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Abstract: This work presents an LC resonant passive wireless gas sensor with a novel structure
designed to mitigate the negative impact of substrate. The LC sensor antenna in the new structure,
and the reader antenna, were designed and optimized utilizing HFSS software to improve the transfer
efficiency. The superiority of the designed structure compared with general examples is highlighted
and verified. The change in the substrate capacitance essentially makes no interference with the
parameters of the LC sensor to be measured. The sensor for the new structure was prepared by
combining etching and sputtering methods. The ZnO nanowires (NWs) were characterized to confirm
their high purity and wurtzite crystal structure. The LC gas sensors demonstrated excellent wireless
sensing performance, including a low detection limit of 0.5 ppm NO2, high response of 1.051 and
outstanding stability at 180 ◦C. The newly developed sensor structure not only prevented interference
from the substrate during gas sensing testing, but also expanded the choice of sensor substrates,
playing a critical role in the development of sensors based on the LC resonance principle.

Keywords: LC gas sensor; novel structure; ZnO nanowires; NO2

1. Introduction

Nitrogen dioxide (NO2) is a significant atmospheric contaminant primarily generated
via the combustion of diverse fuels such as coal, chemicals, and natural gas in power
generation facilities [1,2]. Large amounts of NO2 exhaust have severe detrimental effects
on the environment and human health, ranging from acid rain, photochemical smog and
global warming to respiratory problems [3–5]. Due to the safety hazards and excessive
size of conventional gas detection devices, it is very difficult to detect NO2 in some special
application scenarios, such as flammable and explosive, rotating, and confined spaces.
As such, there is a great demand for a wireless and passive gas sensor to enable effective
monitoring. To date, various wireless sensing devices have been created to monitor harmful
gases, which use different measuring mechanisms, such as surface acoustic wave (SAW)
[6–8], wireless passive LC resonance [9,10], and microwave evanescent mode [11,12], etc.

The wireless passive inductor-capacitor (LC) resonant approach is optimal for these
special application scenarios because it facilitates energy conversion and data reading due
to its lower operating frequency and stable signal transmission capability [13]. Gas sensors
based on the LC resonance principle are increasingly popular due to their ease of readout
for measured concentration and low installation costs [14]. Such sensors consist of LC
antennas and gas sensing materials. When the gas parameter to be measured alters, the
electrical properties of the gas sensing material will be changed, which in turn causes a
variation in the input impedance of the sensor. Non-contact testing of the sensor signal
can be achieved via an external signal reading system connecting a reader antenna to the
sensor in a near-field coupling [15].

The use of LC sensors for gas detection has been extensively researched in numerous
studies. For instance, Azzarelli et al. combined gas sensing materials with near field
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communication (NFC) tags and converted the gas sensing analog signal into a digital signal
to recognize NH3 in confined environments via smartphones [16]. Ma et al. utilized low-
temperature cofired ceramic (LTCC) technology to fabricate LC gas sensors for NO2 gas
sensing [17]. Ma et al. developed a high-performance nanostructured conductive polymer
as a switch material for NFC tags to enable the detection of NH3 [18]. Overall, current
research efforts primarily concentrate on innovations in application [19,20], the preparation
process of sensor and substrate materials [21], and synthesis of gas sensing materials [22,23].
The structure of LC gas sensors is relatively homogeneous, i.e., gas sensing materials are
coated on the interdigital capacitors (IDC) directly, or coated after adding a dielectric layer.
This is inherently deficient due to the direct contact between the underside of the IDC and
the substrate. Changes in the physical properties of the substrate can significantly affect the
measured parameters. Our previous work had explored the use of high-performance ZnO
nanowires (NWs) with wurtzite structure [24,25]. However, it is still a major challenge to
optimize the sensor structure so that the existing high-performance gas sensing materials
can be effectively combined with the LC resonant circuit to achieve low-cost, accurate,
efficient, and stable wireless NO2 gas monitoring [26].

In this work, a novel LC sensor structure was developed in which the IDC of the
sensor no longer contacted the substrate. The advantages of this structure are discussed
and verified, and the sensor structure implemented using a combination of etching and
sputtering methods. The LC antenna and reader antenna are designed and optimized by
utilizing HFSS, and good signal transmission was obtained. This work provides a new
sensor structure based on the mutually inductive principle.

2. Experimental
2.1. Design and Optimization of Antennas

The frequency design of sensor antennas not only requires a consideration of the
application scenario, but also demands an evaluation of the material of the substrate. In this
work, FR4 was used as the substrate, which had a very low dielectric constant of 4.4 and
showed a very fast signal transmission rate. Nonetheless, an excessively high operating
frequency may lead to substantial losses. Thus, careful consideration should be given to
ensure that the operating frequency remains below 0.5 GHz [27].

The relationship between the operating frequency ( fo) of an LC antenna and its
inductance (LS) and capacitance (CS) values can be expressed as follows [17].

fo =
1

2π
√

LSCS
(1)

Here, the values of LS and CS are reliant upon the structural dimensions of the
circuit [17].

LS = 1.39× 10−6(d0 + di)N5/3
i log

(
4

do + di
do − di

)
(2)

CS = lc(Nc − 1)ε0

1 + εrK
[(

1− (ds/dc)
2
)1/2

]
2K(ds/dc)

(3)

where Ni is the number of loops, and do and di denote external and internal coil widths
of the inductor, respectively. lc represents the length of the IDC fingers, Nc refers to the
count of contact points on each IDC terminal. ε0 denotes the air permittivity. εr is the
dielectric constant of the FR4 substrate. ds refers to the width of the orifice between two
neighboring fingers, while dc represents the total spacing between two adjacent fingers. K
is a mathematical function known as the complete elliptic integral of the first kind.

A three-dimensional model was established and simulated via HFSS. To fulfill the
operating frequency specifications, it may be necessary to tune the size of the LC antenna. A
flat helical inductor and IDC are connected through vias on the substrate to form a resonant
circuit with ZnO NWs employed as the gas sensing material (Figure 1). Upon exposure to
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NO2 molecules, the charge transfer takes place and then alters the S11 of the LC resonant
circuit. The designed parameters of LC antenna are displayed (Table 1).
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Figure 1. (a) Schematic diagram of the LC gas sensor; (b) Simulation model.

Table 1. Parameters of the designed LC antenna.

lc dc ds Ni do di Nc

10.5 mm 1.5 mm 0.5 mm 4.75 20.5 mm 12.5 mm 5

HFSS software can be utilized to determine both the size and height of the reader
antenna. The S11 parameters of the LC antenna can also be optimized. The smaller the S11
parameter, the higher the signal or energy transfer between the reader antenna and the LC
antenna. To obtain better signal transmission efficiency, the S11 parameter is required to
be less than −10 dB. After optimization, the LC antenna is prepared and tested practically
to examine the resonant frequency and Voltage Standing Wave Ratio (VSWR) of the LC
antenna.

2.2. Synthesis and Characterization of ZnO NWs

ZnO NWs were produced using a solvothermal method. Specifically, combine
2.5 g of NaOH, 0.1 g of sodium dodecyl sulfate (C12H25SO4Na, SDS), and 0.44 g of
Zn (CH3CO2)2·2H2O in 117 mL of ethanol and mix well until the components are fully
dissolved. Then, add 27 mL of polyethylene glycol 400 (PEG400) to the mixture and stir
thoroughly. The resulting solution was heated to 140 ◦C for 16 h. Following this step, the
white sediment was gathered by centrifugation and washed several times to completely
rid it of residual organic and inorganic ions, and eventually dried at 60 ◦C. The dried
samples were then annealed in a tubular furnace for 3 h at a temperature of 500 ◦C. Sub-
sequently, natural cooling of the samples to room temperature was carried out to achieve
ZnO NWs for LC gas sensors. NaOH, Zn (CH3CO2)2·2H2O, andPEG400 were purchased
from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China; SDS was purchased from
Shanghai Macklin Biochemical Co., Ltd, Shanghai, China. All the reagents were analytical
grade and deionized water was used in all experiments.

The crystalline phases, microscopic morphology, and surface chemistry of the ZnO
NWs were characterized by using an X-ray diffractometer (XRD-7000, Shimadzu Co.,
Ltd., Tykyo, Japan), scanning electron microscope (TESCAN MIRA LMS, Tescan Co., Ltd.,
Brno, Czech), transmission electron microscope (FEI Tecnai G2 F20, FEI Co., Ltd., Hills-
boro, United States of America) and X-ray photoelectron spectrometer (Thermo Scientific
K-Alpha X, Thermo Scientific Co., Ltd., Waltham, United States of America). Additionally,
the selected area electron diffraction (SAED) patterns were recorded for further analysis.
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2.3. LC Sensor Fabrication and Gas Sensing Measurement

The schematic diagram of the manufacturing process of the LC gas sensor is shown
(Figure 2). The inductor was processed on an FR4 substrate with the etching method to
obtain the LC antenna after ultrasonic cleaning for 10 min. Subsequently, the as-prepared
ZnO NWs were homogeneously dispersed in a proper amount of absolute ethanol in an
ultrasonic cleaner for 5 min to form the sensing slurry, which was then coated on the FR4
substrate to form a sensing layer with a thickness of approximately 100 µm. Then, the
substrate with the ZnO NWs was placed in an oven for drying at 60 ◦C. After natural
cooling, a plasma sputtering device was used to sputter platinum electrodes on its surface.
Finally, the LC sensor was aged at 210 ◦C for 6 h.
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Figure 2. Schematic diagram of the manufacturing process of the LC gas sensor.

A schematic diagram of the wireless gas sensing measurement setup is shown
(Figure 3a). The LC gas sensor was positioned on a temperature-controlled heating table
within a sealed gas chamber, while an external reader antenna was connected to a VNA
(AV3656D) and placed parallel to the sensor at around 5 mm. This configuration enabled
precise measurement and analysis of the sensor’s response to the presence of NO2 gas.
Subsequently, the network analyzer is used to analyze the information collected by the
reader antenna. Measurements of the S11 and corresponding frequency ( fo) were recorded
at regular 10-s intervals. The response of the LC sensor was determined as S11g/S11a, in
which S11a and S11g represent the S11 of the LC sensor in air and in NO2, respectively
(Figure 3b). The determination of the response and recovery times of the sensor involves
measuring the duration needed for a 90% alteration in the fully normalized S11 amplitude.
To compare responses, all measured S11 were divided by the initial S11 magnitude, resulting
in a “normalized S11” that started from −1.0. This approach ensured that all baselines
originated at the same value, irrespective of any added mass attributable to the sensitive
layer [28].
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In the equivalent circuit of the radio signal transmission (Figure 4b), Ra and Rs rep-
resent the series resistances of the reader antenna and the sensor, respectively. Rp is the
leakage resistance of the IDC, which is equivalent to the parallel resistance of the Cs. La is
the inductance of the reader antenna, while Ls is the inductance of the sensor. k represents
the degree of coupling between the reader antenna and the sensor, which is related to the
relative position of the two inductors, was assumed to be constant during the measurement
process, and therefore could be considered as a fixed value. The relationship between the
input impedance (Za) and the above parameters can be expressed by Equations (4)–(6) [29],
indicating that changes in both Cs and Rp affect the change in Za in the circuit. The change
of Za in this work depends mainly on the changes in Rp, which are brought about by the
interaction between NO2 molecules and ZnO NWs. It can be inferred from Equation (7)
that S11 is equivalent to Za. As such, monitoring changes in the S11 parameter may provide
valuable insights into variations in gas properties.

Za = Z′ + jZ′′ =
ω2k2LsLa A

A2 + B2 + j
(

ωLa −
ω2k2LsLaB

A2 + B2

)
(4)

A = Rs +
Rp

1 + ω2C2
s R2

p
(5)

B = ωLs −
ωCsR2

p

1 + ω2C2
s R2

p
(6)

S11 = (Za − Z0)/(Za + Z0) | Z0 = 50 Ω (7)
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3. Results and Discussion
3.1. Simulation Result

Firstly, the S11 parameters of the LC antenna are optimized by using the side length of
the reader antenna. The side lengths of 0.8di, di, (di + do)/2, do, and 1.2do are selected for
simulation using a square reader antenna. The simulation outcome of the S11 parameter
under various side lengths of the reader antenna (Figure 4a) demonstrates that, when the
reader antenna is set to (do + di)/2, S11 has the smallest value of −11.1 dB. Subsequently,
the S11 parameters were then optimized by means of optimizing the reading height of the
reader antenna.

The simulation results for different reading heights with a side length of (do + di)/2
are shown (Figure 4b). At a reading height of 5 mm, the value of S11 is a minimum of
–19.2 dB. This value indicates a slight signal and energy loss between the LC antenna and
the reader antenna.

The resistance variation of ZnO NWs was simulated to replicate the actual exposure
to NO2, whereas alterations in the S11 of the LC sensor were monitored. It is discernible
that the S11 parameter of the designed LC antenna diminishes in a certain pattern with the
rise in leakage resistance of the sensor (Figure 4c), demonstrating the design agreement
with the requirements. Therefore, the LC antenna and the reader antenna were prepared
according to the structural parameters.

A reading height of 5 mm was selected to test the LC antenna. The operating frequency
of the antenna is 156.8 MHz, which satisfies the frequency requirements below 0.5 GHz.
Deviations between the simulated and measured values are mainly attributed to parasitic
effects [30]. At the operating frequency, the VSWR of the LC antenna is observed to be
1.238 (Figure 4d), which is less than 1.5, thus confirming that the designed antenna can
effectively transfer energy and information via the reader antenna.

3.2. Novel Structure of the LC Sensor

The structure (Figure 5a) and physical diagram of the LC sensor (Figure 5b) are shown,
respectively. Generally, the IDC is processed first, followed by the application of the gas
sensing material. In contrast, this approach involves coating the gas sensing material onto
the substrate and then sputtering the platinum on the IDC once the material has been fully
adhered to the substrate. The most significant departure of this special structure from
its conventional counterpart lies in the fact that the IDC no longer directly contacts the
substrate.
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Comparing the two sensor structures, the equivalent circuit diagrams are shown
(Figure 6). In the general structure (Figure 6a), R1 and R2 represent the leakage resistances
of the IDC, while Rp denotes the parallel resistance of R1 and R2. Additionally, CS refers
to the total capacitance of C1 and C2 arranged in parallel. In comparison, in this work
(Figure 6b), R1 and R3 are the leakage resistances of the IDC, while Rp represents the
parallel resistance of R1 and R3. Furthermore, CS corresponds to the total capacitance of
C1 and C3 arranged in parallel. Herein, R1 and C1, R2 and C2, and R3 and C3 represent the
equivalent resistance and capacitance of gas sensing material, substrate, and free space,
respectively. They are discussed as the main variation parameters. In practical application,
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R1 and C1 of the gas sensing material will alter with changes in gas concentration. As for
R2 and C2, they will change due to the differences in the substrate, and C2 will also change
because of variations in gas adsorption by the substrate. However, R3 and C3 change as the
gas atmosphere alters, but the change is relatively minor. Equations (4)–(7) reveal that, for
the general coating method (Figure 6a), changes in the substrate and C2 during the testing
process will interfere with the alteration of CS, thereby potentially affecting test results. In
contrast, the structure utilized in this work (Figure 6b) involves the upper surface of the
IDC contacting the surrounding air. As a result, C3 and R3 remain nearly unchanged, thus
eliminating interference from the substrate.
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Figure 6. Comparison of two gas sensor structures. (a) Contacted; (b) Uncontacted.

Verification was conducted via HFSS software simulation. A fixed resistance ‘box’
was employed to simulate the gas sensing material. It was separately placed above and
below the IDC to build the two different structures. Additionally, a variable capacitance
‘sheet’ was positioned above the substrate to replicate alterations in C2, with a change range
set between 3.5–4.5 pF (Figure 7). The thickness of the ‘box’ is 100 µm and the ‘sheet’ is
thickness-free. Simulation was executed to observe both the S11 parameter of the sensor
antenna and the change in resonant frequency f0 using the f − S11 curve.
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Figure 7. Schematic diagram of the simulation model of two structure LC sensors. (a) Contacted;
(b) uncontacted.

The variation of S11 and f0 of the sensor with two different structures is shown
(Figure 8). For clarity, S11 and f0 values extracted at a capacitance of 3.5 are selected as
initial values (SI and f I). Equations (8) and (9) express the changes in S11 and f0, denoted as
SV and fV , respectively. It is noteworthy that the S11 (Figure 8a) and f0 (Figure 8b) values
of the LC sensor, utilizing the proposed sensor structure, exhibit minimal sensitivity to
changes in substrate capacitance of C2.

SV =
S11 − SI

SI
(8)

fV =
f0 − f I

f I
(9)
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Figure 8. Effect of capacitance variation on (a) S11 and (b) f0 for two different structures.

The simulation results provide clear evidence that the proposed sensor structure
outperforms the conventional one, thereby effectively mitigating the detrimental effects of
substrate gas adsorption on gas sensing testing. Furthermore, such a new structure can
extend the range of substrate options for LC sensor.

3.3. Characterizations of ZnO NWs

The XRD pattern of the as-synthesized sample (Figure 9) indicated that the obtained
samples are high purity ZnO with a hexagonal wurtzite structure (ICDD #99-0111) [31]. The
as-prepared sample was observed by SEM and TEM (Figure 10). The ZnO samples exhibit
a uniform and wire shape with smooth and non-branched surfaces and excellent dispersion
(Figure 10a–c). The ZnO products display a narrow diameter distribution, ranging from
20–50 nm. Additionally, for a single ZnO NW, the diameter displays hardly any variation
along the long axis. The length distribution of the ZnO NWs is slightly wider, ranging
from 500 nm to a few micrometers. The excellent crystallinity of the synthesized ZnO NWs
is evident from the clear diffraction fringe observed (Figure 10e), where the interplanar
spacing between adjacent fringe is 2.6 Å. Based on the XRD results, it is determined that this
spacing corresponds to the (002) crystal plane of the hexagonal fibrillated ZnO structure.
This result indicates that the ZnO NWs are formed by the growth of ZnO grains along the c-
axis direction (Figure 10d) [32]. Furthermore, the SAED pattern of the ZnO NWs (Figure 10f)
displays a distinct diffraction dot pattern, providing evidence for the single-crystal nature
of the as-prepared ZnO NWs.

Chemosensors 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

wider, ranging from 500 nm to a few micrometers. The excellent crystallinity of the syn-

thesized ZnO NWs is evident from the clear diffraction fringe observed (Figure 10e), 

where the interplanar spacing between adjacent fringe is 2.6 Å . Based on the XRD results, 

it is determined that this spacing corresponds to the (002) crystal plane of the hexagonal 

fibrillated ZnO structure. This result indicates that the ZnO NWs are formed by the 

growth of ZnO grains along the c-axis direction (Figure 10d) [32]. Furthermore, the SAED 

pattern of the ZnO NWs (Figure 10f) displays a distinct diffraction dot pattern, providing 

evidence for the single-crystal nature of the as-prepared ZnO NWs. 

 

Figure 9. XRD pattern of ZnO NWs. 

 

Figure 10. (a,b) SEM images, (c–e) TEM images, and (f) SAED pattern of ZnO NWs. 

The XPS analysis results of the ZnO NWs is shown (Figure 11). The full spectrum 

scan (Figure 11a), indicating the presence of spectral peaks for Zn, O, and C elements only, 

further confirms the high purity of the ZnO NWs. The high-resolution spectrum of Zn 2p 

(Figure 11b) reveals two distinct characteristic peaks. The peak at a binding energy of ap-

proximately 1021.27 eV corresponds to Zn 2p3/2, while the peak at a binding energy of 

about 1044.33 eV corresponds to Zn 2p1/2, with an energy interval of approximately 23 eV 

between them. This indicates that the element Zn in the ZnO NWs exists in the +2 valence 

form [33]. In the high-resolution spectrum of O 1s (Figure 11c), the observed peak at a 

binding energy of approximately 530.02 eV is caused by lattice oxygen in ZnO crystals. 

Additionally, the peaks at binding energies of around 531.04 eV and 536.04 eV are primar-

ily associated with adsorbed oxygen on the material surface, as well as oxygen vacancies 

[34,35]. 

Figure 9. XRD pattern of ZnO NWs.



Chemosensors 2023, 11, 359 9 of 15

Chemosensors 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

wider, ranging from 500 nm to a few micrometers. The excellent crystallinity of the syn-

thesized ZnO NWs is evident from the clear diffraction fringe observed (Figure 10e), 

where the interplanar spacing between adjacent fringe is 2.6 Å . Based on the XRD results, 

it is determined that this spacing corresponds to the (002) crystal plane of the hexagonal 

fibrillated ZnO structure. This result indicates that the ZnO NWs are formed by the 

growth of ZnO grains along the c-axis direction (Figure 10d) [32]. Furthermore, the SAED 

pattern of the ZnO NWs (Figure 10f) displays a distinct diffraction dot pattern, providing 

evidence for the single-crystal nature of the as-prepared ZnO NWs. 

 

Figure 9. XRD pattern of ZnO NWs. 

 

Figure 10. (a,b) SEM images, (c–e) TEM images, and (f) SAED pattern of ZnO NWs. 

The XPS analysis results of the ZnO NWs is shown (Figure 11). The full spectrum 

scan (Figure 11a), indicating the presence of spectral peaks for Zn, O, and C elements only, 

further confirms the high purity of the ZnO NWs. The high-resolution spectrum of Zn 2p 

(Figure 11b) reveals two distinct characteristic peaks. The peak at a binding energy of ap-

proximately 1021.27 eV corresponds to Zn 2p3/2, while the peak at a binding energy of 

about 1044.33 eV corresponds to Zn 2p1/2, with an energy interval of approximately 23 eV 

between them. This indicates that the element Zn in the ZnO NWs exists in the +2 valence 

form [33]. In the high-resolution spectrum of O 1s (Figure 11c), the observed peak at a 

binding energy of approximately 530.02 eV is caused by lattice oxygen in ZnO crystals. 

Additionally, the peaks at binding energies of around 531.04 eV and 536.04 eV are primar-

ily associated with adsorbed oxygen on the material surface, as well as oxygen vacancies 

[34,35]. 

Figure 10. (a,b) SEM images, (c–e) TEM images, and (f) SAED pattern of ZnO NWs.

The XPS analysis results of the ZnO NWs is shown (Figure 11). The full spectrum
scan (Figure 11a), indicating the presence of spectral peaks for Zn, O, and C elements only,
further confirms the high purity of the ZnO NWs. The high-resolution spectrum of Zn
2p (Figure 11b) reveals two distinct characteristic peaks. The peak at a binding energy of
approximately 1021.27 eV corresponds to Zn 2p3/2, while the peak at a binding energy
of about 1044.33 eV corresponds to Zn 2p1/2, with an energy interval of approximately
23 eV between them. This indicates that the element Zn in the ZnO NWs exists in the
+2 valence form [33]. In the high-resolution spectrum of O 1s (Figure 11c), the observed
peak at a binding energy of approximately 530.02 eV is caused by lattice oxygen in ZnO
crystals. Additionally, the peaks at binding energies of around 531.04 eV and 536.04 eV
are primarily associated with adsorbed oxygen on the material surface, as well as oxygen
vacancies [34,35].
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3.4. NO2 Sensing Properties of the LC Sensor

According to the electrical model presented in previous reports, by analyzing the
S11 and fo data acquired from the reader antenna, it is possible to infer changes in the
surrounding environment. The f − S11 curves of the substrate alone, the LC antenna,
and the LC gas sensor in both air and NO2 environments at an operating temperature
of 180 ◦C are measured (Figure 12). A pronounced decline in fo and S11 amplitude can
be observed when comparing the LC gas sensor to the LC antenna, both in air. This is
attributable to the fact that ZnO possesses higher dielectric constant and conductivity
values compared to those of air. The coating of ZnO on the IDC leads to an increase in its
capacitance and a decrease in its leakage resistance. In comparison to the sensor in air, the
fo and S11 magnitudes of the sensor increase following exposure to NO2. This increase



Chemosensors 2023, 11, 359 10 of 15

is primarily attributed to the adsorption of NO2 on the ZnO NWs, which subsequently
changes the input impedance of the circuit and thereby modifies the fo and S11. Moreover,
it is evident that the S11 of the LC sensor exhibits a measurement value of less than –10 dB
both before and after exposure to NO2. This observation further confirms the high energy
and information transfer efficiency of the LC gas sensor with the reader antenna.
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and in NO2.

The operating temperature has the greatest effect on the gas sensing properties of
the LC gas sensor based on the metal oxide semiconductor, therefore the response of the
LC sensor at variable temperatures was initially evaluated [36]. The response variation
of the LC gas sensor to 1 ppm NO2 occurred across an operating temperature range of
60–210 ◦C (Figure 13a). As the operating temperature of the sensor increases, its response
exhibits a gradual rise and reaches a peak value at 150 ◦C, after which it decreases gradually
with further increases in the operating temperature. This phenomenon can primarily be
attributed to the significant effect of operating temperature on both the number of surface-
active sites of the ZnO NWs and the kinetics of gas adsorption and reaction.

The response/recovery times of the LC sensor were assessed at different operating
temperatures for detecting 1 part per million (ppm) concentration of NO2 (Figure 13b). The
response/recovery times of the LC gas sensor decrease rapidly with increasing operating
temperature. This phenomenon can primarily be attributed to the significant acceleration
of NO2 molecule adsorption and desorption processes on the ZnO NWs at higher operating
temperatures, effectively shortening the response/recovery times. However, it should be
noted that the sensor response decreases at excessively high temperatures. Therefore, a
suitable combination of the LC sensor response and response/recovery times is necessary
when determining the suitable operating temperature of the sensor [37]. In this work, the
LC gas sensor exhibits its maximum response to 1 ppm NO2 at 150 ◦C with a value of 1.058,
with only a minor difference in response observed at 180 ◦C with a value of 1.051. However,
notable discrepancies are observed in the response/recovery times at 180 ◦C compared to
that recorded at 150 ◦C. Therefore, it is determined that the optimal operating temperature
of the designed LC sensor is 180 ◦C.

To thoroughly examine the gas sensing capabilities of the LC sensor at its optimal
operating temperature, response and recovery curves were obtained for a range of NO2
concentrations (0.5, 1, 2, 3, and 4 ppm) (Figure 13c). These measurements provided a com-
prehensive understanding of the sensor’s performance under varying NO2 concentrations.
The LC gas sensor exhibits excellent response–recovery characteristics across a range of
NO2 concentrations. Additionally, the response of the LC sensor to different concentrations
of NO2 at 180 ◦C was demonstrated (Figure 13d). Notably, a strong linear relationship
between the response and NO2 concentration is observed within the concentration range
of 0.5–4 ppm. This observation suggests that the designed sensor may be well-suited for
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quantitative detection and analysis of NO2. It is also noteworthy that the LC gas sensor is
capable of effectively detecting NO2 at extremely low concentrations of 0.5 ppm. This un-
derscores the potential value of the LC gas sensor in various industrial and environmental
applications.
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Given their passive property, the LC gas sensors are highly suitable for use in sce-
narios where battery replacement is impractical or difficult. However, this feature also
presents a challenge to the stability of such sensors, as their reliability and long-term perfor-
mance must be maintained without the benefit of regular power source maintenance. The
response–recovery curves of the LC sensor to 1 ppm NO2 at 180 ◦C over five consecutive
tests are shown (Figure 14a). The sensor exhibits consistent response–recovery characteris-
tics across each test cycle. Furthermore, the S11 parameter of the sensor can revert to its
initial value after each test, indicating an excellent reversibility, repeatability, and stabil-
ity. To further assess the stability of the sensor over a longer time, the changes in sensor
response to 1 ppm NO2 over a 60-day timeframe were recorded (Figure 14b). Notably, only
minor fluctuations are observed in the response of the sensor over this extended period,
underscoring its exceptional stability for detecting NO2 at 180 ◦C.

To further investigate the selectivity of LC sensors for different kinds of gases, the
responses of the sensor towards different gases are evaluated at the optimal operating
temperature. The response of the LC sensor towards NO2 at 180 ◦C is significantly higher
than that of other tested gases (Figure 15), indicating exceptional NO2 selectivity of the
developed LC gas sensor.
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3.5. Gas Sensing Mechanism of the LC Sensor

The gas sensing mechanism of the LC gas sensor to NO2 is briefly described
(Figure 16). When the sensor is in air, a significant number of oxygen molecules are
adsorbed on the surface of ZnO NWs in the form of chemisorbed oxygen of O−2 , O−, or O2−

[38,39]. These adsorbed oxygen species trap electrons from the conduction band of the ZnO
NWs, resulting in the formation of an electron depletion layer on the ZnO surface and a
subsequent decrease in carrier concentration. As a result of these changes, the resistance
of the material increases, with the corresponding chemical reaction equations shown in
Equations (10)–(13) [40,41].

O2(g)→ O2(ads) (10)

O2(ads) + e− → O−2 (ads) (11)

O2(ads) + 2e− → 2O−(ads) (12)

O2(ads) + 4e− → 2O2−(ads) (13)
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When the sensor is exposed to NO2, the surface of ZnO NWs becomes chemisorbed
with NO2. This chemisorbed state of NO−2 further traps electrons in the conduction band
of ZnO and reacts with the surface adsorbed oxygen. Both reactions lead to the capture of
extra electrons from the ZnO conduction band and expansion of the depletion layer, causing
a reduction in carrier concentration. Consequently, this results in an increase in ZnO NWs
resistance and ultimately an increase in S11. The corresponding reaction equations are
provided as follows.

NO2(g)→ NO2(ads) (14)

NO2(ads) + O−(ads)+2e− → NO−2 (ads) + O2−(ads) (15)

NO2(ads) + e− → NO−2 (ads) (16)

When the sensor exposed to air again, NO2 molecules are desorbed from the surface of
ZnO NWs, and the reaction proceeds in reverse. Electrons seized by NO2 are released back
into the conduction band of the material, causing an increase in carrier concentration and
a decrease in the electron depletion layer. These changes eventually result in a reduction
in resistance of the sensor and a corresponding decrease in S11 magnitude value, which
gradually returns to its initial value.

4. Conclusions

A new LC gas sensor with a novel sensor structure was successfully developed, in
which the IDC of the LC sensor no longer contacted the substrate, reducing the adverse
effect of the substrate. Following measurement, it is found that the VSWR of the designed
sensor antenna was 1.238, which is less than 1.5, and the S11 parameter of the LC sensor
remained below −10 dB both before and after exposure to NO2, indicating an effective
improvement in transfer efficiency between the reader antenna and the LC antenna. A
comprehensive study of the gas sensing property for the prepared LC sensor to NO2 was
fully conducted, and the results revealed that the optimal operating temperature was
180 ◦C. At this temperature, the sensor showed high response of 1.051 towards NO2 and a
low detection limit of 0.5 ppm NO2, while maintaining stability during the 60-day testing
period. Moreover, this work provides a novel sensor structure based on the inductive
coupling principle, broadening the range of substrate options, and significantly reducing
interference from the sensor substrate during testing.
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