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Abstract: Disease diagnosis through biological fluids, particularly exhaled breath analysis, has
gained increasing importance. Volatile organic compounds (VOCs) present in exhaled breath of-
fer diagnostic potential as they reflect altered and disease-specific metabolic pathways. While gas
chromatography–mass spectrometry (GC–MS) has been traditionally used for VOCs detection, elec-
tronic noses have emerged as a promising alternative for disease screening. Metal oxide semiconduc-
tor (MOS) sensors play an essential role in these devices due to their simplicity and cost-effectiveness.
However, their limited specificity and sensitivity pose challenges for accurate diagnosis at lower
VOCs concentrations, typical of exhaled breath. To address specificity and sensitivity issues, tempera-
ture modulation (TM) has been proposed in this paper, introducing a custom-developed electronic
nose based on multiple and heterogeneous gas sensors located within an analysis chamber. Four
different TM patterns (i.e., square, sine, triangular, and a combination of square and triangular)
were applied to the gas sensors to test their response to three different analytes at three distinct
concentrations. Data were analyzed by extracting meaningful features from the sensor raw data, and
dimensionality reduction using principal component analysis (PCA) was performed. The results
demonstrated distinct clusters for each experimental condition, indicating successful discrimination
of analytes and concentrations. In addition, an analysis of which set of sensors and modulation
pattern yielded the best results was performed. In particular, the most promising TM pattern proved
to be the square and triangular combination, with optimal discrimination accuracy between both
concentrations and analytes. One specific sensor, namely, TGS2600 from Figaro USA, Inc., provided
the best performance. While preliminary results highlighted the potential of TM to improve the
sensitivity of gas sensors in electronic nose devices, paving the way for further advancements in the
field of exhaled breath analysis.

Keywords: exhaled breath analysis; electronic nose; temperature modulation; metal oxide sensors

1. Introduction

Since the last decade, the significance of disease diagnosis through the analysis of
biological fluids has been rapidly increasing [1–3]. Notably, conditions such as lung cancer,
chronic obstructive pulmonary disease, prostate cancer, and asthma are among the various
diseases that can be diagnosed through this approach [4–9]. The most common biological
fluid that is analyzed to achieve disease diagnosis is exhaled breath. It consists of a
liquid phase, composed of aerosol particles made of non-volatile organic compounds,
and a gaseous phase, containing volatile organic compounds (VOCs) [10]. The latter are

Chemosensors 2023, 11, 501. https://doi.org/10.3390/chemosensors11090501 https://www.mdpi.com/journal/chemosensors

https://doi.org/10.3390/chemosensors11090501
https://doi.org/10.3390/chemosensors11090501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://orcid.org/0000-0003-4595-9218
https://orcid.org/0000-0003-3980-8296
https://orcid.org/0009-0009-9332-4242
https://orcid.org/0000-0001-6106-9317
https://orcid.org/0000-0003-3995-8673
https://doi.org/10.3390/chemosensors11090501
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors11090501?type=check_update&version=1


Chemosensors 2023, 11, 501 2 of 16

produced at the cellular level, released into the bloodstream, and eventually expelled
from the body through exhalation [11]. Diseases, altering cellular metabolic pathways,
induce modifications of the amount and type of volatile compounds [12,13]. Hence, such
unique changes in VOCs profiles offer valuable insights for disease detection through
exhaled breath. Their concentration could also be related to disorder staging [14]. Various
alcohols, ketones, and hydrocarbons have been detected in exhaled breath and correlated
to different clinical conditions [2]. However, the challenge in using exhaled breath as a
diagnostic tool is that the concentration of disease-related volatile compounds is very low,
typically in the parts per billion (ppb) range [15,16]. Early scientific studies on exhaled
breath analysis for disease diagnosis predominantly relied on classical GC–MS methods for
compound detection [17–21]. While GC–MS methods offer compound-specific detection at
very low concentrations, they are not suitable for screening purposes. Hence, in the latest
years, researchers have started exploring technological alternatives to GC–MS for exhaled
breath analysis [2,22,23]. Electronic noses are an example of devices being investigated
as a screening tool for disease diagnosis, even at early stages [24]. Unlike conventional
and expensive GC–MS equipment, electronic noses do not provide absolute concentration
values for each compound in the sample but rather generate a signal representing the
combined response of all VOCs in the mixture under analysis. On the market, there exist
commercially available devices acting as electronic noses, such as the Cyranose 320 and the
Aeonose electronic noses, both proposed for gas analysis [25]. Various sensing technologies,
such as quartz microbalances [26,27], gold nanoparticles [28], MOS [25], and colorimetric
sensors [29,30], can be employed in the design and development of sensors for electronic
noses. Sensors can be designed to target a specific compound, leading to VOCs-specific
analysis. However, it is still unclear in clinics whether a single compound or a mixture of
compounds is functional to disease diagnosis [20,21]. Among different sensing approaches,
MOS sensors have been largely used in electronic noses. These sensors consist of a tin
dioxide layer placed over a substrate, kept at a certain working temperature through
a heater component [31]. The variable that is measured through such sensors is their
resistance, which decreases or increases depending on whether the sensor is configured as
an n-type or p-type MOS, respectively. An example of a MOS sensor response is reported
(Figure 1). High power is required to operate these sensors, as the working temperature
ranges between 300 ◦C and 500 ◦C [32]. At low temperatures (below 100 ◦C), in fact, the
rate of oxygen reactions occurring on the sensor surface is too low and does not allow for
a proper change in the sensor resistance. Despite numerous studies reporting the use of
MOS sensors for biological fluid analysis [9,23,33–35], both their limited specificity and low
sensitivity are significant drawbacks. Even if these sensors can be tailored to detect specific
substances, they also exhibit significant responses to substances they were not designed for.
Moreover, many of the commercial sensors that have been used in disease diagnosis show
sensitivity values in the parts per million (ppm) range, whereas biomarkers in exhaled
breath are typically present at lower concentrations, in the ppb range [21,36,37]. To improve
the specificity and the sensitivity of MOS gas sensors, TM of the heating component has
been proposed [22,38–42]. The underlying principle is that the change in heater temperature
of the sensor can alter the chemical or physical interactions between the analyte and the
sensing material, leading to a more pronounced response [42,43]. This increased sensitivity
allows the sensor to detect lower concentrations of the target substance [44]. It has also
been shown that selectivity enhancement may be gained to reduce overlapping responses
of different analytes [42]. However, the existing literature primarily focuses on the use
of a few gas sensors and measurements with a single compound. To date, no studies
have investigated the feasibility of using TM approaches with mixtures of compounds
at different concentrations, which better reflect the composition of biological fluids. In
addition, no consensus exists on the optimal TM patterns to be applied to the sensors [42].
In the present manuscript, we described a system able to analyze samples of air through
multiple and heterogeneous gas MOS sensors, enabling temperature-modulated patterns
through custom electronics. This setup aimed to evaluate the feasibility of improving
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the specificity of MOS sensors in detecting different compounds, namely carbon dioxide,
methane, and butanone, analyzed at different concentrations. In particular, we analyzed the
performances of eight sensors and four different TM patterns in the discrimination of such
compounds and decreasing concentrations. Eventually, we achieved the identification of
the optimal combination of TM patterns and gas sensors for compound-specific detection.
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Figure 1. Resistance variations of an MOS sensor when exposed to a breath sample, as derived from
the literature [2,33,45]. During the measuring phase, the sensor is exposed to the breath sample, and
the resistance changes with respect to the baseline resistance detected in the cleaning phase. The
recovery phase allows the sensor to return to its baseline.

2. Material and Methods
2.1. Hardware

The electronic nose consisted of a two-layer custom printed circuit board (PCB),
an analysis chamber (with openings for gas inlet and outlet), power control electronics,
and two pairs of hydraulic components (air pump and valve), necessary to drive the air
undergoing analysis in and out of the chamber (Figure 2a). The sensors were mounted on
the bottom layer of the PCB, which hermetically sealed the gas analysis chamber (Figure 2b).

(a) (b)

Figure 2. (a) Top view of the PCB integrating the circuit for TM of gas sensors, together with the
associated components required for its functioning. (b) Bottom view of the temperature-modulated
electronic nose, showing the gas sensors and the environmental sensor, located at the center of the
board in contact with the analysis chamber.

2.1.1. Gas Sensors

The electronic nose contained eight gas sensors. which could be simultaneously used
and temperature modulated independently of each other. Out of the eight sensors, six
belonged to the TGS family (Figaro USA, Inc., Rolling Meadows, IL, USA), while the other
two were AS-MLV-P2 sensors (Scioscience, Eindhoven, The Netherlands). Sensors S-1,
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S-2, S-3, and S-4 were TGS2600 type. Sensors S-5, and S-6 were TGS822 type. Finally,
sensors S-7, and S-8 were AS-MLV-P2 type (Table 1). The TGS sensors were mounted on
the PCB through sockets (models SR4 and SR6, Figaro USA, Inc.), allowing for easy testing
and replacement, while the AS-MLV-P2 sensors were directly soldered onto the board.
The TGS sensors were mainly sensitive to organic solvent compounds, such as alcohols
(e.g., methanol and propanol) and hydrocarbons (e.g., methane and propane), while the
AS-MLV-P2 sensors were sensitive to reducing gases, including carbon oxide, showing
selectivity also for hydrocarbons.

Table 1. Description of the gas sensors employed in the prototype electronic nose as provided by the
respective manufacturer’s datasheets.

Sensor Sensitivity [ppm] Target Compounds

TGS2600 1–100 methane, ethanol, hydrogen
TGS822 50–5000 Organic solvent vapors (methane, benzene, . . . )

AS-MLV-P2 10–5000 Reducing gases (carbon oxide, methane, . . . )

2.1.2. Electronics

The main core of the developed electronic nose was the CY8C5888LTI-LP097 mi-
crocontroller unit (MCU), part of the PSoC 5LP family, mounted on a kit board, the
CY8CKIT-059 (Infineon Technologies, Neubiberg, Germany) [46]. The MCU firmware
was in charge of handling all the tasks required for the electronic nose, ranging from the
control of the TM up to the acquisition of the sensor responses and their streaming to a host
machine. The sensing components mounted on the PCB were not limited to gas sensors.
A sensor designed to monitor the environmental air, the BME280 (Robert Bosch GmbH,
Gerlingen, Germany) was mounted on the PCB so that temperature, relative humidity,
and atmospheric pressure data could be collected [47]. The BME280 sensor also offers the
possibility of detecting generic VOCs, but this feature was not exploited in the present work.

The custom PCB integrated an electronic circuit dedicated to the control of the voltage
applied to the heater pins of each sensor (Figure 3). Through this circuit, it was possible to
apply a TM pattern to each gas sensor.

RH

R2 R3 >> R2

R1

5V

RS

R4

Heater
Control

To Analog
Mux

Figure 3. Circuit for gas sensor resistance measurement with temperature control. The components
embedded in the red rectangle represent the gas sensors, with the variable sensor resistance, RS, and
the heater resistance, RH . The output pin of the microcontroller for heater control and the input pin
of the analog mux are also shown.

Four main TM patterns were implemented in the electronic nose firmware, namely
square, sinusoidal, triangular, and a combination of square plus triangular patterns
(Figure 4). The square pattern (also referred to as Rect) had a period of 60 s, with a 50% duty
cycle. The sine pattern had a period of 50 s. The triangular pattern had a period of 100 s.
The square plus triangular pattern (abbreviated to ReTr) had a period of 100 s, with each
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sub-pattern lasting 50 s. All patterns had an amplitude ranging from 0 to 5 V. According
to the implemented electrical configuration, any pattern could be applied directly to the
heater control pin of each gas sensor (Figure 3). Notably, despite being called temperature
modulation patterns, from an electrical point of view they were implemented as voltage
control signals. This is due to the nature of the commercial sensors employed, which do
not allow for direct control of their working temperature. Temperature can be modulated
only through the heater component (the resistor RH in Figure 3), and there is no possibility
of measuring the real increment or decrement in temperature upon the application of the
voltage pattern.
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Figure 4. Temperature modulation patterns implemented for the control of the heating component of
the gas sensors. (a) Rect. (b) Sine. (c) Trng. (d) ReTr.

2.1.3. Hydraulic Components

In order to achieve proper movement of the air sample in and out of the analysis
chamber, a hydraulic system was implemented. A micro-pump (model D200-03, RS
Pro, Corby, UK) and a solenoid valve (VXE Series, SMC Pneumatics, Brugherio, Italy)
were placed both at the inlet and at the outlet of the sensor chamber nose (Figure 2a).
polytetrafluoroethylene (PTFE) tubes and rapid connectors were used for all the hydraulic
connections. The analysis chamber, over which the PCB was positioned, was made of die-
cast aluminum with a volume of approximately 500 mL. The experiments were performed
in dynamic conditions, with the sample under analysis flowing into the chamber and out
of it with an equal flow rate.

2.2. Software

In order to control and configure the electronic nose, and also to retrieve the measure-
ment data, custom software was developed, written in Python 3.9 using Kivy 2.1 as the
main graphical framework. Communication between the electronic nose and the software
running on a host machine was ensured by UART protocol. The software enclosed full
control over the settings of the device, such as configurations for the environmental sensor,
choice of the TM pattern, valve and pump control, and options for data export and protocol
adjustments, as well as the possibility to visualize in real time the sensor data, coming from
both the gas and environmental sensors.

2.3. Experimental Design

Three chemical compounds were investigated, namely methane (CH4), carbon dioxide
(CO2), and butanone (CH3COCH2CH3). All the analytes were tested in a mixture with
nitrogen (N2) across three different concentrations (75, 130, and 300 ppm). The nitrogen gas
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was provided by Sapio company (IT), featuring a purity of 99.9%. The oxygen contaminant
level in the nitrogen gas distribution line was measured in the range of about 20 ppm. The
target compounds were chosen according to both clinical and technical considerations.
Methane and butanone have been documented in the literature as potential biomarkers
for gastrointestinal disorders [48,49] and lung cancers [16,50], respectively. Carbon dioxide
was chosen because, being a respiration product, it is always present in exhaled breath. On
the technical side, sensitivity to methane was explicitly stated by the manufacturers for all
the selected sensors (cfr. Table 1), whereas no further information was given for carbon
dioxide or butanone. Hence, the performances of these sensors were tested to see whether
they could still be used to discriminate between different compounds. In order to achieve
the desired concentration values properly and to mix the target compounds , an external
hydraulic mixing system was designed, with nitrogen as the carrier gas. A rotameter was
calibrated with nitrogen to achieve a constant flow rate of 21 L/min, and a mass flow meter
was calibrated with the analyte of interest. Given the nitrogen flow rate, FN2 , and the flow
rate of the target analyte, FT , the final concentration of the analyte can be determined using
the following equation:

C(ppm) =
FT
FN2

· 106. (1)

Once the target analyte flow was properly set up, all the experiments were carried out
with the following steps:

1. Wash-out (30 min): the first time a new concentration was about to be tested, the
chamber and the sensors were cleaned with a continuous stream of pure nitrogen.
During this phase, the gas sensors were heated by applying a constant voltage of 5 V.

2. Filling (12 min): each time a wash-out phase was performed, it was followed by
a 12-min period in which the target analyte was added to the nitrogen flow and
introduced inside the chamber. During this phase, the sensor heaters were kept at
5 V. This step was needed to ensure a uniform concentration of the target inside the
chamber before measurements.

3. Modulation (70 min approx.): this phase was divided into three parts:

• Baseline: initially, a baseline value for the sensors was measured for 2 min without
any pattern applied to the heater.

• Measuring: then, one of the TM patterns was applied for an amount of time
sufficient to acquire 10 cycles.

• Recovery: finally, the pattern was interrupted and the heaters were brought back
to a constant 5 V for an additional 2 min.

The three steps in the modulation phase were repeated for each one of the four modula-
tion patterns before changing the concentration of the target analyte and going back to the
wash-out phase.

2.4. Data Analysis

Throughout all the experiments that were carried out, data were collected during the
wash-out, filling, and modulation phases and saved in CSV format for subsequent analysis.
The data related to the measuring sub-phase were composed of gas sensor responses to
the analyte of interest, while a given TM pattern was cycled for the overall duration of the
sub-phase. Therefore, the first step of the data analysis part was to extract the gas sensor
responses to a single TM cycle. An example of a raw sensor response to a single TM cycle
is reported (Figure 5).
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Figure 5. (a) Raw sensor data recorded during one cycle of the triangular TM pattern. The data were
retrieved from sensor TGS2600 when exposed to butanone with a concentration of 75 ppm. (b) Raw
sensor data recorded during one cycle of the ReTr TM pattern. The data were retrieved from sensor
TGS2600 when exposed to methane with a concentration of 130 ppm. Black lines show the raw response
of the sensor, expressed as the difference (∆V) between the measured voltage and the voltage measured
when the TM was first applied. Red lines show the voltage applied to the heater component.

2.4.1. Feature Extraction

After collecting the voltage data from one single TM cycle, representative features
were computed. At first, Vout values were converted to a resistance signal (cfr. Figure 3),
according to the following relation:

RS = R4(
5V
Vout

− 1). (2)

From the RS resistance signal, hand-crafted features were computed per compound,
per concentration of each compound, per sensor, per TM pattern, and per single cycle of
TM pattern (Figure 6). The following features were calculated:

• ∆1: difference between the maximum resistance value of the sensor during the first
half of the TM pattern, Rmax, and the baseline resistance value of the sensor at time
t = 0, R0:

∆1 = Rmax − R0 (3)

• ∆2: difference between the maximum resistance value of the sensor during the first
half of the TM pattern, Rmax, and the minimum resistance of the sensor during the
second half of the TM pattern, Rmin. In the case of the ReTr TM pattern, this feature
was computed considering the maximum voltage value during the second half of the
TM pattern as Rmax:

∆2 = Rmax − Rmin (4)

• Slope1: ratio between the ∆1 value and the time, t1, required by the sensor to reach
the maximum value. This feature allows describing the dynamics of the sensor and
the exposure to the sample:

Θ1 =
∆1

t1
(5)

• Slope2: ratio between the ∆2 value and the time, t2, required by the sensor to move
from the maximum to the minimum value:

Θ2 =
∆2

t2
(6)

The computation of the 4 features (i.e., ∆1, ∆2, Θ1, and Θ2) yielded a data set composed
of 2880 observations as they were extracted for each concentration (3), for each compound
(3), for each sensor (8), for each TM pattern (4), and for each cycle (10 cycles in total)
of the pattern. To facilitate data interpretation, the data set underwent a restructuring
process aimed at enhancing its efficiency. As a result, we obtained 10 observations for each
concentration of every compound, resulting in a total of 90 observations and 128 features
(Figure 6).
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Figure 6. Schematic representation of the structure of the data set prior to PCA operation: feature
extraction and reshaping processes have been highlighted.

2.4.2. Compound, Concentration, and Sensor Discrimination

After reshaping the features data set into 128 values and 90 observations, principal
component analysis (PCA) was applied to reduce the dimensionality of the dataset. Before
proceeding with PCA, each feature was normalized using a min–max algorithm. PCA was
applied considering each TM pattern independently from the others, and each group of
sensors (TGS2600, TGS822, and AS-MLV-P2). In order to evaluate which TM pattern, out
of the four, maximized the identification of the three compounds, a 3-cluster k-nearest
neighbors (kNN) classifier was applied to the relevant principal components. The data set
was split into 80% train and 20% test sets with stratified sampling to maintain proportions
between the target classes in the two sets. The classification accuracy was reported to
quantify the kNN performance. Likewise, the three groups of sensors were tested using the
best TM pattern previously identified by means of the kNN classifier.

3. Experimental Results

The experiments were carried out on separate days for each compound, for a total
of three days of experiments. The overall time required for the system setup, mostly for
the calibration of the rotameter and the mass flow meter, exceeded two hours, and it was
compound-specific. All the sensor responses were continuously collected by the electronic
nose and sent to the host machine for real-time visualization. Gathered raw data were
stored as CSV files for subsequent analysis.

3.1. Features Analysis

The values of the ∆1 feature, averaged across the four patterns, were reported for
the three analytes, computed from raw data gathered from S-1 (TGS2600), S-6 (TGS822),
and S-7 (AS-MLV-P2) sensors across the three concentrations (Table 2). As noticed, the ∆1
feature had mostly either increasing or decreasing trends with the increasing concentration,
with the scale depending on the specific resistance of the sensor. The distributions of the
Θ2 feature for the triangle TM pattern in the S-1 (TGS2600) and S-6 (TGS822) sensors were
reported (Figure 7). As noticed, butanone induced a decreasing response in the S-1 sensor,
from 75 to 300 ppm, whereas methane and carbon dioxide showed an increasing trend with
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an increase in concentration. Θ2 decreased for all three compounds in the S-6 sensor but
with different absolute values. After dimensionality reduction, the cumulative explained
the variance of the first three principal components, obtained considering all the features
derived from the whole set of temperature modulations, and the sensors conveyed more
than 80% of the information (Figure 8).

Table 2. ∆1 feature (arbitrary units) averaged across the four TM patterns as a function of the
increasing concentration (ppm).

Butanone CO2 CH4

Sensor 75 130 300 75 130 300 75 130 300

S-1 (TGS2600) 1400 1103 804.0 288.8 350.8 529.3 376.2 650.7 1021
S-6 (TGS822) 3388 3279 3097 4721 3939 3570 3042 2924 2784

S-7 (AS-MLV-P2) 12,103 2645 1039 6.4 × 105 2.2 × 105 1.1 × 106 31,969 1.6 × 105 2.8 × 105
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Figure 7. Distributions of the Θ2 feature for the triangle pattern in the (a) S-1 (TGS2600) and (b) S-6
(TGS822) sensors. Each row represents a sensor, whereas the columns show the different compounds
(i.e., butanone, carbon dioxide, and methane).
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Figure 8. Cumulative explained variance of the first ten principal components, obtained considering
all the features derived from the whole set of temperature modulations and sensors.

3.2. Temperature Modulation Pattern Dependency

Scatter plots of the first two principal components, obtained when applying PCA
over the features extracted from all the sensors, showed different separation abilities of
compounds and concentrations across the four TM patterns (Figure 9). The cumulative
explained variances were 0.71, 0.73, 0.55, and 0.73 for the rectangular, sinusoidal, trian-
gular, and rectangular–triangular (ReTr, see Figure 4d) patterns, respectively. The square
wave pattern did not lead to good discrimination across compounds, especially butanone
overlapped with both CO2 and methane. The ability to separate concentrations was poor
as well, with fewer distinct clusters. Good discrimination across compounds and concen-
trations was achieved using the sine wave and triangular wave patterns, even though
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some uncertainty was still detected for butanone and methane. The best discrimination
ability was attained when applying the combination of the square and triangular patterns
(ReTr). Concentration clusters were distinct and grouped for all three compounds, being
characterized by a well-defined direction for the progression of concentrations. The results
of the kNN-based classification confirmed the qualitative analysis, as the ReTr TM pattern
yielded a classification accuracy on the test of 100%, which is the same result obtained
with the sine and triangular patterns, while the square pattern stopped at 94.4%. Even
though the classification results were optimal for all patterns except the square one, the
ReTr pattern was the one showing more distinct clusters for concentration values, with
linear or quasi-linear relationships for changes in the concentration of the analyte (Figure 9).

Figure 9. First two principal components obtained by applying PCA, considering only the features ex-
tracted from a single TM pattern, using data from all the sensors: (a) rectangular (Rect), (b) sinusoidal
(Sine), (c) triangular (Trng), and (d) combination of rectangular and triangular (ReTr).

3.3. Sensor Type Dependency

After analyzing which TM pattern led to the optimal discrimination across compounds
and concentrations, it was investigated whether one of the groups of sensors provided
better results than the others. For this reason, PCA was applied separately for each group
of sensors (TGS2600, TGS822, and AS-MLV-P2). The cumulative explained variances were
0.86, 0.99, and 0.99, for TGS2600, TGS822, and AS-MLV-P2 sensor types, respectively. The
group of sensors providing the best discrimination based on the principal components was
composed of the TGS2600 sensors (Figure 10). The TGS822 sensors showed fewer distinct
clusters across compounds and concentrations, while the AS-MLV-P2 sensors were affected
by a drift behavior, leading to clusters of data points less defined from a visual perspective.
Even if clusters of data points were less distinct in the case of the TGS822 and AS-MLV-P2
gas sensors, kNN-based classification achieved optimal results (100%) when considering
each sensor group separately, as the data points could be still discriminated in the principal
components space. However, the TGS2600 sensor reported no detectable drift behavior
in the principal components space, and linear or quasi-linear relationships between the
principal components and the concentration of the analyte, in particular for CH4 and
butanone. When considering all the features extracted from all the sensors and all the TM
patterns in a bundle, the first three principal components were capable of explaining about
81% of the variance of the data (Figure 8). The first two PCA components were already
capable of perfectly discriminating among concentrations and compounds (Figure 11).
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Figure 10. First two principal components obtained by applying PCA, considering only the features
extracted from a set of sensors ((a) TGS2600, (b) TGS822, and (c) AS-MLV-P2) when the combination
of rectangular and triangular waves (ReTr) was applied.
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Figure 11. First two principal components obtained by applying PCA over the whole data set,
considering all TM patterns and the whole set of sensors. Different colors refer to the different
compounds that were tested. Different marker shapes refer to the different concentrations that
were analyzed.

4. Discussion and Conclusions

Modulating the MOS sensor temperature by applying specific voltage waveforms
to the sensor heater has been documented to disclose some advantages in the measure-
ment performance of electronic noses, such as sensitivity and selectivity enhancement,
noise reduction, dynamic range expansion, and even compensation of environmental
variations [41,44,51,52]. The relationship between temperature and sensor resistance has
been reported to be approximately linear and inversely proportional, with the heating
voltage exponentially corresponding to the sensor’s temperature [42]. In this study, we
addressed sensitivity and selectivity issues by testing four different TM patterns that were
proposed in different earlier studies [41,53]. These patterns were applied to eight gas
sensors belonging to three main classes (crf. Table 1) embedded into a custom electronic
nose, which was recently proposed by our group to examine exhaled breath in patients
affected by lung cancer [13]. Three different analytes, namely methane, CO2, and butanone,
featuring three varying concentrations, were tested by performing feature synthesis of
the raw response data, principal component analysis, and supervised clustering. The
main findings confirm that distinct TM patterns can increase the selectivity performance,
even improving the ability to discriminate among different concentrations (cfr. Figure 9).
Especially, by applying kNN data clustering, we found that joining sequentially square and
triangular patterns provided the best results, both in selectivity and sensitivity. Remarkably,
the advantage provided by the square–triangular pattern has been supported by recent
findings in the literature [44]. The analysis performed on the three sensor classes led to
identifying the TGS2600 type as the best sensor, providing the optimal discrimination both
in the analytes and in the concentrations (cfr. Figure 10). Results from both the TGS822 and
AS-MLV-P2 sensors were affected by discrimination uncertainty. Especially, AS-MLV-P2
was less effective in separating analytes and concentration, irrespective of the TM pattern.
The performances of the AS-MLV-P2 could find an explanation in the conditioning period
of the sensors prior to the modulation phase. Given the tight temporal window in which
the experiments were carried out, the only way we could assess the sensors’ stability was
through the monitoring of their baseline resistance before the measurements. While the four
TGS2600 and the two TGS822 always reached a stable baseline, drifts in the AS-MLV-P2
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were observed—even if the pre-heating phase duration was comparable with the datasheet
suggestion. This could explain why data referred to the S-7 and S-8 sensors were more
dispersed (cfr. Figure 10c). Throughout the set of experiments, environmental data for
pressure, temperature, and humidity were collected by the BME260 sensor mounted on the
board. This unit monitored the environmental conditions inside the chamber. After the
wash-out phase, the humidity settled between 10% and 13% in all trials. In their datasheets,
manufacturers provide sensor resistance variations based on temperature/humidity de-
pendencies, with relative humidity spanning from 30–35% to 80–95–100%, hence out of our
working range. For this reason, despite the fact that humidity plays an important role in
modifying the sensor behavior, at this stage humidity analysis was not performed. Addi-
tional data will be collected in future experiments to investigate the influence of humidity
and to develop compensation algorithms that can at least mitigate its impact. The results
obtained in the present study are in line with the earlier literature. More than a decade
ago, simulations using electronic CAD software demonstrated the benefits of temperature
modulation in MOS sensors. Experiments based on such simulations confirmed that a
single sensor (TGS2600, Figaro Inc., Mino, Japan) device could achieve both optimal gas
identification and accurate concentration (range: 10–50 ppm) determination simultaneously
[42]. Specific TM patterns induced by a heating voltage spike, prior to a voltage step, were
proposed to detect 12 different airborne analytes using a single sensor (SP3-AQ2, FIS Inc.,
Edmonds, WA, USA) [41]. While the identification of such contaminants was reported
to be effective, the tested concentrations ranged from 300 to 2500 ppm, sensibly higher
than traditional VOCs concentrations in exhaled breath. Gas identification accuracy was
reported to improve when properly modulating sensor temperature, applying wavelet
transform to sensor responses to extract representative features, and classification based
on machine learning [52]. In such a study, methanol, ethanol, and butanone analytes
were tested by scanning concentrations from 100–2000 ppm, obtaining a compound dis-
crimination accuracy of about 92%. More recently, various experiments performed with
commercial MOS gas sensors reported the feasibility of simultaneous gas classification and
gas concentration prediction using TGS2620 and TGS2602 sensor types (Figaro Inc.) and
advanced data analysis based on support vector machines [53]. Results on three different
gases, namely CO, NO2, and HCHO, showed compound discrimination accuracy close to
100% when applying the stair TM pattern.

In terms of clinical feasibility, it is important to note that exhaled breath constitutes
a highly intricate mixture. This complexity can pose various challenges during analysis.
As a matter of fact, to date, no compound or group of compounds has been found with
the capability to indicate the presence of disease through exhaled breath [2]. In addition,
many confounding factors such as a subject’s diet, smoking habits, and breath sample
collection pose challenges that need to be tackled when establishing a standardized clinical
testing protocol. In our previous work [13], we presented the outcomes of a preclinical
study involving the analysis of exhaled breath from a population of patients with lung
cancer. This was compared against a control group. An earlier version of the apparatus
outlined in this paper was employed. Although the results were consistent with similar
studies reported in the literature, the protocol had been customized to accommodate
specific conditions related to breath sample collection, limiting the potential for large-scale
comparisons. Consequently, the acquisition of data from a substantial cohort of subjects is
crucial for the development of accurate machine learning algorithms that consider these
variables in their decision-making. The standardization of protocols for breath collection
and the analysis of exhaled breath data from a sizable and diverse subject pool could
effectively mitigate the influence of these factors.

Some limitations of the present study need to be highlighted. First of all, in this work,
the same TM pattern was applied at the same time to the whole set of gas sensors. In the
future, it could be interesting to apply different patterns to different groups of sensors,
to see whether discrimination capabilities and sensitivity could be improved even more.
This working hypothesis comes from the fact that, as demonstrated in this work, there
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is a performance dependency of different sensors on the different modulation patterns.
In addition, it would be interesting to test the device in a more complex environment, in
which the air sample is composed of a mixture of compounds, to determine whether the
system is capable of simultaneously distinguishing specific analytes, and at which level.
In this manner, conducting a comprehensive investigation into the correlation between
temperature modulation and compound identification across various sensor types within
a complex environment will enable us to apply a wide range of modulation techniques
throughout the sensor array. This approach will effectively mitigate the cross-sensitivity
and selectivity challenges faced by individual sensors, enhancing their discrimination
performances. One last point can be made on the absence of oxygen in the carrier gas.
Oxygen molecules can adsorb on the sensor’s surface, generating active sites that will act as
a potential barrier and prevent electron conduction. This way, the background conductance
of the sensor itself decreases. In the presence of reducing species, the adsorbed oxygen
will detach from the surface to bind with the gaseous analyte, leading to an increase in
conductance. As a result, the resolution of the sensor increases. In addition, the higher the
oxygen content is, the higher the formation rate of active sites is, and hence the recovery
time of the sensor can be improved. Despite the clear advantages of having fractions of
oxygen in the carrier gas, one work conducted specifically on the TGS822 [54] observed
no drastic changes in the actual sensitivity of the sensor, even when varying the oxygen
content in the carrier gas. According to the aim of our work, the testing protocol was
conceived to study the detection sensitivity as a function of sensor temperature driving
alone. The analyzed gases were not diluted in clean air but only mixed with nitrogen,
which actually represents the worst-case scenario in terms of sensor performance. In view
of the highlighted mechanisms, if our work showed good discrimination capabilities in
the absence of oxygen, the authors believe that its introduction could even enhance the
performance of the device. In addition, one can expect that the effect of oxygen has a
quantifiable impact on the sensor response, and this impact could be put in relation to
the oxygen content and calibrated [55]. Nonetheless, even if this study had a specific
span of research, it demonstrated the scalability of the proposed electronic nose with an
integrated TM control and the feasibility of fruitfully applying TM patterns to improve
the detection ability of VOCs. This study was in fact designed with a small number of
target analytes as a starting point. Technically, once a new analyte needs to be detected,
one could explore—offline—the best combination of sensor and temperature modulation
pattern for its discrimination and then implement it in the electronic nose. This will allow
for further exploration of the detection quality of the system for additional target analytes,
which feature clinical value and are present in the exhaled breath. In conclusion, we remark
that this work may bring the use of TM-based electronic noses incrementally closer to
clinical translation.
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