
Citation: Kwon, Y.; Yoon, Y.; Jang, M.;

Kang, S.; Park, C.; Lee, T. Recent

Advances in Cyanobacterial

Cytotoxin Biosensors Focused on

Cylindrospermopsin. Chemosensors

2023, 11, 401. https://doi.org/

10.3390/chemosensors11070401

Academic Editors: Zhengrong Gu

and Shun Lu

Received: 30 May 2023

Revised: 12 July 2023

Accepted: 14 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

chemosensors

Review

Recent Advances in Cyanobacterial Cytotoxin Biosensors
Focused on Cylindrospermopsin
Yein Kwon †, Yejin Yoon †, Moonbong Jang , Sunggu Kang, Chulhwan Park and Taek Lee *

Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu,
Seoul 01897, Republic of Korea; ijmr9126@kw.ac.kr (Y.K.); wjwj0131@kw.ac.kr (Y.Y.); bong1998@kw.ac.kr (M.J.);
rtr2001@kw.ac.kr (S.K.); chpark@kw.ac.kr (C.P.)
* Correspondence: tlee@kw.ac.kr; Tel.: +82-2-940-5771
† These authors contributed equally to this work.

Abstract: Cylindrospermopsin (CYN) is a freshwater algal toxin produced during the proliferation of
harmful cyanobacteria, known as cyanobacterial algal blooms (cyano-HABs). Recently, the effects of
global warming have facilitated the growth of cyano-HABs, leading to their worldwide occurrence
and an increase in toxin-related damage to aquatic ecosystems. CYN is known to exhibit strong
cell toxicity upon ingestion, inhibiting protein synthesis and glutathione production and, ultimately,
leading to cell death. In addition to cell toxicity, CYN exhibits skin toxicity, genotoxicity, and
hepatotoxicity. It can also affect other organs, such as the kidneys (causing tubular necrosis), thymus
(causing atrophy), and heart (causing pericardial and myocardial hemorrhage). The standard method
used for CYN detection to date, enzyme-linked immunosorbent assay (ELISA), has several drawbacks:
it is complex, time-consuming, and requires trained researchers. Recently, biosensors have been
shown to offer numerous advantages, such as their simplicity, portability, and rapidity, making
them suitable for onsite applications. Consequently, recent studies have actively explored the latest
biosensor-based technologies for CYN detection. This review discusses the recent advances in CYN
detection platforms that utilize several types of biosensors.

Keywords: cyanobacteria; cyanotoxin; cylindrospermopsin; biosensor; electrochemical; optical; microarray

1. Introduction

Cyanobacteria have had a significant impact on the evolution of life and have con-
tributed to ecosystem formation [1]. However, under specific conditions, the excessive
proliferation of cyanobacteria can lead to the formation of harmful algal blooms known as
cyano-HABs [2]. This can cause severe water pollution, resulting in ecological destruction
and economic loss [3]. Recent industrialization rises in temperature due to global warming
and accelerated eutrophication have promoted cyano-HABs, leading to an increase in their
frequency and scale [4–10]. Cyano-HABs are responsible for the production of secondary
metabolites, including toxins known as cyanotoxins, which cause green water, odor, and
toxicity in aquatic environments such as rivers, lakes, and ponds [11–13]. When ingested,
cyanotoxins can cause severe functional impairments in the liver and nervous system of
humans and animals, leading to death. Based on their toxic effects, cyanotoxins are classi-
fied as hepatotoxins (microcystins [MC] and nodularins), cytotoxins (cylindrospermopsin
[CYN]), neurotoxins (anatoxin-a, homoanatoxin-a, anatoxin-a(S), saxitoxin [STX], and beta-
methylamino-L-alanine), and dermatoxins (lyngbya toxins and aplysiatoxins) [14]. Among
these, the most common cyanotoxin, microcystin-LR (MC-LR), is frequently generated,
widely distributed worldwide, and has been extensively studied [15]. However, research
on CYN is limited.

CYN is a cyanobacterial toxin that gained prominence as an important cytotoxin
following human CYN poisoning (hepatoenteritis) on Palm Island, northern Queensland,
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Australia, in 1979 [16]. This toxin is produced by several cyanobacterial genera, includ-
ing Cylindrospermopsis raciborskii (C. raciborskii), Aphanizomenon ovalisorum, Anabaena bergii,
Raphidiopsis curvata, Umezakia natans, and Lyngbia [17–26], and is found worldwide, includ-
ing in Israel, New Zealand, Europe, Japan, China, Thailand, and other regions [27–34].

CYN exhibits strong cellular toxicity, inhibits protein synthesis and glutathione produc-
tion, and causes genotoxicity [35] and cell death [36]. Additionally, CYN is hepatotoxicity,
but it can also affect other organs, such as the kidneys (tubular necrosis), thymus (atrophy),
and heart (pericardial and myocardial hemorrhage) [37–39]. CYN is commonly found in
Europe, Asia, Oceania, and North America, with median concentrations ranging from 0.5
to 2.5 µg/L. The highest reported concentration was 1050 µg/L in farm water supplies
in central Queensland, Australia [40]. Contamination of freshwater with CYN can have
serious implications for public health and can result in significant harm and loss. Therefore,
it is important to monitor CYN concentrations in real-time to detect the occurrence of
cyano-HABs rapidly and prevent intoxication via ingestion and contact with toxins.

In 2003, Humpage and Falconer used an oral administration study in mice to estimate
the no-observed adverse effect level (NOAEL) of CYN. They proposed a practical drinking
water CYN guideline value of 1 µg/L, considering a WHO standard weight of 60 kg, water
consumption of 2.0 L/day, and an estimated intake of 0.9 ratios of total toxin intake from
drinking water [41]. Subsequently, in 2015, the U.S. Environmental Protection Agency (EPA)
developed health advisories for cyanobacterial toxins, recommending ≤0.7 µg/L for bottle-
fed infants and preschool children and ≤3.0 µg/L for school-age children and adults for
CYN [42]. Recently, the US EPA released draft ambient water quality criteria for swimming
advisory levels of 4 and 8 µg/L for MC-LR and CYN, respectively [43]. To prevent CYN
intoxication effectively, a detection platform with portability, rapidity, accessibility to
nonexperts, and sensitivity for detecting trace amounts of CYN is required. Efforts to detect
CYN include high-performance liquid chromatography [19,44], liquid chromatography–
tandem mass spectrometry (LC-MS/MS) [45], and enzyme-linked immunosorbent assays
(ELISA). However, using LC-MS/MS for onsite analysis is impractical because of its bulky
and complex instrumentation. Moreover, this analysis requires significant time, cost,
specialized technicians, and complex sample preparation procedures. ELISA is commonly
used for the quantitative analysis of total toxins. It does not require heavy and expensive
equipment but involves complex detection steps, extensive analysis time, and trained
researchers. The mouse bioassay has also been widely used; however, it does not facilitate
rapid toxin monitoring.

Biosensors are gaining attention as alternatives to conventional toxin detection meth-
ods. A biosensor is an analytical device composed of three units, a bioreceptor that allows
specific binding or biochemical interactions with the target analyte, an electrode, and a
signal transducer [46]. When complementary binding or biochemical reactions occur be-
tween the bioreceptor and target analyte, they cause changes in physicochemical properties
(such as pH variation, electron transfer, mass change, heat transfer, absorption, or release of
gas or specific ions) proportional to their concentration, generating a detectable signal for
analysis [47]. Biosensors are classified into various types based on the transducer and de-
tection platform used, including electrochemical, electrical, and optical classifications [48].
Electrochemical-based biosensors utilize the oxidative/reductive signal changes resulting
from the binding of biological receptors and analytes [49]. Electrochemical bio-sensors
consist of three electrodes: reference, counter, and working electrodes, which are catego-
rized as potential, current measurement, voltage-current, and impedance biosensors [50].
Electrical biosensors, mostly based on field-effect transistors (FETs), involve a semiconduc-
tor channel connecting the source and drain electrodes, with a bio-receptor immobilized
on the sensing material. When a bias voltage is applied, electrical characteristics such
as electrical conductivity are modulated by the gate electrode depending on the analyte
binding, generating a signal [51]. FET-based biosensors exhibit high detection capability
and sensitivity for both neutral and charged biomolecules. Optical sensors utilize surface
plasmon resonance, Raman scattering, fluorescence, and colorimetry to analyze the changes
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in optical signals according to biological reactions [52]. They can also be categorized based
on the type of bioreceptor used, such as genetic sensors, immunosensors, aptasensors, and
enzyme sensors. The most widely used biological receptors are antibodies and aptamers.
Antibodies generate antigen–antibody complexes through specific binding with antigens.
However, they have disadvantages such as difficult production, high manufacturing costs,
sensitivity to temperature and conditions, and short lifespan. In contrast, aptamers can
be produced in vitro, exhibit high thermal stability, and are resistant to denaturation and
degradation, making them cost-effective. Aptamers are produced through an affinity-based
method called SELEX (systematic evolution of ligands by exponential enrichment) and can
possess specificity for nearly all targets, including proteins, toxic molecules, and cells [53].

Biosensors offer excellent accessibility through relatively simple measurement proce-
dures and low costs, making them suitable for mass production. Moreover, research on
enhancing their functionality for onsite applications is ongoing. To achieve rapid detection,
Park et al. [54] significantly reduced the reaction time of the target analyte, MC-LR, with the
bioreceptor, from 3 h to 10 min by using an alternating current electrothermal flow, thereby
greatly reducing the overall detection time. Research has also been conducted to amplify
signals and detect substances at ultralow concentrations by introducing nanomaterials
onto the electrode surface to enhance sensitivity [55,56]. In addition to improving the
performance of electrodes, studies on integrating biosensor signal transduction and control
via smartphones to reduce costs significantly and make them user-friendly, thereby increas-
ing the feasibility of biosensor applications, are ongoing [57]. Scott et al. [58] designed a
portable, fully integrated platform for point-of-care electrochemical readout and operation,
enabling remote control via a smartphone application using Bluetooth low energy. This
overcomes the drawbacks of expensive and bulky commercial potentiostats and facilitates
easy use and data interpretation by non-experts. Such biosensor research and development
has contributed to the development of field-ready biosensor platforms capable of real-time
detection of viruses, microorganisms, and toxins, with the concept of field-ready biosensors
gaining attention. An example of this is the self-diagnostic kit used for COVID-19 in 2019,
in which patients with suspected infections directly collected samples to determine the
presence or absence of the pathogen.

Biosensors could be effective in the detection and monitoring of CYN. Despite the
risks associated with CYN and the need for its detection, research on CYN biosensors
has been limited to date. In this review, studies on CYN detection using biosensors
were classified according to detection techniques, such as electrochemical, optical, and
microarray, for discussion.

2. Electrochemical-Based Detection

In electrochemical biosensors, when a target substance binds to the biological receptors
on the sensor surface, the physical or chemical reactions allow biological information
regarding the analyte to be converted into electrical current or voltage signals [50,59]. More
specifically, electrochemical reactions occur between the analyte or ions and electrolytes
in the space between the electrode surface or electrodes, leading to oxidation–reduction
reactions [60]. This electrochemical technology is cost-effective and miniaturized, making
it highly applicable to portable devices [61]. Additionally, electrochemical biosensing
utilizing aptamers has been applied in various areas, such as disease diagnosis [62], viral
detection [63], and environmental monitoring [64], due to their high selectivity, low cost,
and rapid results [65].

Electrochemical biosensors are typically controlled using a three-electrode system [59].
The three-electrode system consists of a working electrode composed of a chemically stable
conductive material, a reference electrode coated with silver/silver chloride (Ag/AgCl),
and a platinum wire counter electrode. In this system, the reference electrode protects the
half-cell potential from changes as the charge passes through the counter electrode [66].

Electrochemical sensors can be classified into potential-difference, amperometric, and
impedance-measurement biosensors based on the type of data observed [59]. Potential-
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difference measurement biosensors measure changes in signals for the analyte generated
by an applied voltage [67]. Amperometric sensors continuously measure the current gener-
ated by the oxidation–reduction reactions of electrochemically active species on the sensor
surface [68]. Impedance-measurement methods monitor resistance and reactance [66].
Cyclic voltammetry (CV) is a technique commonly used in electrochemical biosensors.
It obtains information about oxidation–reduction potentials through changes in current
values generated by applying triangular wave voltages in a three-electrode system [69,70].
Electrochemical impedance spectroscopy (EIS) is a powerful electrochemical measurement
tool that analyzes the electrical characteristics of the interface investigating electrode reac-
tions [71,72]. EIS can be used to monitor processes that affect the conductivity, impedance,
and capacitance of electrochemical systems [69,73]. CV and EIS are commonly performed
together to obtain information about changes in the redox potential and electron transfer
resistance of a biosensor surface caused by a bioanalyte [64,69,74]. In this section, we
describe impedance biosensors for CYN detection using CV and EIS.

Impedance Measurement Sensor

Recently, Elshafey et al. developed a label-free electrochemical-based aptasensor for
the sensitive detection of CYN [64]. They selected the CYN9 aptamer sequence, which
undergoes conformational changes upon binding to CYN, can be detected using circular
dichroism (CD) and modified with a disulfide probe. Figure 1a shows a schematic of
the fabricated aptasensor, which formed a self-assembled monolayer. To minimize the
nonspecific adsorption of the aptamer, its secondary structure was enhanced by blocking it
with 6-mercapto-1-hexanol. Changes in the electronic transmission resistance (Ret) resulting
from structural changes in the aptamer induced by aptamer–CYN binding were monitored
using CV and EIS. Figure 1b shows the electrochemical monitoring results of the response
of the aptasensor to CYN binding. Figure 1(bB) shows the results of the EIS measurements
performed on the [Fe(CN)6]4–/3– solution at equimolar concentrations. The Bare Gold
electrode exhibited the smallest resistance (indicated by the diameter of the semicircle in the
graph) due to fast electron transfer (represented by the black line). In contrast, the electrode
modified with the negatively charged disulfide-transformed aptamer showed increased
resistance due to the electrostatic repulsion with the [Fe(CN)6]4–/3– ions (represented
by the red curve). After CYN binding (represented by the blue curve), the resistance
decreased, indicating structural changes in the aptamer and increased accessibility of
the redox marker due to folding. This Ret behavior was consistent with the current
behavior observed in CV (Figure 1(bA)), confirming the CYN-detection capability of the
aptasensor. Figure 1(cB) shows the calibration graph of the aptasensor based on the EIS
results obtained at various CYN concentrations. The graph was calibrated using ∆[Ro-
R/Ro%] and showed a linear dependence on CYN concentration. The limit of detection
(LOD) for the fabricated aptasensor was determined to be 0.039 µg/L, demonstrating higher
sensitivity than that (0.040 µg/L) of the commercial ELISA kit. The successful development
of an electrochemically based CYN detection aptasensor highlights its potential as a tool
for environmental monitoring in the field.

Zhao et al. developed a label-free impedimetric aptasensor for CYN detection with
low detection limits, high selectivity, and reproducibility [74]. Figure 1d shows a schematic
of the aptasensor fabricated through the covalent coupling of a thionine–graphene (TH-G)
nanocomposite-modified electrode and an amino-substituted CYN aptamer. The aptasensor
was fabricated by inducing covalent coupling between the amino groups of the amino-
CYN aptamer and aldehyde groups of glutaraldehyde (GA)-treated TH-G nanocomposite-
modified electrode (TH-G/GCE). Figure 1(eA,B) shows the CV and impedance spectrum
for each manufacturing process of the sensor. In Figure 1(eA,B), it was confirmed that TH-G
has excellent electrical conductivity through an increase in peak current and a decrease
in Ret of CGE/TH-G compared to bare GCE. Figure 1(eC) shows the Ret value for each
process step. The Ret value decreased noticeably when CYN was bound to the aptasensor,
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together with the decrease in surface resistance by TH-G. These results demonstrate the
improvement of CYN detection efficiency through the introduction of TH-G nano-materials.
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Figure 1. (a) Schematic diagram of fabrication of label-free electrochemical aptasensor for detecting
CYN. (b) (A) Cyclic voltammograms measured at a scan rate of 100 mV/s for each sensor manu-
facturing process. (B) Nyquist plot for each manufacturing process of the sensor (105~3 Hz, 0.21 V
DC potential and 5 mV AC amplitude) Curves according to Au, Au/CYN9, Au/CYN9/MCH and
Au/CYN9/MCH/CYN (60 nM) are black, red, blue and green curves. (c) (A) Nyquist plots of
sensors measured at CYN concentrations of 0, 0.1, 1.0, 20, 40, 60, 80, 100, 150, 200, and 300 nM.
(B) Linear regression curve with the result of A corrected by ∆R/Ro%. Reproduced with permission
from Ref. [64]. Copyright 2014 American Chemical Society. (d) Schematic diagram of label-free CYN
detection aptasensor fabricated through covalent bonding of TH-G (thio-nine-graphene) nanocom-
posite modified electrode and ami-no-substituted CYN aptamer. (e) (A) Cyclic voltammogram
and (B) Nyquist plot and equivalent circuit for each stage of the sensor manufacturing process (a.
bare GCE (black), b. GCE/TH-G (red), c. GCE/TH-G/GA (blue), d. GCE/TH-G/GA/anti-CYN
aptamer (purple) and e. GCE/TH-G/GA/anti-CYN aptamer/80 nM CYN (green)). (C) Electron
transfer resistance for (A). (f) (A) Selectivity of aptamersensors through impedance measurement of
Okada acid (OA) and Microcystin-LR (MC-LR) (B) ∆Ret value change according to sensor reuse cycle
(g) ∆Ret linear regression curve for EIS measurements by concentration of CYN. Reproduced with
permission from Ref. [74]. Copyright 2015 Royal Society of Chemistry.

The LOD of the fabricated sensor was 0.117 ng/mL within the dynamic range of 0.39
to 78 ng/mL. Impedance measurements were also conducted to evaluate the selectivity
and reproducibility of the sensor. Figure 1(fA) shows the excellent selectivity of the ap-
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tasensor towards CYN through impedance measurements against okada acid and MC-LR.
Figure 1(fB) shows the Ret values representing the initial response of the aptasensor after
10 re-uses, indicating high reproducibility with a relative standard deviation of less than
2.1%. Furthermore, impedance measurements at various CYN concentrations in freshwater
(ranging from 1.0 nM to 150 nM) demonstrated a low LOD of 0.146 ng/mL, highlighting
the practicality of the fabricated sensor for onsite measurements (Figure 1g). The label-free
and sensitive electrochemical aptasensor for CYN detection was developed to establish an
onsite diagnostic platform for CYN detection for use in environmental monitoring.

An electrochemical-based CYN detection biosensor using aptamers combines the
stability of aptamers with the sensitivity and miniaturization potential of electrochemical
tools, thereby offering the potential for onsite monitoring in the field.

3. Optical-Based Detection

Optical-based biosensors convert the interactions between biomolecular recognition
elements into optical signals, such as light absorption, reflection, or emission [75]. These
can be broadly categorized into labeled and label-free systems. In labeled systems, optical
signals are generated using colorimetric, fluorescent, or luminescent methods.

3.1. Fluorescence

Fluorescent biosensors have been developed based on the colorimetric signals exhib-
ited by fluorescent dyes. The intensity of the fluorescence signal changes depending on the
amount or concentration of the target substance present [76]. Fluorescence-based biosensors
have great advantages in that they are capable of simple and rapid analysis as compared
to several other reported detection methods. However, unnecessary transformations can
occur; therefore, it can only be used as a simple bioreceptor. Aptamers are simple biological
receptors, and biosensors based on aptamers and fluorescence have been reported [70].

Chinnappan et al. reported graphene oxide (GO)–aptamer biosensors for exploring the
binding regions of high-affinity aptamers for detecting CYN [77]. Off/on fluorescence was
designed to probe the binding region with the essential nucleotides in the long aptamer. The
binding ability and sensitivity were improved by removing nonessential nucleotides from
the aptamer [78,79]. In their study, graphene exhibited excellent fluorescence-quenching
properties and was used to quench aptamer fluorescence. The truncated aptamer with
a fluorescence label of 25 nM was titrated with increasing GO in the dynamic range of
about 0–50 µg/mL to derive the optimal concentration ratio, and the fluorescence intensity
was measured in the 515 nm wavelength range. The designed biosensor uses aptamer
fluorescence as a probe for detecting CYN. They found that approximately 45% of the
fluorescence was recovered at a concentration of 50 nM CYN. These properties are identical
to those that confirmed significant signal enhancement by the small molecules of CYN
on a GO surface. These findings suggested that the FAM (6-carboxyfluorescein)-labeled
sequence is highly involved in the formation of the aptamer–CYN complex [74,80]. CYN,
the target material, forms a strong complex with the aptamer, and the GO–aptamer π–π
stacking interaction becomes unstable, resulting in a loss of interaction with GO. Therefore,
the aptamer–CYN complex is released into the solution, and its fluorescence is recovered.
The LOD of the aptasensor presented in this study was 17 pM, which is six times lower
than the LOD reported in a long aptamer study [81].

Zheng et al. developed an aptamer-based biosensor for the detection of multiple
cyanotoxins using a smartphone [82]. Four aptamer sequences with high cyanotoxin-
binding ability were selected and bound to a cyanotoxin-free aptamer sequence using a
single-stranded DNA (ssDNA) dye. The ssDNA dye forms a fluorescent signal, and when
a cyanotoxin is present, the fluorescent dye is displaced to form a cyanotoxin–aptamer
complex, which reduces the fluorescence signal. Figure 2a,b show the detection mechanism
of the proposed biosensor and the absorption and emission spectra of the ssDNA dye.
To characterize the analytical performance of the proposed biosensor, the dissociation
constants (Kd) of the four aptamer complexes were semiquantitatively determined by
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nonlinear least-squares fitting using the Hill equation [83]. Digital analysis of the emitted
fluorescence was performed using a readout platform combining a microfluidic chip and a
3D-printed imaging attachment. Figure 2c shows the operational flow of the microfluidic
chip and a fluorescence image obtained using a smartphone. In the presented biosensor,
the ratio of the aptamer to dye was about 1:20 for the best LOD, and when measured for
four aptamers by using a fluorometer, the LOD was reported to be between 0.54 nM and
1.8 nM.
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sion spectra of the ssDNA dye superimposed with excitation and detection windows. (c) Operation
flowchart of the microfluidic chip. First line is schematic illustration showing the fabrication (blue)
and testing (red) steps of the chip. The second and third lines are corresponding smartphone bright-
field and fluorescent images of the chip, respectively. Reproduced with permission from Ref. [82].
Copyright 2019 American Chemical Society.

These studies used fluorescence and aptamers that strongly bind to target molecules.
Although it has advantages in that it is simple and fast, it is necessary to focus on the
development of biosensors using various constituent materials because their uses and
performance vary greatly depending on the characteristics of biomolecules.

DNA microarray technology is a powerful research tool that allows the parallel mea-
surement of thousands of genes, enabling the rapid analysis of samples and offering
versatile applications in various diagnostic fields [84,85]. Oligonucleotide microarray tech-
nology has been widely applied in molecular biology and has shown great potential in
environmental diagnostics [86]. Using microarray technology, genes involved in biolog-
ical events can be identified, and the interactions between genes can be analyzed. This
not only accelerates molecular biology experiments but also enables new experimental
approaches [87]. Protein microarray technology allows the detection and quantification of
proteins within an organism. Antibodies immobilized on the micro-array chip selectively
capture antigens, prioritizing antigen recognition over the secondary fluorescently labeled
detection antibodies targeting different epitopes of the same antigen. Similar to ELISAs,
antibody-based microarrays enable protein detection [88].

The Bickman research team demonstrated a portable biosensor system called MBio, for
the rapid and simultaneous detection of MC and CYN in freshwater. This study involves
conducting multiplex fluorescence immunoassays using a platform based on a portable,
disposable cartridge that combines planar waveguide illumination, fluorescence imaging,
and microarray technology [89]. The MBio cartridge was formed by printing toxin–protein
conjugates using a non-contact dispenser on a waveguide made of a low-autofluorescence
polymer resin. Figure 3a shows a cross-sectional schematic of the competitive immunoassay
array. The detection reagent was a freeze-dried mixture of fluorescent-labeled antibodies
against MC and CYN. Figure 3b shows an array image under the analysis conditions: in the
absence of toxins, antibodies bind to the MC- and CYN-conjugates, creating bright spots,
whereas in the presence of toxins, binding is competitively inhibited, resulting in reduced
fluorescent signals. The analysis focused on a detection range of 1 µg/L to enable sensitive
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onsite diagnostics. Figure 3b,c present the standard curves for the MC and CYN analyses,
respectively, with the output intensity normalized to the intensity at the cutoff point (B0).
The reported dynamic range at 80% inhibitory concentration (IC80) was 0.4–3.1 µg/L for
MC and 0.7–2.7 µg/L for CYN. These results demonstrated the development of a rapid
and sensitive simultaneous screening method for detecting MC and CYN cyanotoxins.
The development of an MC and CYN multiplex analysis system holds the potential for
monitoring harmful cyanobacterial toxins in the field.
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These studies have advantages in terms of simplicity and speed by utilizing fluores-
cent aptamers that exhibit strong binding to target molecules. However, due to the varying
characteristics of biomolecules, the purpose and performance of biosensors can vary signif-
icantly. Therefore, it is necessary to develop biosensors using a variety of components to
accommodate the specific properties of biomolecules.

3.2. Surface Plasmon Resonance

The labeling approach carries the risk of introducing errors depending on the binding
characteristics and conditions of the labeled molecules [90]. Surface plasmon resonance
(SPR) is a well-established optical sensor-based approach that allows the real-time charac-
terization of binding reactions without the need for labeling with radioactive or fluorescent
substances. It can be applied to various biological systems, such as proteins, oligonu-
cleotides, oligosaccharides, peptides, virus particles, and cells [91–96].

SPR biosensors rely on the resonance of surface plasmon waves to observe changes
in the sensor surface through variations in reflected light [97]. When an electromagnetic
wave is incident at the interface between two media with opposite sign permittivities, such
as metals and dielectrics, the charged particles oscillate and generate a surface plasma
wave (surface plasmon wave) [98]. This surface plasmon wave attenuates the intensity of
the reflected light at a specific angle, known as the SPR angle, and responds sensitively
to surface changes in the dielectric layer adjacent to the metal layer. The sensor surface,



Chemosensors 2023, 11, 401 9 of 16

composed of functional self-assembled monolayers generated using various methods, such
as amine, aldehyde, or thiol coupling, undergoes changes upon specific binding to the
target molecule in an unknown solution [99]. This enables the quantification of analyte
concentrations and real-time monitoring of binding reactions [90,100].

Elliott et al. developed monoclonal and polyclonal antibodies for the detection of
CYN and characterized them using ELISA and SPR [101]. To form immunoreactive pro-
tein conjugates, CYN was coupled with bovine thyroglobulin (BTG) via the carbodiimide
reaction (CYN–acid–BTG, CYN–succinate–BTG), acid anhydride reaction (CYN–acid to
BTG), epoxy linker (CYN–BTG), and modified Mannich reaction (CYN–KLH and CYN–
OVA). Rabbits were immunized with an immunogen to produce polyclonal antibodies,
and mice were used to produce monoclonal antibodies. SPR was used to evaluate the
sensitivity and specificity of antibodies. The carboxymethylated surface of a CM5-certified
biosensor chip (Cytiva, U.S.A) was equilibrated at room temperature and activated using
an amine-coupling kit. Jeffamine (0.1 M) in phosphate buffer was sequentially exposed
to the sensor surface, followed by ethanoldiamine (1 M), and CYN was activated using
EDC/NHS, epoxy chemistry, or formaldehyde chemistry, according to the immunoreactive
protein-conjugation method. Activated CYN was immobilized by binding to Jeffamine
or ethylenediamine linkers. For antibody screening, test sera were diluted 100-fold and
injected onto the surface at a flow rate of 12 µL/min for evaluation by SPR. This revealed
that only the antibodies produced by the modified Mannich reaction exhibited suitable
antibody affinity. The characterized monoclonal and polyclonal antibodies achieved a
sensitivity range of 27–131 pg/mL and 4.4–11.1 ng/mL (Figure 4), respectively, as deter-
mined by ELISA and SPR. In their study, highly sensitive antibodies that bind to CYN were
developed, and an SPR biosensor was fabricated to demonstrate real-time CYN analysis.
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4 Polyclonal 3; H Polyclonal 4) Calibration curves for monoclonal antibodies determined by (e)
ELISA and (f) SPR for CYN and deoxyCYN (# CYN monoclonal 1; 3 deoxyCYN monoclonal 1;
• CYN monoclonal 2; u deoxyCYN monoclonal 2) Reproduced with permission from Ref. [101].
Copyright 2013 Elsevier.

4. Overview of Cyanotoxin Detection Biosensors

Biosensors are suitable for cyanotoxin detection due to their low cost, simplicity, and
rapidity. Various strategies utilizing different transducers and detection platforms have
been reported to enhance biosensor performance, as discussed above. Strategies involv-
ing electrochemistry, optics, and microarrays are being extensively researched because
of the demand for cost-effective biosensor technologies; however, they have certain prac-
tical limitations. Table 1 presents an overview of the advantages and disadvantages of
each technique. Among the biomaterials used as bioreceptors, aptamers are utilized as
antibody alternatives because of their high specificity, stability compared to antibodies,
cost-effectiveness, and ease of synthesis and manipulation. In addition, aptamers can easily
incorporate multiple functional groups at their ends, enhancing their reactivity towards
sensor surfaces and various nanoparticles, thereby expanding their detection capabilities.
Nanostructures based on noble metals, carbon, and transition metal dichalcogenides have
been utilized to enhance signal sensitivity [55,56]. The introduction of suitable nanoparti-
cles increases the electrode surface area, thereby increasing the biomolecule contact area
and utilizing their electrical and chemical characteristics for applications. Table 2 provides
information on the characteristics of the biosensors developed for CYN detection, includ-
ing the bioreagents used. Unlike cyanotoxins that have been extensively studied until
recently, such as MC-LR [54,102–105] and Saxitoxin [106–109], biosensor development for
CYN remains lacking. Therefore, in addition to the electrochemical and optical detection
studies presented in this paper, it is urgent to actively promote research to detect CYN
toxins harmful to the environment and biological systems by integrating various detection
platforms and nanomaterials, bioreceptors, and microfluidic technologies.

Table 1. Advantages and disadvantages of each detection technique.

Detection Method Advantages Limitations Ref.

Electrochemical

Fast analysis and miniaturization are
possible, and simple operation makes

point-of-care analysis simple.

Miniaturization of electrochemical
biosensors has only been partially achieved

as they require structural integrity of the
microscopic electrodes.

[110,111]

Measurements can be made even with very
small sample volumes.

The sensor modification protocol is complex
and requires many cleaning steps. [112,113]

Fluorescence

The use of a non-fluorescent quencher
gives the detection system high sensitivity.

Complicated modification step requires
conjugation to the probe. [114]

Excellent sensitivity in
quantitative analysis.

It has modified extinction efficiency for
fluorophores emitting at other wavelengths. [114,115]

Thousands of genes can be
detected simultaneously.

Time-consuming and requires complex
pre-treatment of samples. [116]

SPR

Multiple detection with high sensitivity
is possible. Equipment is large and expensive. [116]

Real-time binding kinetics and affinity
measurement using label-free method with

low reagent consumption.
[117]
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Table 2. CYN detection biosensor.

Detection Method Bio Probe Detection Range LOD Detection Time Ref.

ELISA Antibody 0.05~2 µg/L 0.04 µg/L 90 h [118]

Electrochemical
Aptamer 0.1~300 nM 0.039 µg/L 100 min [64]

Aptamer 0.39~78 ng/mL 0.117 ng/mL 2 h [74]

Optical

Aptamer 0.01~40 nM 17 pM 30 min [77]

Aptamer 2 nM~100 µM 1.3 nM 5 min [82]

Antibody 0.7~2.7 µg/L 0.7µg/L 10 min [89]

Antibody 1.9~21.2 ng/mL 4.4~11.1 ng/mL 10 min [101]

5. Conclusions

This review discussed biosensors used for the detection of CYN. CYN, released by
cyanobacteria in a soluble form, is present in large quantities in affected water and remains
resistant to microbial degradation for extended periods if the water temperature remains
low. Dissolved CYN can persist even after the cyanobacteria disappear and can pass
through filtration or coagulation processes, potentially entering the final drinking water
supply [119]. Therefore, monitoring and rapidly responding to the increasing presence of
CYN in freshwater sources and drinking water is crucial. Given the increasing incidence of
cyano-HABs and the globally reported need for CYN monitoring, further development,
and research are urgently required. In addition to biosensor development, simplified
sample pretreatment processes should be developed to enable rapid onsite diagnosis. To
commercialize the construction of field-ready CYN biosensors, several problems should
be solved. (1) Adequate pre-treatment method should be established on the field without
heavy centrifugation equipment. (2) High responsive bioprobe required to detect CYN
in the freshwater that contained various residues, salts, and pollutants. An antibody is a
good option for this purpose, but it is still expensive for biosensor mass production. While
the aptamer is a cheaper and faster production than antibodies, it is less sensitive and
selective compared to antibodies. (3) Hand-held biosensors should have a high signal-
to-ratio response, signal fidelity, and low sample loading volume for CYN detection. A
small amount of CYN in the freshwater hampers the serious harmful effect on humans
and other living organisms. So, a hand-held biosensor with high-sensitivity fabrication
is essential for this purpose. Therefore, the development of CYN biosensors should meet
those requirements is crucial for future field-ready cytotoxin monitoring systems.
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