional enzyme-linked immunosorbent
assay (ELISA), and a low LOD of 1.3 ng mL−1 was obtained.
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Figure 6. (a) Schematic of the FRET immunoassay between UCNPs and GO for one-step detection of
imidacloprid residue. Reproduced from [12] with permission from Elsevier. (b) Schematic representa-
tion of FIA. (c) The FL spectra of the FIA toward imidacloprid standards with various concentrations
(0, 0.1, 0.5, 1.0, 5.0, 10, and 50 ng mL−1). (d) The linear plot of IE (%) versus the concentration of
imidacloprid. Reproduced from [91] with permission from Elsevier.
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3.3.2. Colorimetric and Surface Plasmon Resonance (SPR) Sensors

A colorimetric sensor has the merits of visualization, simplicity, low cost, and being a
powerful tool for high-throughput analysis. In recent years, various noble metal nanoparticles,
such as AuNPs and AgNPs, have been applied for the construction of colorimetric sensors
owing to their strong localized surface plasmon resonance (LSPR) effect. Further, plasmonic
colorimetric sensors based on metal nanoparticles have been applied to detect various
analytes, including metal ions, pesticides, proteins, DNA, pathogens, and so on [92–96].
For example, Tian et al. [97] developed a colorimetric sensor for IMI based on the induced-
aggregation property of prperidine-calix [4] arene modified AuNPs (PPC-AuNPs), and this
sensor could detect IMI with high sensitivity and a LOD of 0.25 µM. Zhao et al. [98] proposed
colorimetric sensors for different pesticides based on their inhibition of acetylcholinesterase
(AChE) using diverse AuNPs (Figure 7a), and this method could successfully distinguish
eight pesticides by linear discriminant analysis (LDA) (Figure 7b). More importantly, a
portable device was constructed by combing this method with a smartphone (Figure 7c).
Wang et al. [99] designed a label-free SPR sensing platform with a multichannel spectral
imaging system, which enabled high-throughput quantified detection of IMI and fipronil
(Figure 8). More importantly, this custom-made integrated system could allow on-site
detection, which was an improvement over chromatographic methods.
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Figure 7. The principle and working process of the AuNP-based colorimetric sensor array for
distinguishing multiple pesticides. (a) The mechanism of distinguishing multiple pesticides by
combining AChE and AuNP-based colorimetric sensor arrays. (b) The schematic diagram of the
colorimetric sensor-array result. (c) The main procedures of the working process are dosing, shaking,
imaging, and picking colors. Reproduced from [98] with permission from Elsevier.
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Figure 8. (a) Illustration of the competitive binding immunoassay and the induced signal difference in
the SPR peak shift. The blocker used here is 2-mercaptoethanol. Kinetic SPR curves of (b) imidacloprid
and (c) fipronil; abbreviations: SPR, surface plasmonic resonance; IMD, imidacloprid; FPN, fipronil;
DIW, deionized water; PBS, phosphate-buffered saline. Reproduced from [99] with permission
from Elsevier.

3.3.3. Surface-Enhanced Raman Spectroscopy

The Surface Enhance Raman Scattering (SERS) technique has received much attention
in the field of analysis due to its non-invasive and unique fingerprint characteristics. In
particular, the Raman signal can be enhanced with the use of nanomaterials with plasmonic
properties, greatly improving the sensitivity of detection. For example, the O’Riordan
group [100] proposed a SERS sensor for two neonicotinoids, including clothianidin and IMI,
using Ag nanoparticles coated Polyvinylidene fluoride (PVDF) substrates. The developed
SERS can sense 1 ng/mL IMI with a LOD of 4 nM. More importantly, in this work, the
authors provide the detailed vibrational characteristics of IMI in combination with first-
principle simulations. Sun et al. [101] developed a SERS sensor for IMI with a competitive
immune strategy (Figure 9). In this work, a Raman tag containing C≡N (1800–2800 cm−1)
bond was anchored on an AuNR@Ag nanocuboid to resist the optical interference from
the fingerprint region (<1800 cm−1) and an antibody was used to specifically identify
IMI. In addition, the Fe3O4 nanoparticles were used to achieve magnetic separation and
improve the SERS intensity. This SERS immunosensor can detect IMI at 10–40 nM with high
selectivity. Sheng et al. [24] developed a SERS-based lateral flow assay (SERS-LFA) test strip
for detection of IMI, chlorothalonil (CHL), and oxyfluorfen (OXY) simultaneously with a
competitive immune strategy. In this work, the prepared silver-core, gold-shell (Ag@Au)
nanoprobe was used to fix the SERS signal molecule 4-nitrothiophenol (4-NTP), connect
antibodies, and enhance the SERS signal. This SERS-LFA test strip gains reliable results
with rapid response, high sensitivity, low LOD, and low cost. The detection sensitivity was
closely related to the type of SERS base materials.
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Table 4. Analytical performance of IMI detection based on optical methods.

Methods Materials Linear Range LOD Reference

colorimetry PPC-Au NPs 1 0.05–1000 µM 5.0 µM [97]
colorimetry I-IL-Au NPs 2 Not given 0.5 µM [102]

SPR immunoassay Nanoplasmonic chips Not given 11.103 ppb [99]
SPR immunoassay plasmonic biochip Not given 0.2 ng mL−1 [103]

fluorescence CoOOH-AuNCs 0.1 ng mL−1 –50 ng mL−1 0.1 ng mL−1 [91]
fluorescence colloidal gold 0.028 ng mL−1–0.5 ng mL−1 0.01 ng mL−1 [90]
fluorescence GO-UCNPs 3 0.08 ng mL−1–50 ng mL−1 0.08 ng mL−1 [12]

SERS immunosensor Fe3O4-AuNR@Ag 10–400 nM 9.58 nM [101]
LSPR immunosensor Y-shaped gold NPs Not given 1.0 ng mL−1 [104]

ratiometric
fluorescence MIFP-SiCQDs@CdTe QDs 4 5 ng mL−1–0.5 µg mL−1 3.55 ng mL−1 [105]

1 PPC-Au NPs: piperidine-calix [4] arene modified gold nanoparticles; 2 I-IL-Au NPs: onimidazole ionic liquid
(IL) modified gold nanoparticles; 3 GO-UCNPs: graphene oxide (GO) and up-converting nanoparticles (UCNPs);
4 MIFP-SiCQDs@CdTe QDs: molecularly imprinted multilevel mesoporous silica.
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4. Conclusions and Outlook

This review summarized the impressive recent works on sensors for IMI using vari-
ous nanomaterials, and the functions of nanomaterials in different analytical techniques
(chromatographic, electrochemical, and optical) were described. From the comprehensive
analysis results displayed in Tables 1–3, it can be seen that nanomaterials play signifi-
cant roles in designing novel sensors, and the analytical performance of sensors is greatly
improved with the incorporation of nanomaterials. For sample preparation, various pre-
treatment methods have been designed to remove matrix interference and pre-enrich the
targets based on functional nanomaterials. Subsequently, multiple chromatographic tech-
niques were used for the accurate detection of IMI and its metabolites. In electrochemical
and optical methods, nanomaterials are mainly used for immobilizing specific molecules
and amplifying signals. Moreover, the selective detection of IMI has been realized with the
help of MIP and biometric molecules.

Although researchers have developed a variety of highly sensitive sensors for IMI
detection, these sensing systems still face several problems and challenges. Hence, we
suggest that further research perspectives in this field be taken into account: (1) decrease
the testing cost of sensors; (2) continuous real-time monitoring of IMI during crop growth;
(3) portable microdevices for field detection; (4) long-term stability of sensors in complex
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real samples. By considering the abovementioned problems, the development of various
sensors should be combined with other advanced technologies, such as the microfluidic
technique, to give full play to the advantages of portability and miniaturization of microflu-
idic devices. On the other hand, antifouling sensing platforms need to be established to
maintain their stability on complex substrates.
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