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Abstract: A novel catechol-based PCA@MWCNT-Ni(OH)2 hybrid material was prepared and used
to construct a non-enzymatic glucose biosensor. In this synthesis, MWCNTs were covered with a
poly(caffeic acid) coating and then subjected to a straightforward electrochemical process to decorate
the hybrid material with Ni(OH)2 particles. The physicochemical properties and morphology of the
nanomaterial were characterized using high-resolution transmission electron microscopy (HRTEM),
X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and atomic
force microscopy (AFM). Amperometry and cyclic voltammetric studies demonstrated the enhanced
redox properties of a GC/PCA@MWCNT-Ni(OH)2 electrode and its electrocatalytic activity in
glucose detection, with a low detection limit (0.29 µM), a selectivity of 232.7 µA mM−1 cm−2, and
a linear range of 0.05–10 mM, with good stability (5 months) and reproducibility (n = 8). The non-
enzymatic sensor was also used for glucose determination in human serum and human blood, with
recovery values ranging from 93.3% to 98.2%. In view of the properties demonstrated, the described
GC/PCA@MWCNT-Ni(OH)2 sensor represents a facile synthesis method of obtaining the hybrid
nanomaterial and a low-cost approach to electrochemical glucose measurement in real samples
(human serum, human blood).

Keywords: glucose electrochemical sensor; non-enzymatic sensor; poly(caffeic acid); nickel oxide
nanoparticles

1. Introduction

Glucose detection and monitoring are currently of great importance, especially in the
food industry and in the treatment of diabetes [1,2]. Millions of people worldwide are
affected by diabetes, which is ranked as the third most common chronic incurable disease
and the prevalence of which is steadily increasing [3]. It typically results from a rise in
the amount of sugar in bodily fluids, including blood, tears, urine, and serum, which can
lead to problems with the heart, kidneys, sight, etc. Only effective therapies and regular
diagnostics will prevent this. Due to the fact that the traditional method of diagnostic
glucose measurement is time-consuming and expensive, a current aim is to create a low-cost,
fast, and reliable glucose sensor with excellent selectivity and sensitivity [4].

In prior research, non-enzymatic glucose sensors have been constructed using various
transition materials and metal oxides [5–8]. Non-enzymatic electrochemical sensors for the
detection of various biomolecules have gained much interest due to their direct electrocat-
alytic detection method, cost-effective construction, excellent stability, and repeatability [9].
Glucose oxidation can be achieved using electrodes based on Ni, NiO, or Ni(OH)2 due
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to the presence of the redox pair Ni(OH)2/NiOOH, which is formed in an alkaline envi-
ronment on the surface of the electrode [10]. Nickel(II) hydroxide is one of the relatively
low-cost materials that can be used in effective electrocatalysts for glucose detection. Enzy-
matic and non-enzymatic glucose sensors already have new application platforms due to
recent advancements in nanomaterial production [11]. Moreover, the use of nanostructured
materials can considerably increase the activity of Ni(OH)2 electrodes [12].

Various materials using the Ni(OH)2/NiOOH mechanism for glucose sensing have
recently been reported. They enable the low-cost production of electrochemical sen-
sors, taking advantage of the catalytic abilities of nickel. Gao et al. proposed a non-
enzymatic glucose sensor based on nickel(II) hydroxide/electro-reduced graphene oxide
(Ni(OH)2/ERGO) nanocomposites with multi-walled carbon nanotubes (MWCNTs). They
applied a simple method of synthesis in line with the principles of green chemistry and
demonstrated the good electrocatalytic effect of Ni(OH)2 nanoparticles in detecting glucose.
The proposed system enabled the detection of glucose in a range of 10 µM to 9050 µM,
with an LOD of 4.0 µM. Moreover, Gao et al. used the proposed sensor for testing with
real samples [13]. In our previous work, we presented a hybrid nanomaterial poly(caffeic
acid)@MWCNT (PCA@MWCNT) characterized by the presence of peaks from the func-
tional groups contained in the biopolymer—PCA coating. This made it possible to lower
the potential at which NADH measurements were carried out, thus minimizing the influ-
ences of interfering agents on the measurements [14]. The obtained results were then used
for the construction of a non-enzymatic glucose sensor by decorating the PCA@MWCNT
nanomaterial with CuO. This made it possible to obtain a non-enzymatic glucose sensor
with a sensitivity of 2412 µA mM−1 cm−2, a detection limit of 0.43 µM, and a linearity
range of 0.002–9.0 mM [8].

In this work, we present a simple method to create a PCA@MWCNT hybrid nano-
material and electrochemically decorate it with Ni(OH)2. The novelty of the proposed
sensor consists of the use of a PCA functional biomimetic polymer, in accordance with the
principles of green chemistry, and its combination with a nickel compound that enables
glucose detection. The PCA@MWCNT-Ni(OH)2 material was characterized in detail using
several physicochemical techniques. In addition, it was used to build a non-enzymatic
glucose sensor. The experimental results showed good sensitivity and selectivity over other
compounds that occur in human blood and may be interfering factors. In addition, the
sensor was tested in real solutions (blood, serum), achieving a relatively high recovery.
Therefore, the proposed non-enzymatic sensor may be an alternative practical method for
the detection of glucose levels in real samples. The proposed system demonstrated high
recovery for measurements in real solutions such as human blood and human serum, with
simultaneous long stability of the sensor over time (5 months).

2. Materials and Methods
2.1. Materials and Chemicals

Caffeic acid (CA), nickel(II) sulfate hexahydrate, glucose, L-cysteine, dopamine, ascor-
bic acid, uric acid, fructose, maltose, saccharose, potassium hexacyanoferrate(II) trihydrate,
potassium hexacyanoferrate(III), dipotassium hydrogen phosphate, potassium dihydrogen
phosphate, and human serum samples (from human male AB plasma) were purchased
from Merck. Multi-walled carbon nanotubes (MWCNTs) were obtained from DropSens
(average diameter: ca. 10 nm, average length: 1–2 µm). Sodium hydroxide was purchased
from POCH Gliwice. Meter TraxTM Control whole blood samples with various low*,
medium*, and high* concentrations of glucose (*company markings) were supplied by
Bio-Rad.

2.2. Apparatus

A µ-Autolab III potentiostat (ECO Chemie, Netherlands) was used for the electrode-
position of nickel oxide and for all electrochemical measurements. The reference electrode
was Ag/AgCl/3M KCl, and Pt wire was used as the counter electrode. The working
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electrode was a glassy carbon electrode (GC; d = 2 mm). XPS analysis was conducted with
the use of a Prevac UHV multi-chamber analytical system. The radiation source was a VG
Scienta SAX 100 X-ray lamp with an aluminum anode, equipped with a VG Scienta XM
780 monochromator and emitting radiation with the Al Kα characteristic line and energy
of 1486.7 eV. High-resolution transmission electron microscopy (HRTEM) was performed
with a maximum acceleration of 120 kV and a resolution of 2 nm, with analysis using a Jeol
ARM 200F instrument. AFM measurements were performed under ambient conditions
using a Park NX10 microscope in intermittent contact mode.

2.3. Fabrication of GC/PCA@MWCNT-Ni(OH)2 Nanoplatform

Synthesis of the PCA@MWCNT material was performed as described in our previous
work [8]. To obtain a PCA@MWCNT hybrid material, 10 mg of caffeic acid (CA; 5.6 mM)
was dispersed in 10 mL of deionized water, and then 10 mg of MWCNT was added.
The mixture was next sonicated for 20 min to obtain a homogeneous solution, and a
prepared solution of NaIO4 (12 mg dissolved in 10 mL; 4.7 mM) was added dropwise. The
process was allowed to take place for 24 h, after which the solution was washed with a
water/methanol mixture (20 min; 6000 rpm).

Before the electrodecoration of the PCA@MWCNT hybrid material with Ni(OH)2, the
GC electrode was polished with Al2O3 (Buehler; average diameter: 50 nm) on a polishing
cloth. It was then rinsed with a water/acetone mixture (1:1) in an ultrasonic bath.

To decorate the electrode with nickel(II) hydroxide, in the first step, the electrode
was modified with the PCA@MWCNT hybrid material. Then the modified electrode was
immersed in a NiSO4 solution to accumulate Ni2+. To optimize the electrodeposition
process, different concentrations of NiSO4 (0.001 to 0.1 M) and immersion times in the
solution (from 0.2 to 10 min) were tested (Section 3.1).

2.4. Real Sample Analysis

The standard addition technique was used to measure glucose in real samples (human
serum, human blood). For this, each real sample was added to 0.1 M NaOH, followed by
the addition of known glucose concentrations. The measurement was carried out using the
amperometric I–t relationship. In the case of human serum, three glucose concentrations
(2.4, 6.6, and 8.5 mM) were measured. The analysis of the Meter Trax™ Control human
whole blood samples consisted of three measurements with different glucose concentrations
(3.2, 6.3, and 14.7 mM).

3. Results and Discussion
3.1. Electrochemical Formation of GC/PCA@MWCNT-Ni(OH)2

Our previous studies have shown that the CV response for PCA@MWCNT in PBS
(pH = 7.4) exhibits two reversible redox pairs, at E0′ = 0.18 and −0.10 V, related to cross-
linked o-quinone/o-hydroquinone transitions [8]. The formation of a coordinating con-
nection between metal ions and deprotonated catechol (quinoid) moieties was discovered
in a previous study of the chemical interactions between phenolics and transition metal
ions such as copper, iron, and nickel [13]. The catechol groups present in the PCA structure
have the potential to function as chelating agents for nickel ions. Furthermore, the func-
tionalization of the GC/PCA@MWCNT electrode with nickel ions was performed in the
first step by dipping the modified electrode in an aqueous NiSO4 solution for the required
amount of time. As a result, the formation of a Ni2+ complex on the surface of the electrode
took place according to this equation:

GC/PCA@MWCNT + Ni2+ → GC/PCA@MWCNT-Ni2+ (1)

After the Ni2+ accumulation, the GC/PCA@MWCNT-Ni2+ electrode was transferred
to a sodium hydroxide solution (NaOH, 0.1 M). In this solution, the uniformly distributed
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nickel centers (Ni2+) on the surface of GC/PCA@MWCNT turned into nanoparticles of
Ni(OH)2. The changes can be expressed with this equation:

GC/PCA@MWCNT-Ni2+ + 2OH− → GC/PCA@MWCNT-Ni(OH)2 (2)

Finally, CVs were recorded in the potential range of 0.0 to +0.6 V in 0.1 M NaOH until
reproducible voltammetric signals were obtained. Figure 1 shows the recorded curves. The
CVs display a distinct redox couple at E0′ = 0.48 V. These peaks are due to the oxidation of
Ni(OH)2 to NiOOH, which caused the Ni oxidation state to transition from Ni2+ to Ni3+

according to this equation:

GC/PCA@MWCNT-Ni(OH)2 + OH− ↔ GC/PCA@MWCNT-NiOOH + H2O + e− (3)

Similar values of the oxidation potential of Ni(OH)2 have been reported by Liu et al,
among others. The proposed MWCNT/Ni(OH)2 system produced an oxidation peak at
0.47 V [14]. Moreover, the Ni(OH)2 was shown by Liu et al. to produce an oxidation peak at
0.48 V, which confirmed the effective deposition of Ni(OH)2 on the present MWCNT@PCA
hybrid material [15].

The results we obtained confirm that a surface-confined complex was formed between
the catechol groups of PCA and nickel, the ions of which may be a precursor for the in situ
creation of nickel hydroxide nanoparticles.
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Figure 1. CVs of GC/PCA@MWCNT-Ni in 0.1 M NaOH solution at 10 mV s−1.

3.2. Surface Characterization

High-resolution transmission electron microscopy (HRTEM) was performed to inves-
tigate the morphology of the PCA@MWCNT-Ni(OH)2 nanomaterial. The HRTEM image
(Figure 2A) shows the surface MWCNTs covered with a thin poly(caffeic acid) film, with
diameters in the range of 3–4 nm, and Ni(OH)2 nanoparticles decorating the surface of the
PCA@MWCNT hybrid material. In certain areas, aggregated nanoparticles are visible.

Atomic force microscopy (AFM) was used to determine the morphology of PCA@MWCNT-
Ni(OH)2. Figure 2B,C show, respectively, 2D and 3D images of the Ni(OH)2 nanoparticles
deposited on the PCA@MWCNT hybrid material. The Ni(OH)2 was electrodeposited
mainly at the ends of the carbon nanotubes, which is explained by the accumulation of Ni2+

ions in the boundary plane defects, as has been confirmed in previous studies [8]. Moreover,
the height profile was determined; this is presented in Figure S1 (see Supplementary
Materials). Moreover, based on the determined AFM, an RMS roughness (Sq) value of
208.3 nm was determined.
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Figure 2. HRTEM images of PCA@MWCNT-Ni(OH)2 at different magnifications (A). AFM images of
PCA@MWCNT-Ni(OH)2 (B,C).

The deposition of the Ni(OH)2 on the PCA@MWCNT hybrid material was confirmed
with energy-dispersive X-ray spectroscopy (EDS). The EDS mappings of the material were
obtained to analyze the elemental distributions of the product surface. Figure S2A shows
strong diffraction peaks for C, O, and Ni. The molar ratio of C, O, and Ni was 69.76: 26.46:
3.78, respectively (Table S1). The EDS mapping of the individual elements (Figure S2B–D)
shows the uniform distribution of the elements in the sample. Moreover, high homogeneity
can be observed, with no identified agglomeration.

Through analysis of X-ray photoelectron spectra (XPSs), the chemical valence and
elemental composition of the MWCNT@PCA-Ni(OH)2 hybrid material were confirmed
(Figure 3A). According to the survey spectrum, the elements C, Ni, and O coexisted. This is
in line with the findings based on the EDS mapping.

In accordance with the graphitic structure and carbon–carbon bonding (C–C and C=C),
the XPS for C 1s contained a peak with a binding energy of 284.9 eV (Figure 3B) [16]. The
C 1s spectrum of MWCNT@PCA-Ni(OH)2 has also contained peaks attributed to C=O
carbonyl groups (287.5 eV) and O=C–O carboxyl groups (288.7 eV) [17].

In the analysis of the O 1s core line (Figure 3C), the presence of –OH bonds was
reflected by a peak with a binding energy of 531.5 eV [18]. The peak at 532.8 eV could be
attributed to oxygen species in the carboxyl group (C=O). Other components corresponded
to oxygen–metal (Ni–O) bonds (530.8 eV) [19] and residual H2O (535.1 eV) [20].

The XPS spectra for the Ni 2p core level recorded in the range of 850–890 eV are shown
in Figure 3D. As indicated in the graph, the spectra consisted of two spin-orbit doublets,
which correspond to Ni2+ and Ni3+, and two shaking satellites. The binding energy of Ni
2p3/2 is approximately 856.4 eV, which corresponds to previously reported values [21].
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3.3. Electrochemical Characterization

The electron transfer ability of the GC/PCA@MWCNT-Ni(OH)2 electrode was as-
sessed with a cyclic voltammetry method using 1 mM of a [Fe(CN)6]3−/4− solution. For
the bare GC electrode (Figure 4A, curve a), a peak separation of 89 mV was observed,
indicating the quasi-reversible behavior of the [Fe(CN)6]3−/4− with bare GC. On the
GC/PCA@MWCNT electrode (Figure 4A, curve b), a smaller peak-to-peak separation of
80 mV was obtained. These results are due to the faster electron transfer rate on the highly
conductive MWCNT surface than on the bare GC. However, the peak-to-peak separation of
80 mV on the GC/PCA@MWCNT was still larger than expected for the diffusion-controlled
reversible redox process (∆E = 60 mV) [22]. This may have been due to repulsive coulombic
interactions between the negatively charged [Fe(CN)6]3−/4− marker and the carboxylic
functional groups of the PCA. The redox response for the GC/PCA@MWCNT-Ni(OH)2
system showed higher peak current values than that for the GC/PCA@MWCNT, while the
peak-to-peak separation decreased slightly to 0.79 V (Figure 4A, curve c).

Figure 4B shows the results obtained using electrochemical impedance spectroscopy
(EIS) to characterize heterogeneous electron transfer on the electrode surface. A bare GC
electrode (a) and electrodes modified with PCA@MWCNT (b) and PCA@MWCNT-Ni(OH)2
(c) were tested. For all materials, two areas changed depending on the frequency range; a
small semicircle was seen in each high-frequency region and a line in each low-frequency
region [23]. The experimental data were modeled using an equivalent Randles circuit (Rct),
presented in the inset of Figure 4B. The electron transfer resistance for the bare electrode was
444 Ω. The modification of the electrode with the use of the PCA@MWCNT hybrid material
resulted in a decrease in the resistance to 13.9 Ω, confirming the electrochemical potential
of the hybrid material. Electrodecoration with Ni(OH)2 resulted in an Rct value of 12.5 Ω.
This indicates that the electrodeposition of nickel hydroxide facilitated the charge transfer
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kinetics at the electrode, leading to the conclusion that the modification of the electrode
with the use of the hybrid material PCA@MWCNT-Ni(OH)2 enabled the achievement of
electrochemical properties that make it suitable for electrocatalytic applications [22,23].
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3.4. Glucose Electrocatalysis at GC/PCA@MWCNT-Ni(OH)2

The CVs of GC/PCA@MWCNT-Ni(OH)2, recorded in the presence of various glu-
cose concentrations, are displayed in Figure 4C. It can be seen that the electrocatalytic
oxidation of glucose was manifested by an increased anodic peak current at a poten-
tial close to that of the NiOOH/Ni(OH)2 redox couple. The well-pronounced catalytic
effect of the NiOOH/Ni(OH)2 nanoparticles toward glucose could be observed when
the redox response was compared with that of GC/MWCNT or GC/PCA@MWCNT.
According to Figure S3, no redox signals from glucose oxidation were detected in the
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case of GC/MWCNT or GC/PCA@MWCNT. These results suggest the suitability of the
GC/PCA@MWCNT-Ni(OH)2 hybrid electrode for glucose determination. Moreover, the
shift of the oxidation peak relative to the positive potentials observed when the glucose
concentration increased may have resulted from the limitation of the kinetics of the redox
processes involved.

The electrode’s catalytic mechanism is depicted in Figure 4D. The electrogenerated
NiOOH oxidized glucose to gluconolactone in an alkaline solution, and simultaneously,
the reduction of NiOOH to Ni(OH)2 occurred, resulting in an increase in the oxidation
peak current and a decrease in the reduction peak current in the reverse scan. The reaction
mechanism of the electrochemical glucose oxidation can be summarized as follows [24]:

Ni(OH)2 + OH− → NiOOH + H2O + e− (4)

NiOOH + glucose→ Ni(OH)2 + glucolactone (5)

3.5. Optimization of PCA@MWCNT-Ni(OH)2 Synthesis for Glucose Oxidation

The amount of Ni(OH)2 on the PCA@MWCNT surface could be moderated using
different concentrations of the Ni2+ precursor and different accumulation times. The
loading of the Ni(OH)2 catalyst was a crucial factor that determined the electrocatalytic
efficiency in glucose oxidation. Hence, in the first stage, the effect of the time of adsorption
(accumulation) of nickel was investigated, and the results are presented in Figure S4A,B.
A quantity of 50 mM of NiSO4 was used in these experiments. As shown, the charge
measured under the anodic peak increased rapidly, up to an adsorption time of 2 min, and
after this time, the redox signal formed a plateau, suggesting that adsorption equilibrium
was achieved after 2 min. Subsequently, the effect of the Ni2+ concentration was studied by
immersing the electrode in NiSO4 solutions at various concentrations, from 10 to 500 mM,
for 2 min (Figure S4C,D). The charge of the anodic peak increased significantly as the Ni2+

concentration increased from 10 to 100 mM. However, for higher Ni2+ concentrations, the
redox response began to level out. To verify the optimum loading of nickel, the resultant
electrodes were tested in the presence of glucose. The results showed that the highest
catalytic current (expressed as Iglucose−Ibackground) was observed for an electrode prepared
using 100 mM NiSO4 (2 min of accumulation) (Figure S4E).

To determine the active surface areas for the bare GC and the modified electrodes, the
cyclic voltammograms in 1 mM [Fe(CN)6]3−/4− were recorded, as shown in Figure 5.

The current response increased both with the addition of the PCA@MWCNT and after
the electrochemical deposition of the Ni(OH)2 nanoparticles. The Randles–Ševčík equation
was used to calculate the active surface area [25]:

Ip = 2.69 · 105 · A · D1/2 · n3/2 · c · v1/2 (6)

where A is the effective electrode surface area (cm2), Ip is the peak current (A), v1/2 is the
square root of the scan rate (V s−1), D is the diffusion coefficient (7.6 · 10−6 cm2 s−1), n is
the number of electrons (n = 1), and c is the concentration (mol cm−3) [8,26].

The calculated electroactive surface area for the unmodified GC electrode was 0.028 cm2.
Modification with the use of the PCA@MWCNT nanomaterials led to a more than tenfold
increase in the active surface. The electroactive surface areas for the GC/PCA@MWCNT
and the GC/PCA@MWCNT-Ni(OH)2 were calculated as 0.304 and 0.368 cm2, respectively.
Additionally, the active surface increased with the formation of Ni(OH)2 particles, which
were used as an electrocatalytic material for glucose oxidation.

For comparison, the electroactive surface area of a GC electrode modified with the
GO/GPE material was 0.112 cm2 [27]. Values of 0.144 cm2 and 0.123 cm2 of electroactive
surface area were obtained for CuAlO2 [28,29] and PtNPs [29], respectively.

To evaluate the kinetics of the glucose oxidation reaction in 0.1 M NaOH, the con-
structed GC/PCA@MWCNT-Ni(OH)2 electrode was tested using cyclic voltammetry at
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various scanning rates ranging from 10 to 100 mV s−1. Figure 4E shows the CV plot of the
electrode in the presence of 1 mM of glucose solution. As the scanning speed increases, the
peak anode current increases and shifts slightly. As shown in Figure 4F, the anodic and
cathodic current were plotted against the square root of the index scan, which gave linear
relations with correlation coefficients (R2) of 0.997 and 0.996, respectively, indicating that
the proposed sensor oxidizes glucose in a diffusion-controlled process [30,31].
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7.4), as well as the calibration plot of peak current vs. square root of the scan rate.

3.6. Glucose Detection at GC/PCA@MWCNT-Ni(OH)2

The amperometric responses of GC/PCA@MWCNT-Ni(OH)2 (at a constant potential
of +0.5 V) in 0.1 M of NaOH after the additions of different concentrations of glucose are
shown in Figure 6A. The potential of 0.5 V used in the measurements is lower than those
used in the cases of other nickel-based sensors, which can be considered an advantage of
this system [32–34].



Chemosensors 2023, 11, 452 10 of 16Chemosensors 2023, 9, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. Amperometric response of a GC/PCA@MWCNT-Ni(OH)2 electrode to successive addi-
tions of glucose at +0.5 V (A). The corresponding calibration curve (B). Amperometric responses of 
the GC/PCA@MWCNT-Ni(OH)2 electrode under stirring conditions with the addition of 1 mM of 
glucose (a) and subsequent additions of 0.1 M maltose (b), 1 mM of saccharose (c), 0.1 mM of fruc-
tose (d), 0.1 mM of L-cysteine (e), 0.1 mM of uric acid (f), 0.1 mM of ascorbic acid (g), and 0.1 mM of 
dopamine (h) in 0.1 M NaOH solution at +0.5 V (C). The average sensor response in the presence of 
interferents (n = 3) (D). Stability over time of the proposed PCA@MWCNT-Ni(OH)2 sensor for 
glucose determination: up to five months (n = 3) (E). 

Table 1. Comparison of the present MWCNT@PCA-Ni(OH)2 electrode to different non-enzymatic 
glucose sensors. 

Electrode 
Sensitivity 

/μA mM−1 cm−2 
LOD 
/μM 

Linear range 
/mM Ref. 

NiNP/SMWNTs 1438.0 0.50 0.001–0.1 [7] 
NiO–MWCNTs/CPE 122.1 31.0 0.0–9.0 [35] 

Figure 6. Amperometric response of a GC/PCA@MWCNT-Ni(OH)2 electrode to successive additions
of glucose at +0.5 V (A). The corresponding calibration curve (B). Amperometric responses of the
GC/PCA@MWCNT-Ni(OH)2 electrode under stirring conditions with the addition of 1 mM of
glucose (a) and subsequent additions of 0.1 M maltose (b), 1 mM of saccharose (c), 0.1 mM of
fructose (d), 0.1 mM of L-cysteine (e), 0.1 mM of uric acid (f), 0.1 mM of ascorbic acid (g), and 0.1 mM
of dopamine (h) in 0.1 M NaOH solution at +0.5 V (C). The average sensor response in the presence
of interferents (n = 3) (D). Stability over time of the proposed PCA@MWCNT-Ni(OH)2 sensor for
glucose determination: up to five months (n = 3) (E).

The current increased linearly and proportionally with increasing glucose levels (from
50 µM to 1 mM). The calibration plot of the glucose versus the current is shown in Figure 6B.
The system exhibited high linearity in the range of 50 µM to 10 mM of glucose. In addition,
the detection limit was determined to be 0.29 µM and the sensitivity of the sensor to be
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232.7 µA mM−1 cm−2. The analytical performance of the GC/PCA@MWCNT-Ni(OH)2
sensor is compared with the published data for other glucose sensors in Table 1.

Table 1. Comparison of the present MWCNT@PCA-Ni(OH)2 electrode to different non-enzymatic
glucose sensors.

Electrode Sensitivity
/µA mM−1 cm−2

LOD
/µM

Linear Range
/mM Ref.

NiNP/SMWNTs 1438.0 0.50 0.001–0.1 [7]
NiO–MWCNTs/CPE 122.1 31.0 0.0–9.0 [35]

NiO-MWCNTs 436.0 160.0 0.2–1.2 [36]
Ti/TiO2 NTA/Ni 200.0 4.0 0.1–1.7 [37]

Ni(OH)2/ERGO–MWNT/GCE 2042.0 2.70 0.01–1.5 [38]
Ni(OH)2/PU 2845.4 0.32 0.01–2.06 [39]

Ni(OH)2-CNT-Nafion/GCE 238.5 0.50 0.1–1.1 [40]
NiO-OMC/GCE 834.8 0.65 0.002–1.0 [41]

CNT/Ni NAs 1381.0 1.0 0.5–10.0 [42]
PCA@MWCNT-Ni(OH)2 232.7 0.29 0.05–10.0 This work

Amperometric experiments were also performed under static conditions. These tests
were carried out at a constant potential of +0.5 V. A stabilized current value was obtained
for the system after 30 s from the start of the measurements. The system was used to
test glucose additions ranging from 0.1 to 10 mM (Figure S5A). Based on the curve fit-
ted to the plot (Figure S5B), the sensitivity and the detection limit were determined to
be 256.48 µA mM−1 cm−2 and 0.72 µM, respectively. The proposed non-enzymatic glu-
cose sensor achieved a lower limit of detection (LOD) than reported enzymatic glucose
sensors [43–45].

3.7. Interference Study

The presence of many interfering compounds is unavoidable in the detection environ-
ments of real applications; hence, resistance to these interfering substances is critical for
glucose detection [46]. However, due to their higher electron transfer rates, these interfering
species can yield oxidation currents comparable with that of glucose. It is envisaged that
MWCNT@PCA-Ni(OH)2-modified electrodes with large active surface areas will favor a ki-
netically regulated sluggish reaction (glucose oxidation) over diffusion-controlled reactions
(the oxidations of interfering species) [7].

To verify the effects of interferents, the amperometric response of the modified
MWCNT@PCA-Ni(OH)2 electrode was tested with an applied potential of 0.5 V in 0.1 M
NaOH solution (Figure 6C). In this experiment, 1 mM of glucose, 0.1 mM of maltose,
0.1 mM of saccharose, 0.1 mM of fructose, 0.1 mM of uric acid, 0.1 mM of ascorbic acid,
and 0.1 mM of dopamine were added. As shown by the response curve in Figure 6D, a
relatively high glucose signal was obtained compared with those of the interferents. The
relative responses of the compounds compared with that of glucose ranged from 7.1%
for fructose and 6.4% for maltose to 3% for saccharose. These results indicate that the
MWCNT@PCA-Ni(OH)2 electrode has good selectivity for glucose oxidation. The signals
resulting from the presence of interfering agents were lower than those in the case of an
NiO/GCE material, for example; the reasons for this include lower applied potential [47].

The influences of the analyzed interferents were also investigated in static conditions.
Interferent solutions (0.1 mM) were assessed in the presence and absence of 1 mM of
glucose to determine the interference effect. The influences of these compounds on the
current responses of the produced sensor are shown in Figure S6A–H. Only slight changes
in the response were produced by the interferents compared to the solution with glucose
alone: 1.38% for sucrose, 3.27% for maltose, 5.58% for fructose, and 0.01% for dopamine
(Figure S6I).
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3.8. Stability, Reproducibility, and Repeatability

The stability of a sensor over time is critical for its practical implementation. External
factors such as temperature, pH, and humidity affect electrodes during detection. The
electrode’s stability over time, in particular, has a direct impact on its service life and
the cost of measurements [46]. Figure 6E shows that the GC/PCA@MWCNT-Ni(OH)2
electrode retained 93.5% of its relative response after one month and 74.4% after 5 months
of storage at 4 ◦C, indicating good long-term stability. Between months 4 and 5, there was
a drop in the relative response from 79.4% to 74.4%. During the glucose oxidation process,
reaction intermediates can be adsorbed onto the electrode surface. These adsorbed species
may block active sites on the electrode, making it less effective in catalyzing the glucose
oxidation reaction over time.

There are few data in the literature on the long-term stability of non-enzymatic sen-
sors. This is a very important feature that determines the future application potential
of such sensors. For example, Gong et al. investigated the stability of an Ni/Cu/BDD
system over 30 days, obtaining 93.3% storage stability [46]. In comparison, Zeng et al.
reported that an MWCNT-Ni-S nanomaterial retained 88.0% of its initial activity after just
18 days [48]. Table 2 shows a comparison of the stability of the sensor studied here with
other Ni-based sensors.

Table 2. Comparison of the sensing performance of the PCA@MWCNT-Ni(OH)2 electrode with other
reported Ni nanostructure electrodes.

Glucose Sensor Retained Activity (%) Storage Time (Days) References

Ni/Cu/BDD 93.3 30 [46]
MWCNT-Ni-S 88.0 18 [49]

Ni-NPs/TiO2 nanotubes 80.3 20 [24]
NiO-APTS@SBA/CNT 95.0 24 [48]

Ni/Cu/MWCNT 90.0 30 [6]
MWCNT@PCA-Ni(OH)2 74.4 150 This work

The stability of the proposed GC/PCA@MWCNT-Ni(OH)2 electrode in the electro-
chemical process was studied by performing consecutive cycling in a potential range of 0 to
0.6 V for 200 cycles in a 0.1 M NaOH solution containing 1 mM of glucose (Figure S7A). As
shown in the graph, after 200 scans, the system retained 90.1% of its initial response. The
stability of the electrode was also tested in amperometric mode in the presence of 1 mM of
glucose (Figure S7B). The electrode’s initial current value decreased by 12% after 6000 s.

Other important parameters for non-enzymatic glucose sensors include reproducibility
and repeatability. To test reproducibility, eight GC/PCA@MWCNT-Ni(OH)2 electrodes
were freshly obtained using the same process, and 1 mM of glucose was oxidized using
these electrodes at a constant voltage of +0.5 V. A satisfactory relative standard deviation of
2.2% was obtained, as shown in Figure S8A. Cyclic voltammetry was then used to evaluate
the repeatability of a single GC/PCA@MWCNT-Ni(OH)2 electrode in the detection of
1 mM of glucose (eight measurements), giving a relative standard deviation (RSD) of 2.1%
(Figure S8B). For comparison, the RSD reported for Ni(OH)2-CNT-PVDF was 2.5% [50],
while for Ni(OH)2 deposited on sulfur-doped carbon (SDCN), it was 3.2% [51].

3.9. Real Samples

To evaluate its suitability for practical application, the MWCNT@PCA-Ni(OH)2 sensor
was used to determine the glucose in human serum and human blood samples. As shown
in Table 3, recovery of glucose was measured by adding glucose to solutions containing
serum samples using a standard addition procedure. The proposed sensor presented
recoveries in the range of 96.3–98.2%.
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Table 3. Detection of glucose in human serum and human blood samples with the GC/PCA@MWCNT-
Ni(OH)2 sensor (n = 3).

Sample Glucose Concentration/mM
GC/MWCNT@PCA-Ni(OH)2

Find/mM Recovery/%

Human Serum 2.4 2.31 ± 0.05 96.3 ± 2.1
6.6 6.44 ± 0.08 97.6 ± 1.2
8.5 8.35 ± 0.12 98.2 ± 1.4

Human Blood 3.2 3.08 ± 0.06 96.4 ± 1.9
6.3 5.88 ± 0.07 93.3 ± 1.1

14.7 14.35 ± 0.15 97.6 ± 1.0

The electrode was also tested on human blood solutions. Three different glucose
concentrations (3.2, 6.3, and 14.7 mM of glucose) were tested. The recoveries ranged from
93.3% to 97.6% for the detection of glucose in human blood. These results confirm that
the non-enzymatic sensor can be used to determine glucose concentrations in biological
samples with real glucose concentrations.

4. Conclusions

In this study, electroactive Ni(OH)2 was successfully electrodeposited on the surface of
a chemically synthesized PCA@MWCNT material. The single-step electrochemical deposi-
tion process described in this work allowed the fabrication of a sensor containing Ni(OH)2
nanoparticles, which exhibited excellent performance in the detection of glucose, with high
sensitivity and a low detection limit. The non-enzymatic sensor also demonstrated good
stability over a time period of 5 months from its construction. In addition, the sensor was
used to detect glucose in real solutions: human blood and human serum. The results have
confirmed that the proposed sensor has the potential for application in non-enzymatic
glucose detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11080452/s1, Figure S1: 2D AFM image (A) and
surface profile analysis (B) of PCA@MWCNT-Ni(OH)2; Figure S2: EDS mapping spectrum of
PCA@MWCNT-Ni(OH)2 (A) and SEM micrographs of elemental carbon (B), oxygen (C), and nickel (D);
Table S1: EDS analysis results for PCA@MWCNT-Ni(OH)2 material; Figure S3: CVs of 0.1 M NaOH
solution at GC/MWCNT (A), GC/PCA@MWCNT (B), GC/PCA@MWCNT-Ni(OH)2 (C) in the
absence (a) and presence (b) of 1 mM glucose at 10 mV s−1; Figure S4: Change in GC/PCA@MWCNT-
Ni(OH)2 redox response depending on the complexation time of NiSO4 used in the fabrication of
GC/PCA@MWCNT-Ni(OH)2 (concentration of NiSO4 was 50 mM) (A). Relationship between anodic
peak charge and time of accumulation (B). Change in GC/PCA@MWCNT-Ni(OH)2 redox response
depending on the concentration of NiSO4 used in the fabrication of GC/PCA@MWCNT-Ni(OH)2
(time of accumulation was 2 min) (C). Relationship between anodic peak charge and NiSO4 concen-
tration (D). Value of Iglucose − Ibackground recorded at GC/PCA@MWCNT-Ni(OH)2 prepared using
various NiSO4 concentrations (E); Figure S5: Chronoamperometric responses of GC/PCA@MWCNT-
Ni(OH)2 for various glucose concentrations (100 µM − 10 mM) in 0.1 M NaOH at +0.5 V (A); the
corresponding calibration curve of current response vs. glucose concentration (B) (n = 3); Figure S6:
GC/PCA@MWCNT-Ni(OH)2 sensor’s amperometric response to 1 mM glucose (A) and individual
interferents (0.1 mM): maltose (B), saccharose (C), fructose (D), uric acid (E), ascorbic acid (F), L-
cysteine (G), dopamine (H), in the absence and presence of 1 mM glucose in 0.1 M NaOH solution at
+0.5 V, (I) comparison of the relative response for the tested interferents against glucose. Figure S7: CV
curves recorded in 1 mM glucose at the first measurement (a) and after 200 consecutive measurements
(b) (A); chronoamperometric response of the GC/PCA@MWCNT-Ni(OH)2 electrode after 6000 s
at +0.5 V (B). Figure S8: Reproducibility of eight electrodes for the detection of 1 mM glucose (A);
repeatability of a single electrode for detection in eight samples containing 1 mM glucose (B).
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