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Abstract: Electrochemical impedance spectroscopy (EIS) is a sensitive analytical method for surface
and bulk properties. Classical EIS and derived electrochemical capacitance spectroscopy (ECS) with
a redox couple are label-free approaches for biosensor development, but doubts arise regarding inter-
pretability when a redox couple is employed (redox EIS) due to interactions between electroactive
probes and interfacial charges or forced potential. Here, we demonstrated redoxless ECS for directly
determining surfactant adsorption on screen-printed carbon electrodes (SPCEs), validated through
a simulation of equivalent circuits and the electrochemistry of electronic dummy cells. Redoxless
ECS provides excellent capacitance plot loci for quantifying the interfacial permittivity of di-electric
layers on electrode surfaces. Redoxless ECS was compared with redox EIS/ECS, revealing a favorable
discrimination of interfacial capacitances under both low and high SDS coverage on SPCEs and
demonstrating potential for probeless (reagentless) sensing. Furthermore, the proposed method was
applied in an electrolyte without a redox couple and bare electrodes, obtaining a high performance
for the adsorption of surfactants Tween-20, Triton-X100, sodium dodecyl sulfate, and tetrapropylam-
monium bromide. This approach offers a simple and straightforward means for a semi-quantitative
evaluation of small molecule interactions with electrode surfaces. Our proposed approach may serve
as a starting point for future probeless (reagentless) and label-free biosensors based on electrochem-
istry, eliminating disturbance with surface charge properties and minimizing forced potential bias
by avoiding redox couples. An unambiguous and quantitative determination of physicochemical
properties of biochemically recognizable layers will be relevant for biosensor development.

Keywords: electrochemical capacitance spectroscopy; surfactant; redoxless; biosensor; screen-printed
carbon electrode

1. Introduction

Electrochemical impedance spectroscopy (EIS), an analytical method described in
detail in many papers and textbooks [1,2], is sensitive to both surface phenomena and
bulk properties [3–5]. Therefore, EIS is considered as extremely useful in numerous elec-
trochemical applications, such as corrosion studies [6,7], the monitoring of fuel cells [8],
and bioanalytical applications [9]. EIS is considered as label-free because the presence
of the target analyte can be detected directly without the requirement of any labeling or
amplification procedure [10,11]. This advantage means that EIS can be implemented in
bio-sensor-based point-of-care products, which are currently receiving considerable sci-
entific interest [12]. In the direct label-free approach of EIS, it is generally expected that,
when a modified electrode with a suitable biochemical recognition element is exposed
to a solution containing its complementary analyte, the affinity complex that forms will
resist the penetration of the electrode surface by redox probes from the solution. There-
fore, the obstruction directly leads to an increase in electrochemical impedance, which
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is often observed as an increase in the charge transfer resistance (Rct). In the majority of
studies, the increase in Rct has been used as an output signal corresponding to the amount
of captured analyte. Most researchers have attempted to reduce the detection limit by
modifying the interface, and the correspondence between the impedance spectrum and
physicochemical behavior of the electrode interface is often neglected. The viewpoint that
the capture of complex biomolecules from a non-constant electric double layer rarely yields
EIS results that are controlled only by the analyte concentration has recently been raised by
investigators [13].

The electric double layer, ionic strength of the contacting solution, electron transfer
across the electrode/electrolyte interface, electrolyte’s resistivity, and electrode’s material
properties, among other factors, determine the EIS signals. Consequently, the measured
EISs are usually fitted to an a-priori-based electric model of the system to obtain useful
information. In EIS-based biosensors, redox-couple probes, incorporated into the electrolyte,
detect changes in Rct dominated by the redox probes that occur at the electrode/electrolyte
interface. As the recognition element binds to the electrode’s surface, the redox couple’s
interaction with the electrode is affected, altering Rct and the impedance. The impedance
signal’s main parameter is reported to be the charge of modified biochemical molecules on
the electrode surface [13–15]. The DC potential bias applied to the electrodes to perform
EIS measurements affects the electrical properties of the electrode–electrolyte interface and
modified biochemical molecules on the electrode’s surface.

In conventional EIS, a high-ionic-strength electrolyte is used to assume a constant elec-
tric double-layer capacitance at the conductive electrode interface. However, if electrodes
are modified with biochemical molecules, the equivalent capacitance of the interface may
not solely be the electric double-layer capacitance, but rather a composite capacitance. To
address this issue, researchers have proposed electrochemical capacitance spectroscopy
(ECS) to assess the physicochemical characteristics of the electrode interface [16,17].

The ECS approach has been shown to be superior to the Nyquist impedance plot of
EIS for obtaining the capacitance of an electrode [18] and DNA sensing [19]. Researchers
have proposed a redox-tethered ECS method to avoid the need to add a redox couple
to the electrolyte [20–22]. Redox-tethered ECS has been used to biosense biomarkers
such as dengue nonstructural protein 1 [20], C-reactive protein [23], human prostatic acid
phosphatase [24], and interleukin-6 [21]. Two comparative studies have indicated that
the impedimetry with a redox couple and redox-tethered capacitive approaches exhibit a
similar analytical performance [25,26]. A well-known research team has proposed useful
guidance for decisions that should be made during the development of electrochemical
biosensors based on the resistive (EIS) or capacitive (ECS) approach [27]. The redox-tethered
ECS method may resolve the issue of the redox couple becoming concentrated near the
electrode interface due to the charge of biomolecules on the electrode surface, and the
method is based on capacitance measurement, avoiding the aforementioned reliance on
using Rct as a quantitative parameter.

ECS can determine the interfacial capacitance, including the electric double-layer and
modified-layer capacitance, without using Rct as a quantitative parameter. Redoxless EIS
and ECS tests do not require a redox couple and are conducted through non-Faradaic
processes where electron transfer effects are not dominant. Though redoxless EIS has been
common in corrosion research, it has received less attention from biosensor researchers.
A few researchers have attempted to apply redoxless EIS or ECS to the investigation of
the dielectric properties of self-assembled monolayers (SAMs) [28], biomimetic deposition
of calcium phosphate [29], and direct detection of lead ions in tap water [30]. Recently,
redoxless impedimetric methods have been applied to biochemical analysis, including the
detection of ions [31], D-dimers [32], and low-molecular-weight triamterene [33]. Phase-
monitoring EIS was used to demonstrate a reagentless insulin-biosensor-modified antibody,
and phase-change analyses were sensitive at low frequencies (0.1–1 Hz) [34]. These reports
have inspired the development of reagentless and redoxless capacitive biosensors.
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Surfactant adsorption serves as a model used to evaluate interfacial surfaces in biosen-
sors. Cationic surfactant adsorption at the solid–aqueous interface can be reviewed for
the background [35]. Various electrochemistry methods, such as galvanostatic cycling,
cyclic voltammetry, and EIS, investigate the effect of surfactants on the carbon electrode
capacitance [36]. Polycrystalline Ni electrode adsorption was assessed using differential
capacitance at a constant 80 Hz frequency [37]. The sensitivity and resolution of QCMs
and ellipsometers were evaluated using the model of adsorption for small-molecule sur-
factants [38]. A well-defined affinity mechanism provides a straightforward approach
and procedure to verify if an interface characteristic can be determined. The use of low-
molecular-weight surfactants is crucial for preliminary assessments of the analytical perfor-
mance of candidate approaches as it challenges the detection limit of analytical methods.

The goal of this study was to develop a redoxless ECS approach for characterizing
interfacial capacitance in EIS-based biosensors, aiming to overcome the ambiguity caused
by changes in Rct as a quantitative parameter due to redox couples. The objective was to
establish the approach as an analytical platform for capacitive biosensor development. The
study involved simulating electronic equivalent circuits to establish the theoretical basis
for translating EIS to ECS. To validate the consistency and validity of the proposed ECS
approach with the theory, experiments were conducted using an electrochemical analyzer
with dummy samples. The adsorption of surfactants on an SPCE was utilized as a model to
confirm the quantitative analysis of capacitive changes in low-molecular-weight molecules
adsorbed at an electrode interface. By eliminating the need for redox-couple-containing
electrolytes, this approach simplifies the preparation and storage process of biosensors.

2. Materials and Methods
2.1. Electronic Dummy Cells for Electrochemistry

Resistors (0.1 kΩ–10 MΩ, tolerance: ±1%) and ceramic capacitors (1 nF–10 µF, toler-
ance = ±10%) were used to develop various equivalent circuits for electrochemical dummy
cells, as illustrated in Figure 1a. Five combinations of a resistor in parallel with a capacitor
were arranged in a dummy cell. One dummy cell comprised a resistor (Rct = 1 MΩ) in
parallel with a capacitor with one of five capacitances (Cdl = 10 µF, 1 µF, 0.1 µF, 0.01 µF,
or 1 nF), and the other comprised a capacitor (Cdl = 1 µF) with a resistor with one of five
resistances (Rct =10 MΩ, 1 MΩ, 0.1 MΩ, 0.1 MΩ, or 1 kΩ). Both of these dummy cells
contained the same series resistance of Rs = 100 Ω. The dummy cells were used with a
commercial electrochemical analyzer for the EIS experiments.

2.2. Reactants and Electrochemical Measurements

Sodium dodecyl sulfate (SDS) was purchased from Showa Kako Corp. (Osaka, Japan),
Tetrapropylammonium bromide (TPAB) was purchased from Acros Organics (Morris Plains,
NJ, USA ), and Triton X-100 and Tween-20 were purchased from Sigma-Aldrich (St. Louis,
MO, USA). To prepare 0.1 M phosphate buffer (pH 7.0) solution, 0.1 M NaH2PO4 and
0.1 M Na2HPO4 were mixed and then regulated to the required pH using a NaOH solution.
Additionally, 10 mM ferrocyanide or ferrocyanide was prepared in 0.1 M phosphate buffer
(pH 7.0) or 0.1 M HCl solution.

Electrochemical measurements were conducted using an Autolab PGSTAT 12 instru-
ment (EchoChemie, Utrecht, The Netherlands) equipped with an FRA2 module controlled
by NOVA v.1.1 software; the latter was used for impedance measurements. All electro-
chemical data were obtained at room temperature (298 K). The electrochemical potentials in
this paper are stated with respect to Ag|AgCl reference electrodes (3 M KCl, RE-1S, Great
& Best Co., Ltd., Taipei, Taiwan). An SPCE with an area of 0.45 mm2 and a platinum coil
were used as the working and counter electrodes, respectively.
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electric double-layer capacitance; Rct, charge transfer resistance; Cm, dielectric layer capacitance; 
Rm, dielectric layer resistance. IHP and OHP refer to the inner and outer Randles planes, respec-
tively. 
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Figure 1. Schematic representation and typical equivalent circuits for electrode/electrolyte inter-
faces: (a) without coating (a1) or with slight coating (a2) (Randles-type); (b) with an imperfect
coating (Randles-type); (c) with a perfect coating (Helmholtz-type). Rs, solution resistance; Cdl,
electric double-layer capacitance; Rct, charge transfer resistance; Cm, dielectric layer capacitance; Rm,
dielectric layer resistance. IHP and OHP refer to the inner and outer Randles planes, respectively.

All EIS measurements were conducted using a typical three-electrode cell setup and
at a hold potential (bias) of 0.0 or 0.3 V for redoxless and redox processes, respectively;
an aqueous solution of 0.1 M phosphate buffer (pH 7.0) was employed as the supporting
electrolyte. Electrolyte containing 10 mM of ferrocyanide/ferricyanide was utilized in the
redox process of EIS. The alternating current frequencies used for impedance experiments
ranged from 10 kHz to 0.1 Hz, and the amplitude Vp-p was ±10 mV. The complex Z*(ω)
(impedance) function was converted into C*(ω) (capacitance) through the physical defi-
nition Z*(ω) = 1/jω C*(ω) in whichω is the angular frequency. All obtained impedance
data were verified against the constraints of linear systems theory by using the appropriate
routine of the FRA Autolab software.

2.3. Surfactant Adsorption on the SPCEs

Stock solutions of 0.1% Tween-20, Triton-X100, SDS, and TPAB were obtained by
dissolving the required quantity in double-distilled water. Then, 5 µL of the aforementioned
surfactant solution was dripped onto SPCEs for 0–15 min to prepare various surfactant-
adsorbed electrodes. Subsequently, these SPCE electrodes with adsorbed surfactants were
rinsed with de-ionized water to remove excess reagents, naturally dried, and stored for
later use.

2.4. Surfactant Adsorption on the Au Determined by QCM

Five µL of the surfactant solution was dripped onto Au/QCM 0–25 min to monitor
various surfactant-adsorbed electrodes. For QCM measurement, the frequency shift was
recorded by a time-resolved EQCM system (CHI401, CH Instruments, Inc., Austin, TX,
USA) at the QCM initial resonant frequency (8 MHz) with 0.1 s of sample interval.

3. Results
3.1. Simulation and Equivalent Circuits Verification of ECS

Detailed information regarding the simulation can be obtained from the Section S.1 of
Supplementary Material. The Nyquist impedance plot is characterized by a semi-circular
locus that converges at the origin and at Rct in high- and low-frequency ranges, respectively,
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and is commonly used in EIS to simulate an electrode–electrolyte interface (as shown
in Figure 1a,b) [39]. The frequency at the maximum of the imaginary part and the time
constant of dielectric relaxation are affected by the complex capacitance (Cdl or Cm). In
ECS Nyquist plots, complex capacitances exhibit vertical lines and converged points on
the real axis for all time constants, and the intercept points of the real axis in the complex
impedance and capacitance intuitively present Rct (or Rm) and Cdl (or Cm), respectively
(Figure S1). These advantages of using ECS Nyquist plots for distinguishing various
capacitances parallel to a fixed resistance in electrochemical impedance measurements are
demonstrated by the simulation results.

In the verification study, electronic dummy cells were used to model electrochem-
ical systems and verify their effectiveness through electrochemistry experiments. The
effectiveness was verified by observing similar semi-circle patterns in Nyquist impedance
plots (Figure 2) obtained from experimental EIS compared to simulations (Figure S1), with
complete semi-circles observed for short time constants and partial semi-circles for larger
time constants. A detailed discussion is provided in the supplementary material. The
complex capacitance calculated from Nyquist plots was consistent with simulation results
and nominal capacitor values. Further model verification was performed using electronic
dummies with constant Cdl/Cm in parallel with varying Rct, which showed consistent
results in ECS Nyquist capacitance plots.
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The integrity and imaginary value of the semi-circle patterns of Nyquist plot loci in EIS
and ECS, respectively, are affected by a high interfacial resistance (Rct or
Rm = 1 or 10 MΩ). In the ECS plots (Figure 2b,d,f), the shapes of the integrity of the
semi-circle loci were not negatively affected by smaller resistances (Rct ≤ 0.1 MΩ) but
only by the magnitude of imaginary capacitance values (C”), which are noncritical for
quantitative analysis. These results indicate that EIS is a useful and intuitive approach for
determining lower interfacial resistance but useless for investigating higher interfacial resis-
tance (Rct ≥ 1 MΩ). Furthermore, it is indicated that ECS is a useful and intuitive approach
for determining Cdl or Cm under all conditions despite a high-resistance interface. The
present results indicate that ECS can be complementary to EIS in investigating interfaces
with highly resistive interfaces and imply that a redox couple is not necessarily required
to explore solid–liquid interfaces because the interfacial capacitance is an effective and
sufficient parameter. This implicit potential is fully explored in the following subsections.

3.2. Redox and Redoxless EIS/ECS on Bare SPCE

The capability of ECS without any redox couple (redoxless ECS) in the electrolyte was
assessed using a bare SPCE and an SDS-adsorbed SPCE (SDS/SPCE) as typical conductive
and resistive-permissive electrode interfaces. The integrity of the semi-circle locus and its
intercept of the real axis were used as qualitative and quantitative indices in EIS as well as
ECS Nyquist plots.

For the SPCE, atypical locus patterns were observed in redoxless EIS, whereas typical
semi-circle loci were obtained in EIS with a redox couple (redox EIS) (Figure 3a,b). An Rct
value of 38 kΩ was straightforwardly obtained from the redox EIS Nyquist plots (Figure 3b),
but could not be determined through redoxless EIS (Figure 3a). Both redox ECS (Figure 3d)
and redoxless ECS (Figure 3c) were found to generate semi-circle loci and an approximate
Cdl value of 0.1 µF. The consistency of the Cdl values obtained from redox versus redoxless
ECS demonstrated that the complex capacitance was independent of the use of redox
couples in the electrolyte. In redox ECS (Figure 3d), the imaginary value at the lowest
imaginary point was larger than that in redoxless ECS (Figure 3c), which can be attributed
to the diffusion effect of the redox couple in EIS (Figure 3b). Atypical locus patterns of ECS
with lines slightly deviating from the vertical axis were found in a lower frequency range
for both redox ECS and redoxless ECS. Despite the ECS response loci of redoxless ECS being
slightly different from the theoretical model simulation (Figure S1b) and experimental results
obtained using electronic dummies (Figure 2b), redoxless ECS showed favorable repeatability.
The typical semi-circle locus patterns in both types of ECS should be effective information for
characterizing the permittivity–capacitance of an electrode interface. Compared with redox
ECS, redoxless ECS of the SPCE was found to result in better patterns of typical semi-circle loci
for the intuitive determination of Cdl in the Nyquist capacitance plots. Cdl for the electrode
interface from ECS could be intuitively determined from the intercept of the real axis or
calculated from the semi-circle fitting curve.

In summary, for lowly resistive electrode surfaces, redox EIS performed through the
Faradaic process to determine Rct and redoxless ECS performed through the non-Faradaic
process to obtain Cdl is the optimal analysis strategy. This also implies complementarities
of the two approaches in the assessment of an electrode interface. The usability of these
two methods for assessing highly modified interfaces will be detailed in a subsequent part.
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Figure 3. Redoxless and redox EIS as well as ECS of bare SPCEs. (a) Redoxless EIS Nyquist plots of
SCPEs (area = 0.45 mm2). (b) Redox EIS Nyquist plots of SCPEs. (c) Redoxless ECS Nyquist plots
calculated from (a). (d) Redox ECS Nyquist plots calculated from (b). Redoxless EIS was performed
at the bias +0.0 V vs. Ag/AgCl in 0.1 M phosphate buffer (pH 7.0); redox EIS was conducted at the bias
+0.3 V in the presence of 10 mM [Fe(CN)6]3−/4− in 0.1 M phosphate buffer (pH 7.0). The AC frequencies
for EIS experiments ranged from 10 kHz to 0.1 Hz with an amplitude Vp-p of ±10 mV. N = 3.

3.3. Redox and Redoxless EIS/ECS for SDS Adsorbed on SPCE

Figures 3 and S2 depict the Nyquist locus of EIS/ECS measurements for bare and
SDS-adsorbed SPCEs, respectively. The reproducibility of these studies on different batches
of SPE is excellent, as evidenced by consistent Nyquist locus profiles for redoxless ECSs
on both bare SPCEs (Figure 3c) and SDS-adsorbed SPCEs (Figure S2c). Furthermore, the
deviations in capacitances calculated from the semi-circular locus of redoxless ECSs are
below 3% in both conditions. Compared to redox EIS and ECS, redoxless ECS demonstrates
significantly superior reproducibility and more pronounced semi-circular locus character-
istics, regardless of whether it is performed on bare or SDS-adsorbed electrodes. These
results suggest that redoxless ECS offers the best capability for quantitatively analyzing the
adsorption of small molecules on the interface.

The Nyquist plots were found to exhibit atypical semicircle loci for redox
EIS (Figure 4b) and redox ECS (Figure 4d) in the case of SDS/SPCE. The atypical lo-
cus was attributed to the presence of a highly resistive and/or dielectric adsorption layer
of SDS on the electrode surface, which resulted in limited information that could not be
effectively used for model fitting and determining parameters such as Rct or Cdl. Similarly,
the redox EIS (Figure 4b) pattern showed atypical loci indicative of a highly resistive in-
terface (Rct or Rm = 10 MΩ) as shown in Figure 3a, making it unsuitable for determining
interfacial resistance or capacitance. Additionally, the redox ECS (Figure 4d) pattern dis-
played slightly-larger-than-quarter-circle loci, similar to the patterns shown in Figure 3d.
Notably, the redoxless ECS Nyquist plots (Figure 4c) exhibited major and typical semi-circle
loci for SDS/SPCE, demonstrating favorable repeatability, with a determined modified
layer capacitance Cm of 3.8 µF. This capacitance value for SDS/SPCE differed significantly
from the double-layer capacitance Cdl = 0.1 µF of the SPCE (Figure 3c,d). Unfortunately,
the redox EIS was found to be inadequate in characterizing the electrode interface with a
highly resistive modified layer, whereas redox ECS proved to be more competent in this
regard. Compared to redox ECS, the redoxless ECS capacitance plot showed an excellent
integrity of the semi-circle locus, with its intercept on the real axis serving as qualitative
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and quantitative indices, respectively. These results demonstrate that redoxless ECS can
be exceptionally used to characterize the interface of a modified electrode, even in the
presence of a considerably resistive modified layer.
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The high capability to discriminate interfacial capacitances in both a bare electrode
(SPCE) and highly adsorbed electrode (SDS/SPCE) was exhibited by the redoxless ECS
approach. Conventional redox EIS is a well-known technique that requires a redox couple
for the interfacial characterization of metals and development of biosensors. The electron
mediators (probes) between the electrode and solution, which strongly reduce Rct to less
than 1 kΩ, are provided by the added redox pair free in the electrolyte, resulting in a typical
semi-circle locus in EIS Nyquist plots. These biosensors based on EIS rely on changes
in Rct resulting from a modified layer and molecular recognition. Therefore, the use of
redox couples is necessary and cannot be omitted in these conventional approaches. The
construction of functional modifiers on electrodes, which present a typical semicircle locus
in Nyquist plots for the effective determination of Rct through curve fitting, has been the
focus of the vast majority of research. ECS with a redox-tethered modification, also called
the reagentless approach, was proposed so that a redox couple would not need to be added
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to the electrolyte [16]. However, a bias potential equal to the formal potential of the redox
couple is still required for EIS and/or ECS to be performed in redox-tethered ECS. Insight
into interfacial characterization by using redoxless ECS was implied in a previous report of
the dielectric model of modified non-electroactive interfaces through ECS [40].

Our finding indicates that a potent redoxless ECS for exploring interfacial characteris-
tics and a realizable vision in the development of a label-free and redoxless (reagentless)
biosensor based on ECS are provided by our approach. In the next subsection, surfactant
adsorption on the SPCE is employed as a model for assessing the suitability of ECS for
quantifying the interfacial capacitance of electrodes.

3.4. ECS Nyquist and Bode Plots Analysis for Adsorption of SDS on SPCE

The dependence of impedance and capacitance on incubation time for adsorption,
obtained through redox or redoxless EIS or ECS, is shown in Figure 4. Fairly limited
information was obtained from redoxless EIS (Figure 3a) because the interfacial impedance
is extremely large and cannot present a typical EIS semicircular locus. Additionally, in the
protocol involving a redox couple free in the electrolyte, both redox EIS (Figure 4b) and
redox ECS (Figure 4d,f) provided less information for SDS adsorption on SPCE. Notably,
favorable discrimination to time in SDS adsorption on the SPCE was exhibited by redoxless
ECS (Figure 4c,e).

In both redox EIS and ECS (Figure 4b,c,f), typical semi-circle loci of Nyquist impedance
and capacitance plots were discovered only for short incubation times (0 and 1 min); atypi-
cal patterns that could not be used to determine Cdl or Cm were obtained for incubation
times longer than 3 min when highly resistive interfaces were formed. In redoxless ECS,
all Nyquist capacitance plots contained typical semi-circle loci for the intuitive determina-
tion of Cdl or Cm, and the capacitance increases were dependent on the incubation time
(varied from 0 to 15 min). The values of Cdl and Cm were determined to be 80 nF and
4.0 µF, respectively, for the bare SPCE (0 min) and SPCE with a complete adsorption of SDS
(≥10 min). An excellent discriminative ability for various coverages (from null to complete)
of SDS adsorption on the SPCE was exhibited by redoxless ECS (Figure 4c,e). Unfortunately,
distinguishing between low coverage (incubation time = 1 min) and 0% coverage (incuba-
tion time = 0 min; Figure 4b,e,f) was difficult due to the influence of the Faradaic process
and the dominant redox couple in EIS and ECS examinations of the electrode surface.

Notably, the low-coverage electrode surfaces could not be effectively distinguished,
and the atypical semicircular loci in the Nyquist plot at high coverage could not be used
for quantitative analysis in redox EIS or ECS. These two drawbacks limit the capability
of these methods for quantitative or semi-quantitative investigations of non-electroactive
layers at interfaces.

Redox and redoxless EIS and ECS were compared in the frequency domain using Bode
impedance plots, as shown in Figures 5 and S4. Limited information for characterizing the
interfacial properties of SDS/SCPE in the frequency domain was observed in both redoxless
(Figure 5a) and redox (Figure 5b) Bode impedance plots, consistent with the Nyquist
impedance plots (Figure 4a,b). However, rich information for characterizing SDS/SPCE
was obtained from the Bode phase plots (Figure 5c,d). In the redoxless approach, typical
sigmoid loci were observed in the Bode phase plots (Figure 5c) for all SDS/SPCE conditions,
indicating excellent dielectric characteristics of the electrode interfaces examined using
redoxless ECS. On the other hand, non-sigmoid loci of the Bode phase plots were obtained
for the redox EIS approach (Figure 5d), indicating a considerable decrease in phase change
due to the conductive and diffusion effects of the redox couple in the electrolyte at low
frequencies (f < 1 Hz), which may interfere with the SDS adsorption on the SPCE with an
amplitude of 10 mV. Moreover, discrimination between the low coverage of SDS on the
electrode (after 1 min) and the control coverage (after 0 min) was not possible, consistent with
the Nyquist capacitance plot result (Figure 4f). The results from the Bode phase plots indicate
that the redoxless approach exhibits complete typical locus characteristics of fine dielectric
layers on the electrode surface, which are beneficial for the quantitative determination of
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interfacial permittivity/capacitance through module fitting, constant-frequency methods at
approximately f = 10 Hz, or the constant phase-shift method at −45◦.
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), 5 min (4), 10 min (♦), and 15 min (5). Experimental conditions of
electrochemistry are same as for Figure 3.

The interfacial impedance in both redox and redoxless EIS was dominated by resis-
tance, as observed from the Bode resistance (Z’) plots (Figure S3a,b), and almost identical
characteristics were found in the Bode impedance (Z) plots (Figure 5a,b). These results
are consistent with the EIS Nyquist impedance plots (Figure S2a,b), revealing that a poor
quantitative description of SDS adsorbed on an SPCE was offered by EIS. Despite the Bode
real capacitance (C’) plots showing a monotonic change in the real capacitance with an
increase in the incubation time (Figure 5d), the limited discrimination indicated that redox
EIS/ECS was unsuitable for the quantitative determination of the permittivity (capaci-
tance) of the electrode interface. Notably, almost horizontal plateaus in a frequency range
of 0.1–2 Hz with capacitance of 1.3–3.8 µF for SDS/SPCE after various incubation times
(0–15 min) were revealed by the Bode real capacitance (C’) plots displayed in Figure S3c.

In summary, the results obtained from the Bode capacitance plots reveal that the
redoxless approach had excellent typical loci characteristics of fine dielectric layers on an
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electrode surface, making it beneficial for the quantitative determination of interfacial
capacitance (permittivity) through constant-frequency methods in the low-frequency
range (0.1–2 Hz). This characteristic offers the possibility of implementing probeless
capacitive biosensors based on a single-frequency determination of capacitance in the
low-frequency range.

3.5. Effect of Biased Potentials Applied to EIS/ECS

DC bias potential applied to electrodes affects the arrangement and characteris-
tics of biochemical molecules on the electrode surface. The standard potential of the
ferri/ferrocyanide couple on a bare glassy carbon electrode is equal to +0.265 V. Here,
the dependence on adsorption may be important. In redox EIS, the DC bias should be
set at the formal potential of the redox couple being employed (e.g., +0.3 V for the ferri-
cyanide/ferrocyanide couple used in EIS). The bias potential used for redoxless EIS/ECS
is generally set at null (+0.0 V) or the open circuit potential of the electrode to minimize
energy stress on the tested electrode. Null, positive (+0.3 V), and negative (−0.3 V) DC-
bias potentials were applied to SDS/SPCE in this study for investigating impedance
and capacitance responses from Nyquist impedance, Nyquist capacitance, and Bode
phase plots.

The redoxless EIS, redoxless ECS, and phase–frequency responses of SDS/SPCE are
displayed in Figure 6. The three plots contain information from different perspectives
for characterizing SDS/SPCE under various bias conditions. There were similar locus
patterns in the EIS, ECS, and phase–frequency diagrams for the two conditions of null
bias and positive bias (V = +0.3 V), but significantly different plots were obtained for the
negative bias condition (V = −0.3 V). This information indicates that the SDS-adsorbed
layer on the SPCE surface was considerably changed by the negative bias applied to the
electrodes but negligibly altered when a positive bias of +0.3 V was applied. The former
result is consistent with a previous report [41] indicating that adsorbed SDS aggregates are
removed from an electrode surface under a negative potential of −0.4 V versus a saturated
calomel electrode (SCE). The ionic surfactant SDS is adsorbed on the SCPE surface through
a hydrophobic interaction. Electrostatic attraction may only slightly affect the SDS layer on
the electrode surface, but electrostatic repulsion results in the desorption of the SDS layer.

The full-coverage SDS/SPCE had a high impedance (>40 kΩ, Figure 4b) and capaci-
tance (3.5 µF, Figure 6b). Its characteristics indicated a typical insulation-coated electrode
with a Bode phase plot that was a sigmoid locus, as shown in Figure 6c. Under a bias of
+0.3 V, the Nyquist impedance, Nyquist capacitance, and Bode phase plots were similar to
those obtained under null bias (+0.0 V), but the resistance Rm and capacitance Cm were
slightly higher (Figure 6a) and lower (Figure 6b), respectively. The slight changes in the
SDS layer under positive DC bias did not alter the characteristic of an insulation-coated
electrode (Figure 6c) but only made slight changes to the resistance and capacitance. Under
a bias of −0.3 V, the resistance (Z’ in Nyquist impedance plot) was considerably less than
blank (+0.0 V), but the capacitance could not be precisely determined because the Nyquist
capacitance plot had an atypical locus pattern (Figure 6b). The Bode phase plot (Figure 6c)
under a bias of −0.3 V contained a non-sigmoid locus that exhibited a phase change to
−40◦ at the low-frequency range (f ≤ 1 Hz). The negatively biased SDS/SPCE could
be characterized as a polymer-coated electrode partially degraded by the formation of
pores [11].
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Both redox and redoxless ECSs of SDS/SPCE were also performed at a bias of +0.3 V
to assess the suitability of ECS Nyquist capacitance plots for the determination of real
capacitances C’ (Figure 7). In the ECS analysis of modified electrodes with a high resis-
tance/impedance, the redox couples used in the electrolyte did not improve the typical
Nyquist capacitance plots. Notably, redoxless ECS resulted in the semi-circular locus of
a typical Nyquist plot with a negligible relationship to the interfacial impedance. This
capability will be beneficial for the quantitative analysis of high-resistance/impedance
modified layers, such as SAMs or non-conductive polymers, through their capacitive re-
sponse. Dodecyl sulfate anions effectively adsorbed on the surface of the SPCE, forming
an insulating layer (high resistance/impedance) on the surface, in a 0.1% SDS solution.
SDS/SPCE also performed as an insulation-coated electrode and had a very slightly altered
impedance and capacitance when a positive DC bias of +0.3 V was applied to the electrode.
When the applied bias was negative (V = −0.3 V), the adsorption layer acted like a porous
polymer coating.

The redoxless ECS approach could be used to investigate characteristics of modified
layers on an electrode surface under bias control. Moreover, null-bias redoxless ECS
provided a natural microenvironment without electrostatic and electromotive forces in
developing biosensors with no stress on the biomolecules immobilized on the electrode
surface. The unstressed condition in null-bias redoxless ECS addresses a doubt regarding
the molecular charge in affinity biosensors when performing EIS with a redox couple [15].
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Figure 7. Redox couple effects in ECS of SDS/SPCE as applied with bias of +0.3 V.
4: With redox; #: without redox. Redoxless EISs were conducted at the bias +0.3 V vs. Ag/AgCl in
the presence of 10 mM [Fe(CN)6]3−/4− in phosphate buffer. The AC frequencies for EIS experiments
ranged from 10 kHz to 0.1 Hz with an amplitude of 10 mV.

3.6. Surfactant Adsorption on an SPCE Investigated through Redoxless ECS

Small-molecule surfactants with different charges and shapes were used to characterize
the interfacial interactions in biosensors, making them a suitable model. In this study, the
redoxless ECS sensing capability was assessed using Tween-20, Triton-X100, SDS, and
TPAB, which can serve as a sensing platform for biosensor development. The first two
of these adsorbents are long-chain nonionic molecules, the third is a long-chain anionic
molecule, and the last is a quasi-spherically cationic molecule.

Capacitance changes caused by surfactant adsorption on the SPCE surface were
determined from the intercepts of the real axis in the fitted curves of semi-circle loci of
ECS Nyquist capacitance plots (such as Figure 4c). The capacitance versus incubation time,
obtained from the redoxless ECS plot diagrams of surfactant/SPCE in the incubation time
range of 0–15 min, is presented in Figure 8. It was observed that TPAB showed negligible
adsorption but the other surfactants showed high adsorption on the SPCE. Furthermore, for
SDS, Tween-20, and Triton-X100, and a long incubation time (i.e., >10 min), the capacitance
reached almost saturation, remaining at approximately 3.5–4.0 µF even for an extremely
long incubation time of 15 min. In the range of short incubation times (i.e., 0–5 min),
a major difference was observed between the anionic SDS and nonionic Tween-20 and
Triton-X100. Some difference was noted at an incubation time of 1–5 min; the capacitance of
Tween-20/SPCE was almost the same as that of Triton-X100/SPCE but significantly higher
(~60%) than that observed for SDS/SPCE adsorption.

These quantitative results imply that surfactant adsorption strongly influenced interfa-
cial capacitance for the SPCE. The nonionic and long-chain surfactants (i.e., Tween-20 and
Triton-X100) exhibited extremely fast adsorption on the SPCE. However, lower adsorption
kinetics were observed for the anionic and long-chain SDS, and negligible adsorption was
found for the cationic and non-long-chain TPAB.
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: SDS; 4: TPAB. Experimental conditions of electrochemistry are
same as for Figure 2.

3.7. Surfactant Adsorption on Gold Electrodes Investigated by QCM

QCM was employed in this study to gather mass information for characterizing the
phenomena of surfactant adsorption at the interface. It was assumed in this work that
the gold electrode on the QCM surface is also hydrophobic, similar to the carbon on the
SPCE. It is hoped that the introduction of another parameter will help in understanding
the absorption phenomenon and comparing the performance of capacitance sensing.

The mass change versus incubation time obtained from the QCM response for the
surfactant/Au is shown in Figure 9, indicating that TPAB shows negligible changes in
frequency (mass) whereas other surfactants exhibit significant differences compared to the
blank. Tween-20 tends to have a stable and significant difference from the blank in a brief
period. The response time (the time required to reach a steady state) under SDS conditions
takes approximately 10 min, similar to the capacitance response type in the previous
Section 3.6. Triton-X100 has a significant initial value difference and tends to saturation
after approximately 10 min, slightly slower than the capacitance response speed in Figure 8.
The results suggest that the mass and capacitance characterizations are consistent with the
adsorption behavior of TPAB and SDS surfactants, but apparent differences are observed
for nonionic and long-chain surfactants (i.e., Tween-20 and Triton-X100). Most notably, the
adsorption behavior of cationic and anionic surfactants exhibits distinct differences in the
steady-state responses to mass and capacitance. The QCM signal at the steady state can
effectively distinguish between surfactants, but the capacitance value does not exhibit such
a distinction. These differences in behavior may be attributed to material properties and/or
surface roughness, but further discussion on this topic is beyond the scope of this study.
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EIS as well as ECS Nyquist plots. 

For the SPCE, atypical locus patterns were observed in redoxless EIS, whereas typ-
ical semi-circle loci were obtained in EIS with a redox couple (redox EIS) (Figure 3a,b). 
An Rct value of 38 kΩ was straightforwardly obtained from the redox EIS Nyquist plots 
(Figure 3b), but could not be determined through redoxless EIS (Figure 3a). Both redox 
ECS (Figure 3d) and redoxless ECS (Figure 3c) were found to generate semi-circle loci 
and an approximate Cdl value of 0.1 μF. The consistency of the Cdl values obtained from 
redox versus redoxless ECS demonstrated that the complex capacitance was independ-
ent of the use of redox couples in the electrolyte. In redox ECS (Figure 3d), the imaginary 
value at the lowest imaginary point was larger than that in redoxless ECS (Figure 3c), 
which can be attributed to the diffusion effect of the redox couple in EIS (Figure 3b). 
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found in a lower frequency range for both redox ECS and redoxless ECS. Despite the 
ECS response loci of redoxless ECS being slightly different from the theoretical model 
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4. Discussion

Surfactants adsorb in aqueous systems through hydrophobic and electrostatic interac-
tions. Hydrophobic regions on the substrate interact with surfactant tail groups, especially
on hydrophobic surfaces such as graphite [35]. TPAB has a quasi-spherical shape without a
hydrophobic long chain, whereas other surfactants have linear shapes with varying alkyl
chain lengths [36]. The results in Figure 7 indicate that the adsorption of surfactants on
the SPCE is primarily driven by hydrophobic forces, with a slight detrimental effect from
electrostatic forces during short incubation times. Under long incubation times (≥10 min),
all surfactants exhibit characteristic semi-circle (Figure 4c) and sigmoid loci (Figure 5c) on
the ECS Nyquist capacitance plots and Bode phase plots, respectively, except TPAB. This
suggests that the high coverage of adsorbed layers on the SPCE surface depends on the
surfactant’s molecular shape (long chain or semi-spherical) but is independent of its charge
type. The maximum capacitances for the SPCE completely covered by the surfactant are
almost identical (3.5–4.0 µF), indicating that the redoxless ECS approach can determine
the dielectricity of the modified layer on the electrode surface. However, the QCM study
does not show an identical mass response (Figure 8), which requires further investigation.
This study provides valuable insights into differentiating the adsorption of nonionic and
ionic surfactants on SPCEs. Redoxless ECS is a direct method for determining interfacial
capacitance without the need for a redox couple or molecule immobilization on the elec-
trode surfaces. Therefore, redoxless ECS complements label-free sensors such as QCM
and surface plasmon resonance (SPR) in exploring the physicochemical characteristics of
modified layers on electrodes [37,38].

New technologies are needed to understand the complex process of molecular adsorp-
tion in biomaterial and biosensor communities. It is generally believed that biochemical
molecules undergo denaturation primarily through conformational changes induced by
hydrophobic interaction with the material surface after initial attachment in a random ori-
entation [42,43]. Developing novel sensing systems that provide insights into biomolecule
binding and enable in situ adsorption kinetics and conformational dynamics analysis
without signal contamination is crucial [44,45]. An integrated dual-function sensor with
a high sensitivity for mass and permittivity changes can compare signals on a common
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electrode, revealing orientation, conformational states, and affinity kinetics of adsorbed
biochemical molecules [46]. Despite the potential benefits of protein surface charge hetero-
geneity in biorecognition and biochemical activity, the detection of proteins using intrinsic
charge or a dielectric coefficient is not widely reported [47]. Previously, ion-selective elec-
trodes had limitations in sensing depth in high-ionic-strength biological environments [48].
Larger sensing depths, such as those of QCMs, are suitable for macromolecule sensing,
whereas capacitance sensors are convenient for monitoring small ionic molecules due to
their inherently small sensing depth.

The classical “frequency–frequency” mode of EIS measurement, commonly used
for electrochemical sensing, relies on fitting the Nyquist plot data to the Randles-type
model to obtain Rct as a biosensor parameter. However, time-dependent phenomena in
non-stationary electrochemical sensors used for biological and chemical applications pose
challenges. Scanning raw data over a wide frequency range is time-consuming and lacks the
required high temporal resolution for real-time measurements, limiting EIS development
in biosensors. As a solution, researchers prefer single-frequency or single-step impedance
measurements [49,50] to capture fast, real-time interface phenomena. The selection of a
characteristic frequency, typically based on a stable response and discrimination power on
the Bode plot, is crucial for single-frequency measurement. In this study, the plateau-like
sigmoid curve in the low frequency range of the Bode capacitance response (Figure 5c) was
chosen as the characteristic frequency without redoxless ECS. However, achieving an ideal
sigmoid profile for characteristic frequency selection is challenging in the impedance and
phase characterization of non-high-κ dielectric solid–liquid interfaces (Figure 1a,b). Even
with a better dielectric layer on the electrode surface (as shown in Figure 5b,d,f), obtaining
a plateau-like sigmoid curve in redox EIS measurements is challenging. For investigating
bio-molecular affinity kinetics, a real-time and high sampling rate sensing approach is
essential, which can be achieved with redoxless ECS by single-frequency measurement,
meeting the requirements of probeless and real-time measurements.

While ECS has its advantages in determining interfacial capacitance without the
need for a redox couple or molecule immobilization, it also has limitations in terms of
mass sensitivity, differentiation based on charge type, depth of sense, and capturing time-
dependent phenomena. These limitations highlight the need for further research and the
development of novel sensing systems with an excellent temporal resolution that address
these drawbacks and provide more comprehensive insights into molecular adsorption in
biomaterial and biosensor applications.

5. Conclusions

In this study, a simple redoxless ECS approach was presented, which was derived
from the non-Faradaic EIS approach for determining surfactant adsorption on disposable
SPCEs. The feasibility of discriminating interfacial capacitances on electrode surfaces
using the redoxless ECS was demonstrated through a simulation of equivalent circuit
models and electrochemical tests of electronic dummy cells. The adsorption of surfactants
with differing characteristics (charge and hydrophobic chain length) could be effectively
distinguished, and the dynamic response of surfactant adsorption over 0–15 min could be
quantitatively assayed using the proposed method. The methodology is characterized by its
simplicity, reliance on a straightforward determination or simple fitting of response data, the
utilization of a null-bias electrochemical test, and a lack of requirement for a redox couple
as a probe in the electrolyte. This is the first report that supports a redoxless capacitive
assay or sensor for the adsorption of low-molecular-weight surfactants. Importantly, the
electrochemical impedance/capacitance analysis does not require a redox couple and bias
potential, effectively eliminating doubts about interference caused by charge and potential
in biosensor development and applications.



Chemosensors 2023, 11, 343 17 of 19

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11060343/s1, Figure S1: Simulation and experimental
validation by using dummy cells; Figure S2: Redoxless EIS and ECS of SDS/SPCE; Figure S3: Bode
resistance and capacitance plots of SDS/SPCE under various incubation times for SDS adsorption;
Section S1: Simulation—complex impedance and capacitance of an equivalent circuit with parallel Rct
and various capacitance Cdl; Section S2: EIS and ECS of equivalent circuits verification by electronic
dummy cells.
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