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Abstract: Mesoporous silica materials have been widely used as gas adsorbents due to their ex-
cellent adsorption ability, large specific surface area, simple preparation process, and convenient
functionalization. In this study, a core–shell mesoporous material MCM-41@SiO2 was synthesized
and functionalized by CoCl2, and subsequently KSCN, to prepare an ammonia adsorbent. The
adsorbent was proved to possess high surface area, good sphericity, uniform size, good dispersibility,
and high adsorption capability following DLS, SEM, TEM, and a static adsorption study. Moreover,
the successful functionalization and thermal stability were confirmed by FT-IR, XPS, and TGA. The
material was then used to fabricate a glass tube sensor for the rapid naked-eye detection of ammonia
gas. The sensor showed good performance in terms of sensing speed, selectivity, accuracy, and
reusability. Within 5 s, NH3 could be detected by the discoloration, and a wide NH3 concentration
from 20 to 1000 ppm could be detected. It also showed a good linear relationship between discol-
oration length and ammonia concentration. A reversible color change from blue to yellow indicated
the presence of NH3, which was attributed to the formation and disassembly of ammonia-containing
complex [Co(NH3)6(NCS)2]. With fast adsorption, naked-eye sensing properties, and good selectivity,
the sensor holds good promise for indoor NH3 sensing and other more complicated situations.

Keywords: mesoporous silica; MCM-41@SiO2; ammonia sensor; colorimetric sensor

1. Introduction

NH3, with its pungent odor, is a noxious gas that irritates skin, eyeball mucosa, and
mucous membranes of respiratory organs after being inhaled, despite the fact that it is
widely used in various fields, such as in fertilizers, refrigerant, plastics, and the pharma-
ceuticals industry [1–5]. Moreover, inhalation of excessive NH3 gas could even cause lung
swelling and death. Therefore, NH3 is classified as a Grade IV (mild hazard) gas according
to the China National Standard TJ36-79, and the maximum allowable concentration of
ammonia in an indoor workshop is 39.53 ppm. Moreover, according to the American Con-
ference of Governmental Industrial Hygienists, NH3 concentration in ambient air should
be less than 25 ppm for 8 h work and 35 ppm for a short period of work.

Generally, NH3 concentration detection is vital in many fields, such as methanol pro-
duction and urea production. Typical detection methods, such as titration (which is based
on the discoloration of an acid-base indicator to indicate the endpoint) and Nessler spec-
trophotometry (which depends on the light absorbance measurement), are commonly used.
These methods are simple and easy to operate but tedious and inaccurate, with an unsatis-
fied limit of detection (LOD) around 0.02 mg/L. With the development and popularization
of chromatography technology, gas chromatography (GC) has been used in gas detection,
through which in situ ammonia quantification was obtained within 5 min, and the LOD was
about 150 ppb (v/v, converted to 110 ng/L in gas phase) [6–8]. For example, ammonia in
cigarette and cigar smoke was successfully identified by GC [9]. Although the accuracy was
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improved and online monitoring was realized by using these methods, large and expensive
instruments and serious operation training are required for GC detection, resulting in incon-
venience, untimely data acquisition, and high detection costs. An NH3 detection sensor was
also developed due to its fast, simple, and convenient detection, easy operation, and low
pollution [10–15]. Kanaparthi and co-workers introduced a NH3 sensor by using a solvent-free
frictional deposition of polymer method. The sensor detected NH3 in the concentration range
of 200 ppb to 3.15 ppm, and the sensitivity was 20.5%/ppm [16]. Electrochemical sensors
aiming to detect NOx, which can indirectly indicate the presence of NH3, have also been
reported. A metal-oxide-semiconductor sensor was developed based on the Pt-supported
catalytic conversion of NH3 into NOx [17]. Similarly, a conductometric room temperature
NOx sensor based a on metal-organic framework-derived Fe2O3/Co3O4 nanocomposite can
sensitively respond to NH3 [18]. Additionally, other sensors detect ammonia directly [19,20].
Compared to traditional detection methods, sensor incontrovertibly has a broad prospect
of application in NH3 detection. Additionally, colorimetric sensors have attracted a lot of
attention due to their intuitive detection method, simplicity, and sufficient accuracy [21–24].
For instance, Kim and co-workers reported a colorimetric sensor for H2S and NH3 detection
based on a composite nanofiber yarn functionalized with ionic liquid and lead iodide dyes,
respectively [25]. Similarly, Al-Qahtani and co-workers developed a dye loaded microporous
composite sensor to detect NH3, which showed an obvious bathochromic shift when the
ammonia concentration increased [26].

Gas detection and naked-eye sensing can also be realized by colorimetric mesoporous
silica materials based on dyeing or non-ferrous metal ion loading [27]. Mesoporous silica
has emerged in recent years and been extensively explored in relation to gas sensing and
adsorption, showing great promise as an adsorbent due to its evenly dispersed pores and
easy functionalization of many functional groups, such as silicon hydroxyl group [28,29].
A series of mesoporous silica, for example, MCM-41, SBA-15, and KIT-6, was constructed
based on different kinds of surfactants, such as CTAB or P123 [30–33]. Additionally, their
adsorption capability on gases or contaminants and the remarkable modification strate-
gies have been well documented [34–36]. The adsorption performance of MCM-41 and
its modified substance were notably realized when applied to harmful gas due to their
small pores, large surface area, and strong noncovalent binding interactions [37,38]. In
order to improve their specificity, dyes, polymers, and ions were loaded in MCM-41 to
fabricate functionalized materials, and they were applied in sensing different kinds of
gases including CO2, methanol, and other volatile organic gas (VOC) [39]. Their binding
capacity, adsorption rate, and selectivity were markedly enhanced since the target adsor-
bate gases combined both to the surfaces and internal channels of mesoporous MCM-41
through chemical and physical interactions. These materials provided new possibilities
for the sensing and detection of target gases due to their high adsorption capacity and
desirable selectivity.

Herein, a convenient, fast, and intuitive ammonia gas detection method was developed
to dynamically monitor ammonia gas content in regular conditions based on a core–shell
structure mesoporous silica MCM-41@SiO2. The spherical core–shell structure mean that
the material had a better capacity and eased functionalization. Metal ions Co2+ and SCN−

were introduced to enhance its adsorption capacity and selectivity, and they endowed
the material with the ability to visually sense NH3 through a change in color due to the
formation and disaggregation of an ammonia-containing complex. Furthermore, a detection
tube sensor was fabricated by this material as the filler. Using this sensor, an accurate, fast,
and convenient visual sensing method was established, with a linear relationship between
the discoloration length of the sensor and the concentration of ammonia gas.

2. Materials and Methods
2.1. Materials

We purchased 3-aminopropyl trimethoxysilane (APTMS) and 3-mercaptopropyl trimethoxysi-
lane (MPTMS) from TCI shanghai. Hexadecyl trimethyl ammonium bromide (CTAB) and ethyl
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orthosilicate were purchased from J&K Scientific Co., Ltd. (Guangzhou, China). Sodium hydrox-
ide, acetone, ethanol, ammonia solution, NH3 gas, CoCl2, KSCN were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). All the materials were used as received without
further purification.

2.2. Synthesis of SiO2 and Core-Shell MCM-41@SiO2 Nanoparticles

SiO2 nanoparticles were synthesized using the emulsion polymerization method.
Subsequently, 4.5 mL TEOS and 90 mL ethanol were added in the mixture of 10 mL aqua
ammonia, 32.5 mL ethanol, and 47.5 mL deionized (DI) water, followed by stirring for
2 h. Then, the resulting nanoparticles were washed with ethanol and DI water and dried
at 60 ◦C.

The core–shell structure MCM-41@SiO2 was fabricated with the obtained SiO2 nanopar-
ticles as the substrate. A total of 0.3 g SiO2 nanoparticles and 0.4 g NaOH were added in the
mixture of 200 mL DI water and 100 mL ethanol. Afterwards, the mixture was sonicated
and stirred for 2 h before the addition of 2 g CTAB and 0.45 mL TEOS. Then, the reaction
system was continuously stirred for 8 h and deposited overnight. After being centrifuged
and washed with DI water and ethanol, the product was transferred to a muffle furnace
and baked at 550 ◦C for 6 h to remove the surfactant CTAB. Finally, the white powdery
solid core–shell mesoporous material (MCM-41@SiO2) was obtained.

2.3. Functionalization of MCM-41@SiO2

Specifically, 0.5 g MCM-41@SiO2, 0.8 g CoCl2, and 2.4 g KSCN were dispersed in
100 mL acetone solution and stirred continuously at room temperature for 48 h. Then, the
solid was collected after filtration and subsequently dispersed in a small amount of acetone
to remove the remanent inorganic salt. The blue powder functionalized MCM-41@SiO2
solid was finally obtained after being dried at 60 ◦C.

2.4. NH3 Detection Tube Sensor Fabrication and Performance Characterization

A certain amount of the obtained functionalized MCM-41@SiO2 was mixed with SiO2
nanoparticles and filled into a glass tube with scales, which was then end-capped with
cotton and compacted to fabricate a NH3 detection tube sensor. NH3 gas mixture was
diluted with air to a series concentration (20–3000 ppm), and a series of sensors were
fabricated. One at a time, 100 mL of each concentrated gas mixture was injected into
the detection sensors to verify their detection performance. Due to rapid adsorption, the
color of the sensors would quickly change, and the discoloration lengths were recorded.
The relationship between the discoloration lengths of the tube sensors and the NH3 gas
concentrations was fitted to acquire a calibration curve.

2.5. Humidity Test and Long-Term Stability Test

The sensors consisting of 0.5 g functionalized materials were used to detect ammonia
gas with different relative humidities (RHs). The RHs were set to 10%, 20%, 30%, and
increased to 70% at intervals of 10%. The concentration of ammonia gas was fixed to
50 ppm, and the volume was fixed to 100 mL. Discoloration lengths were recorded.

The prepared materials that had been stored at room temperature for 1, 7, 14, 30, and
60 days, respectively, were used to fabricate sensors. The weight of the packing in the
sensor was 0.5 g. Additionally, the ammonia concentration of the target gas mixture was
50 ppm, while the volume was fixed to 100 mL. The discoloration lengths were recorded.

2.6. Selectivity and Reusability Tests

A selectivity test was implemented by detecting the difference in quality of the func-
tionalized MCM-41@SiO2 material before and after the adsorption of various target gases,
including pure NH3, CO2, CO, MeOH, benzene, EtOH, and HCHO. The materials were
put in a hermetically sealed container with different gases for a period of time to reach
the adsorption equilibrium. Additionally, the functionalized materials were also purged
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with these gases to verify the response to target gas and interferences by color change. The
quality of the sensing material was fixed to 0.5 g.

Similarly, 0.5 g of the material was used as the stuffing in sensor, and 100 mL ammonia
gas with a concentration of 50 ppm was injected into the sensor. Afterwards, it was heated
to completely desorb the gases. Then, the reusability test was conducted by detecting the
change in discoloration length and capturing the optical photograph.

3. Results and Discussion
3.1. Characterizations of SiO2 and Core-Shell MCM-41@SiO2 Nanoparticles

As a typical mesoporous silica material, MCM-41 has been widely used due to its porous
structure, large surface area, and good stability [40,41]. However, its adsorption capacity and
application as a column packing material are generally limited due to its amorphousness.
Therefore, a core–shell structural material with SiO2 nanoparticles and MCM-41 as the core and
shell was prepared in order to obtain micro-spherical particles. Although SiO2 nanoparticles
are commonly used in many research areas, their diameter and uniformity always cause a
dilemma. Moreover, the physicochemical performance of the core–shell mesoporous silica
material may be greatly influenced by the size, uniformity, and sphericity of the silica particles.
Therefore, the preparation condition of SiO2 nanoparticles was systematically studied and
optimized, and the obtained materials were characterized (Table 1).

Table 1. Preparation and characterization of SiO2 nanoparticles.

Entry Stirring Speed
(r/min) Temperature (◦C) Aqua Ammonia:TEOS

(v/v)

Diameter of SiO2
Nanoparticles

(nm)
PDI Diameter of

MCM-41@SiO2

1 100 20 2:1 750 0.103 1200
2 200 20 2:1 680 0.082 1150
3 300 20 2:1 510 0.071 900
4 400 20 2:1 425 0.174 630
5 300 0 2:1 705 0.113 -
6 300 30 2:1 490 0.089 -
7 300 50 2:1 440 0.095 -
8 300 20 1:1 500 0.072 -
9 300 20 3:1 495 0.091 -

10 300 20 4:1 510 0.057 -

It can be seen that stirring speed is one of the main factors influencing the nanoparticle
size in the emulsion polymerization process. As shown in Table 1, the diameter of SiO2
nanoparticles decreased from 750 nm to 425 nm when the stirring speed increased from
100 r/min to 400 r/min since the higher stirring speed yielded the monomers evenly
dispersed in the emulsion, lessening contact and the ability of micelles to assemble properly.
Therefore, the growth rate of the micelles was slowed down, meaning that a smaller
particle size was obtained. However, a dynamic light scattering (DLS) test showed that
ill-distributed particles were obtained when the stirring speed exceeded 300 r/min because
the excessive stirring speed may induce the breakage of free radical chains of unformed
colloidal microspheres, and eventually, the nonuniform particle size distribution. Moreover,
SiO2 nanoparticles were notably influenced by the polyreaction temperature. A clear
reduction in the diameter of particles occurred when the reaction temperature was raised.
This could be attributed to the thermodynamic characteristics of polymerization. Entropy
increased and exotherm occurred in the polymerization process, which means a rise in
reaction temperature could promote the reverse reaction, thus hindering the reaction to
some extent. Additionally, with increasing temperature, the rate of free radical generation
increased and the diffusion rate of free radicals from water phase to emulsion phase
increased accordingly, which led to an enlarged latex particle number and decreased
diameter. Resultingly, the diameter of particles deceased from 705 nm to 440 nm when
the temperature increased from 0 ◦C to 50 ◦C. Moreover, it has been reported that the feed
ratio of TEOS has an obvious influence on the size of colloidal particles [42,43]. Hence,
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we assumed that the feeding amount of aqua ammonia would also have an effect on the
particle size. Thus, the volume ratio between ammonia and TEOS was considered. The
results showed that the nanoparticle size remained nearly constant when the volume ratio
of ammonia to TEOS raised from 1:1 to 4:1, which means there was no correlation between
ammonia dosage and nanoparticle size. We assumed that the amount of TEOS rather
than its feed ratio could influence the formation of SiO2 nanoparticles while providing an
alkaline environment.

Considering the flow resistance and defects such as channel flow, SiO2 nanoparticles
with a moderate size, uniform diameter, and good sphericity were recognized, and their
morphology was shown in Figure 1a. The SiO2 nanoparticles that were 510 nm in diameter
proved to have high sphericity and good dispersion, and they helped form a stable and
uniform core in the following preparation.
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Figure 1. (a) SEM of the SiO2 nanoparticle with a diameter of 500 nm; (b) TEM of the core–shell
materials MCM-41@SiO2 (The insert is an enlarged view of the local channel).

The pore morphology of core–shell material MCM-41@SiO2 based on the prepared
nanoparticles as seeds is shown in Figure 1b. It is clear that the spherical shape was main-
tained while the thickness of the shell was 195 nm. The thickness of the shell increased
accordingly with the increase in the core size, which could be attributed to the larger contact
surface brought on by a larger particle size. Specifically, TEOS would contact and be evenly
coated (layer by layer) on the surface of SiO2 to form spherical core–shell nanoparticles. Ad-
ditionally, with the increase in the size of the core, more cationic coagulants and surfactants
were combined on the surface, leading to an equally increased amount of silicon source
to be coated on the core. Therefore, the sizes of core–shell materials MCM-41@SiO2 could
be modulated by modulating diameters of SiO2 nanoparticles. Moreover, the micro pores
of 2~3 nm were observed through an insert graphic by TEM. The pores were arranged in
order and formed a uniform spherical shell structure, providing the core–shell particles
sufficient adsorption volume and area to be modified.

3.2. Functionalization of the Core-Shell MCM-41@SiO2 Mesoporous Material

Similar to water molecules, ammonia is a small molecular ligand, and for the transition
elements of the periodic table of elements, the bonding ability of ammonia mostly exceeds
that of water. An ammonia-containing complex can generally be formed between ammo-
nia and many metals through a substitution reaction. Since many ammonia-containing
complexes are colored, a colorimetric ammonia sensor can be developed because a ligand
substitution reaction could occur, and a new complex with a different color is formed upon
interaction with ammonia. A blue complex Co(SCN−4)2− formed by Co2+ and SCN− was
used to indicate ammonia gas in this study based on the formation or dissociation of the
colored ammonia-containing complex.

Therefore, Co2+ and SCN− were loaded in the core–shell MCM-41@SiO2 through
a post-synthetic grafting technique. The obtained nanomaterials presented a blue color,
which was attributed to the successfully grafted SCN− groups and Co2+. The Co(SCN)4

2−
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complexes were attached on the outer and inner surfaces of the mesoporous material, and
that made the material appear bright blue in color.

The abundant hydroxy groups on the surfaces of pores in the mesoporous shell
MCM-41 provided the binding sites with metal ions or other functional groups to fab-
ricate a functionalized material. The chemical structure of MCM-41@SiO2 before and
after modification was confirmed by FT-IR, as shown in Figure 2a. The broad diffraction
peaks at 3428 cm−1 and 3285 cm−1 of both samples could be attributed to the stretching
vibration of -OH and the existing hydrogen bond, which proved that the material was
abundant with free hydroxy groups that could physically adsorb ammonia. Peaks at
457 cm−1, 802 cm−1, 962 cm−1, and 1082 cm−1 were attributed to bending vibration and
the symmetrical and asymmetric telescopic vibration of Si-O-Si. After the material was
functionalized with CoCl2 and KSCN, a sharp peak at 2077 cm−1 emerged, which was
attributed to the symmetrical telescopic vibration of -SCN. Additionally, Peaks at 457 cm−1,
802 cm−1, 962 cm−1, and 1082 cm−1 showed a red-shift after being modified with CoCl2
and KSCN, proving successful functionalization.
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The core–shell mesoporous silica material showed a typical
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isotherm and a hystere-
sis of H1 following a nitrogen adsorption and desorption test (Figure 2b). This indicated that
the mesoporous MCM-41@SiO2 core–shell nanoparticles possessed evenly distributed pore
size and good pore connectivity. The equilibrium adsorption capacity was 579.29 m2/g, the
average pore size was 2.67 nm, and pore volume was 1.34 cm3/g. After functionalization,
the adsorption capacity of the mesoporous material dropped to 43.07 m2/g, and the shape
of isotherm stayed similar, with a hysteresis of the same type. This result showed that the
functionalization did not destroy the original structure, but the function groups occupied
part of the space in pores of the material, which led to a decrease in adsorption capacity.

The thermostability of MCM-41@SiO2 was tested via TGA, and the result is shown
in Figure 2c. The core–shell material showed good thermal stability during the heating
process when heated to 500 ◦C, which is consistent with the reported mesoporous silica.
Additionally, the mass lost occurred at about 150 ◦C, which could be attributed to the
condensation at the silicate mesopore walls and the vaporization of condensed water.
Therefore, it could be confirmed the material possessed a good thermal stability when
heated below 150 ◦C. Additionally, the XPS analysis is displayed in Figure 2d. The peak
at 103.21 eV was attributed to Si 2p. The Gaussian fitted peaks around binding energy
of 162.35 eV, 197.97 eV, 292.8 eV, and 781.28 eV proved the existence of S 2p, Cl 2p, K 2p,
and Co 2p, respectively. Additionally, the peak at 284.32 eV, 398.02 eV, and 532.61 eV were
attributed to the existence of C 1s, N 1s, and O 1s. Therefore, the introduction of KSCN and
CoCl2 into MCM-41@SiO2 was confirmed both by XPS analysis and FT-IR spectra.

The functionalized core–shell MCM-41@SiO2 was then used as an ammonia-sensing
material to indicate the presence of NH3 by color change.

Figure 3a shows the obvious color change of the mesoporous silica from sky blue to
earthy yellow. During the adsorption process, ammonia was adsorbed on the surface of
the MCM-41@SiO2 nanoparticle and then diffused into the pores. Ammonia combined
with the particle both on the surfaces and mostly in the inner pores through covalent
interaction and non-covalent interaction including electrostatic interactions, Van der Waal’s
force, and hydrogen bonds. Subsequently, it replaced the thiocyanate ion in Co(SCN)4

2−

and formed [Co(NH3)4]2+ complex and free SCN− groups, which caused the material to
show a color change because of the yellow complex compounds. Then, the free thiocyanate
ion interacted with NH3 through hydrogen bonds. Finally, an octahedral coordinated
cobalt complex [Co(NH3)6(NCS)2] took shape, which gave the material an earthy yellow
color (Supporting Information Video S1). This sensing material could quickly change
color to indicate that ammonia gas remained in the air due to its high adsorption capacity.
Moreover, the chemical modification strategy significantly improved its adsorption speed
and selectivity. It has been proven that common VOCs or air pollutants such as ethanol,
methanol, or benzene cannot cause the material to discolor (Figure 3b). As for the sensing
speed, ammonia was adsorbed by the material, and within 5 s, the material showed obvious
discoloration. The selectivity was further proved by a selective adsorption experiment.
As shown in Figure 3c, pure gases, including NH3, CO2, CO, methanol, ethanol, and
HCHO, were separately introduced into sealed air bags with functionalized MCM-41@SiO2
and adsorbed. Following adsorption, the sensing material showed a distinct adsorption
selectivity for NH3 by an obvious mass difference. Additionally, by contract, other gases,
such as CO2, were only adsorbed by less than 10% of the adsorption capacity of NH3. This
could be attributed to the particular coordination between NH3 and Co(SCN)4

2− to form
a stable coordination complex [Co(NH3)6(NCS)2], while the remaining gases could not
coordinate with Co(SCN)4

2−, thus enhancing the selectivity of the functionalized MCM-
41@SiO2. Based on their convenient and intuitive ability to sense NH3, the CoCl2/KSCN
functionalized MCM-41@SiO2 mesoporous nanoparticles together with SiO2 nanoparticles
were filled into blank glass detection tubes as fillers to fabricate innovative sensors of NH3.
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3.3. The Fabrication of Colorimetric Detection Tube and Its Detection Performance

Colorimetrical tube sensors are widely used in the visual colorimetric analysis of
gases and solutions, which can meet many practical situations that require relatively low
measurement accuracy and realize testing on site. Based on the discoloration reaction, the
existence and content of a certain component can be detected and quantified through a
linear relationship between discoloration range and concentration. Currently, most of the
colorimetric detection tubes used to roughly measure gas concentrations are disposable. A
reusable and accurate gas detection colorimetric tube sensor deserves more attention and
further research. In the present study, due to their uniform size and good sphericity, the
functionalized mesoporous core–shell MCM-41@SiO2 materials together with a proportion
of SiO2 particles with comparable diameter (d = 900 nm), which is known as colorlessness
and inefficiency in ammonia adsorption, were used as the filler in graduated glass tubes
to realize quick and naked-eye colorimetric ammonia detection. Given the significantly
strong adsorption and high capacity of the functionalized MCM-41@SiO2 to NH3, only
a small color change was generated in the entire tube when the prepared particles were
employed as the stuffing individually, even though ammonia gas with high concentrations
was present, which made it difficult to determine NH3 in different concentrations let alone
to develop a calibration curve. Consequently, MCM-41@SiO2 particles together with SiO2
particles with little adsorption efficiency to NH3 were employed in different proportions
to fabricate sensors that can quantitatively and accurately measure ammonia in a certain
concentration range. A series of detection tube sensors were fabricated with a different
mass ratio of the functionalized MCM-41@SiO2 and SiO2 particles. The sensors prompted a
longer color change length with the increase in the SiO2 particles ratio since the increase in
SiO2 particles diminished the overall adsorption capacity of the stuffing and led to a longer
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color change length when NH3 was injected into the tube sensors (Figure 4a). It reached a
desirable sensitivity to NH3 when the ratio of mesoporous material to SiO2 particles was
1:40. Additional silica gel would lead to a color decline in the mixture, which damages
the visual sensing property. To explore the sensing ability of the optimized sensor, NH3
at different concentrations (ppm) was introduced into the sensors to initiate adsorption
and color change. After seconds-long adsorption to reach the balance, the sensors showed
obvious discoloration due to the different ammonia gas concentrations.

Figure 4. (a) The discoloration ability of sensors with different SiO2 particles and functionalized
MCM-41@SiO2 packing ratios; (b) Linear relations between discolorations and NH3 concentrations
from 20 to 1000 ppm (inset graphs are the digital photos of the sensors and the sensing performance
in the range from 20 to 50 ppm, n = 3); (c) Humidity test of the sensor (n = 3); (d) Reusability test of
the sensor (n = 20); (e) Long-term stability test of the sensor (n = 3).
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The discoloration lengths were then curve-fitted as a function of the ammonia concen-
trations. In the low NH3 concentration range from 20 to 150 ppm, the sensor responded
quickly, and the color of stuffing changed from blue to yellow in 5 s. It showed a good
linear relationship between discoloration length and ammonia concentration, possessing a
quadratic correlation coefficient of 0.991 (Figure 4b). Moreover, the well fitted linear relation
between discolorations and NH3 concentrations from 20 to 50 ppm was obtained covering
the concentration limitation of workshops and other indoor places, while the quadratic
correlation coefficient R2 was 0.997. The LOD of the prepared sensor was 9.99 ppm. We
inferred that the low-concentrated NH3 could be adsorbed fast and completely when it was
injected into the sensor. The materials of the front end did not reach adsorption equilibrium
when the ammonia gas concentration was low, so the sensor’s high adsorption capacity
remained, which prompted it to discolor linearly. With an increase in NH3 concentra-
tion, the adsorption speed slowed down due to the reduced concentration gradient and
increased flow resistance. Therefore, NH3 could not be adsorbed completely on the fore
part and thus continued to flow into the depth of the sensor, and unoccupied materials
adsorbed residual ammonia quickly and changed color. In this way, the detection sensor
showed a different fitting curve in the NH3 concentration range from 150 to 1000 ppm.
Additionally, the detection tube displayed good linear relationships in both concentration
ranges, meaning that the material holds potential in different applications. Compared with
some commercial ammonia detection tubes, our material showed advantages in terms of
sensing speed and sensing range.

It is known that humidity may influence the adsorption and sensing performance of a
sensor in some degree. Thus, the discoloration ability of the prepared sensor was tested
by detecting NH3 with different RHs (Figure 4c). Eventually, the results showed that the
RH (10–70%) rarely influenced the sensor and that the discoloration length stayed almost
constant. Though the moisture in the air could possibly be adsorbed by the packing of the
sensor, the better coordination ability of NH3 enabled the sensor to maintain high selectivity
and adsorption capacity. The good anti-interference ability due to the good selectivity and
adsorption ability of the functionalized material to ammonia could also be maintained
because the coordination ability of NH3 was better than water molecules with Co(NCS)4

2−.
In addition, recycling property is crucial in applications to protect the environment and
save resources; hence, a recovery test was exerted on the sensor (Figure 4d). Briefly, 100 mL
NH3 with a concentration of 50 ppm was injected into the sensor that consisted of 0.5 g
mixture of MCM-41@SiO2 and SiO2 as the filler. Within 5 s, the sensor showed obvious
discoloration and basically reached an equilibrium. Then, the sensor was heated to desorb
the combined gas for 1 h. The discoloration length was recorded in both adsorption
and desorption process. Specifically, after 20 cycles of adsorption and desorption, the
sensing material exhibited a good reusability due to the fact that the color change from
sky-blue to earth-yellow reversed. This meant that the formation of the coordination
complex was reversible. When it was heated, the ammonia-combined coordination complex
disintegrated and NH3 gas was released. In the meantime, coordination Co(NCS)4

2− was
generated again, making the sensor experience discoloration (from back to blue). The good
reusable property made the sensor more competitive compared with similar research and
commercial ammonia sensors. Besides reusability, long-term stability is also crucial for
the durability and robustness of a sensor. As shown in Figure 4e, the sensor in our study
could accurately detect ammonia gas and change color after being stored two months. This
stability came from the specific binding of materials and ammonia gas. Therefore, the
practical application of the prepared sensor was further ensured by its anti-interference
ability, durability, and long-term stability.

4. Conclusions

In this work, core–shell structured mesoporous silica MCM-41@SiO2 nanoparticles
were fabricated and functionalized with CoCl2 and KSCN, which endowed the material
with adsorption selectivity to ammonia gas and colorimetric sensing ability. The composite
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nanoparticles were proved uniform, and the core–shell structure was successfully prepared.
A large adsorption capacity to NH3 as 113 mg/g of this material and a quick response
time within 5 s was obtained via static adsorption study, respectively. The functionalized
material reversibly changed from bright navy blue to earthy yellow before and after
adsorbing ammonia gas because of the formation of an ammonia-containing complex. A
NH3 detection tube sensor was fabricated based on this composite nanomaterial, and the
dosage of MCM-41@SiO2 in the tube sensor was optimized. The sensor showed a good
linear relationship between discoloration length and NH3 concentration, together with
good selectivity to ammonia gas, stability, and reusability. Compared with similar ammonia
gas sensors, the sensor in our study possesses a faster adsorbing rate, intuitive colorimetric
detection ability, and accurate NH3 content indication, which could help expand the use of
mesoporous silica in gas sensing. Additionally, the sensor holds good promise in practical
ammonia detection applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11060336/s1, Video S1: Discoloration ability of
MCM-41@SiO2 towards ammonia gas.
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