
Citation: He, J.; Zhou, R.; Ren, P.; Li,

Y.; Xiong, S. RepDwNet: Lightweight

Deep Learning Model for Special

Biological Blood Raman Spectra

Analysis. Chemosensors 2024, 12, 29.

https://doi.org/10.3390/

chemosensors12020029

Academic Editors: Cristina M.

Muntean and Sanda Boca-Farcău
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Abstract: The Raman spectroscopy analysis technique has found extensive applications across various
disciplines due to its exceptional convenience and efficiency, facilitating the analysis and identifi-
cation of diverse substances. In recent years, owing to the escalating demand for high-efficiency
analytical methods, deep learning models have progressively been introduced into the realm of
Raman spectroscopy. However, the application of these models to portable Raman spectrometers has
posed a series of challenges due to the computational intensity inherent to deep learning approaches.
This paper proposes a lightweight classification model, named RepDwNet, for identifying 28 different
types of biological blood. The model integrates advanced techniques such as multi-scale convo-
lutional kernels, depth-wise separable convolutions, and residual connections. These innovations
enable the model to capture features at different scales while preserving the coherence of feature data
to the maximum extent. The experimental results demonstrate that the average recognition accuracy
of the model on the reflective Raman blood dataset and the transmissive Raman blood dataset are
97.31% and 97.10%, respectively. Furthermore, by applying structural reparameterization to compress
the well-trained model, it maintains high classification accuracy while significantly reducing the
parameter size, thereby enhancing the speed of classification inference. This makes the model more
suitable for deployment in portable and mobile devices. Additionally, the proposed model can be
extended to various Raman spectroscopy classification scenarios.

Keywords: Raman spectrum; deep learning; lightweight; reparameterization; blood recognition

1. Introduction

Blood, as one of the most crucial biological fluids in organisms, possesses unique char-
acteristics in carrying biological and genetic information that other bodily fluids lack. It has
found broad applications and achieved significant research outcomes in various fields such
as biopharmaceuticals, species detection, and forensic exploration. Given the distinctive
nature of blood products, countries have successively established corresponding legal reg-
ulations to combat illegal activities such as the smuggling of blood products. Consequently,
the rapid identification of illicit blood products during import and export has become
an urgent issue requiring resolution. Researchers such as H. Inouel [1] have successfully
differentiated blood samples from primates and non-primates using High-Performance
Liquid Chromatography (HPLC). Although this approach has yielded remarkable results,
it is essential to note that it involves complex preprocessing of blood samples and demands
a high level of experimental environment control. On another front, Espinoza [2] and
colleagues have achieved significant classification results in distinguishing blood samples
from birds, reptiles, and mammals using Mass Spectrometry (MS). Additionally, Dalton [3]
and others have employed DNA analysis technology in identifying blood samples from
wild animals, particularly playing a crucial role in combating poaching activities. However,
both of these approaches impose high requirements on sample quality and necessitate
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specialized knowledge during the detection process. Consequently, the three mentioned
detection methods cannot provide a quick and non-destructive inspection of samples
during import and export. Overcoming the challenges of non-destructive and rapid de-
tection for large sample datasets has become a pressing research direction that urgently
needs breakthroughs.

Raman spectroscopy is a method employed for collecting spectroscopic data, acquir-
ing specific information by recording spectral lines induced by molecular vibrations in
the sample under optical excitation. Due to the diverse molecular structures of differ-
ent substances, Raman spectra exhibit unique characteristics. Its advantages, including
convenience, speed, and non-destructiveness, have led to widespread applications and
high acclaim in disciplines such as medicine [4,5], chemistry [6–8], and biology [9,10].
It is noteworthy that peak information plays a crucial role in spectral data, containing
key details about the molecular structure and chemical composition of the sample. In the
early 1970s, scholars such as Goheen [11] delved into the impact of artificial red blood
cell membrane peripheral proteins on Raman spectroscopy, achieving significant research
outcomes. However, the equipment and detection methods of that time were relatively
primitive, and the detection process was cumbersome, limiting its applicability in practical
work environments. Subsequently, researchers gradually deepened their exploration of
Raman spectroscopy in blood. It was not until the 21st century that Raman spectroscopy
found extensive application in blood data analysis. In 2008, Saade [12] and colleagues
successfully employed a near-infrared Raman spectroscopy approach combining Principal
Component Analysis (PCA) with Mahalanobis distance to identify Hepatitis C virus in
human serum, effectively classifying 24 blood samples. This experiment validated the
feasibility of machine learning in Raman spectroscopy detection of blood, although the
study did not incorporate preprocessing operations such as denoising on the blood dataset,
potentially rendering the experimental results susceptible to noise and other factors. Si-
multaneously, overreliance on feature extraction methods similar to Principal Component
Analysis (PCA) entails the risk of human intervention, potentially causing the omission
of critical microscopic feature information in spectral data. In 2018, Kyle C. Doty [13]
and colleagues successfully utilized Partial Least Squares Discriminant Analysis (PLS-DA)
to distinguish blood from 17 different organisms, including humans, providing crucial
assistance for forensic investigations at crime scenes and paving the way for future research
into differentiating blood data from various organisms. Subsequently, researchers such
as Wang [14] applied the Support Vector Machine (SVM) method to successfully inspect
the blood spectral data of four avian species, offering a novel solution for analyzing the
presence of food additives in blood. However, traditional machine learning algorithms
often fail to achieve the expected results when handling large sample datasets. Hence,
the search for a convenient, rapid, and precise Raman spectroscopy detection method
becomes imperative.

With the rapid development in the field of artificial intelligence, deep learning tech-
niques have found extensive applications across various disciplines, including Raman
spectroscopy classification. The application of deep learning in Raman spectroscopy
classification has yielded significant research outcomes. Currently, mainstream spectral
classification methods primarily involve the utilization of one-dimensional feedforward
neural networks for Raman spectral feature extraction and classification. Building upon this
foundation, Dong et al. [15] successfully devised a one-dimensional convolutional neural
network for distinguishing between human and animal blood, achieving efficient classifica-
tion of human, dog, and rabbit blood with an accuracy of 96.33%. In their study, the authors
emphasized the importance of data denoising and baseline correction and introduced
unique modules to implement these steps. In comparison to traditional machine learning
methods such as Support Vector Machines (SVM) and Partial Least Squares Discriminant
Analysis (PLSDA), this research indicates that convolutional neural networks exhibit supe-
rior performance. This study provides valuable insights for further exploration in related
fields. Huang et al. [16] designed a hierarchical convolutional neural network, achieving an
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average accuracy of 97% in a blind test involving 20 different animal species. Additionally,
Chen et al. [17] combined a convolutional neural network with the Stochastic Gradient
Descent (SGD) optimizer, achieving significant results in differentiating 19 types of blood
in experiments. The model in this study demonstrated a recognition accuracy as high as
98.79%, establishing a solid foundation for research in trace blood analysis. These research
achievements offer robust support for subsequent scholars engaged in trace blood studies.
It is noteworthy that, in the aforementioned three experiments, no manual extraction of
feature information from the data was employed. This further underscores the superiority
of combining deep learning with Raman spectroscopy. From the experimental results,
this approach not only yielded significant research outcomes but also exhibited superior
performance compared to traditional machine learning methods. Therefore, the integration
of deep learning with Raman spectroscopy presents a viable approach to overcoming
challenges in the non-destructive and rapid detection of large-sample data.

Convolutional operations play a crucial role in deep learning models. However, the
significant variability in peak widths observed in different Raman spectral datasets poses a
challenge for traditional single-sized convolutional kernels to adequately capture informa-
tion across various peak widths. Therefore, one of the primary challenges in the current
field of spectral classification is achieving compatibility of convolutional kernels with
information from peaks of different widths. In this context, the adoption of a multi-scale
convolutional kernel strategy becomes imperative. To address this issue, Ding [18] and
colleagues successfully designed a multi-scale convolutional neural network. This model
adopts a cascaded hierarchical structure, utilizing three convolutional kernels of different
sizes to extract more refined feature information from input spectral data, achieving a
classification accuracy of 96.77%. This effectively demonstrates compatibility with peak
information of different widths. The study substantiates the rationality of employing
multi-scale convolutional kernels for feature extraction in Raman spectra and provides
valuable directions for future research. Similarly, Den [19] and collaborators proposed an
adaptive-scale deep learning model. This model achieved accuracies of 86.7% and 98% in
the classification of 30 isolates and eight empirical treatment tasks, respectively, in bacterial
Raman spectral classification. The performance of this model confirms the superiority
of multi-scale models over both single convolutional kernel deep learning models and
traditional machine learning algorithms. These studies offer directions for overcoming the
challenge of effectively capturing information from peaks of different widths. However,
the introduction of multi-scale models inevitably increases the model parameters, posing
challenges for deployment on certain portable devices. Additionally, Raman spectra, as
a type of remote sensing data with coherent information features, may suffer from a loss
of feature coherence to some extent during traditional convolutional operations. Conse-
quently, preserving feature coherence during the process of extracting feature information
becomes a crucial problem that urgently needs addressing. To tackle the aforementioned
issues, we propose a model named RepDwNet. This model effectively integrates local
information without increasing model parameters. Experimental results demonstrate that
the RepDwNet model achieves classification-balanced accuracies of 97.17% and 97.31%
on transmissive and reflective blood Raman spectral datasets, respectively, showcasing its
outstanding performance in blood Raman spectral classification tasks.

2. Materials and Methods
2.1. Equipment and Data Acquisition

In this study, we utilized two independent Raman spectroscopy datasets, both acquired
through the Surface-Enhanced Raman Scattering (SERS) strategy, with support from Beijing
Huatai Nova Detection Technology Co., Ltd.,Beijing, China. To enhance the long-term
sensitivity of SERS bands and facilitate the operational convenience of detection, we
employed synthetically prepared silver nanoparticle (AgNP) and gold nanoparticle (AuNP)
test papers for sample collection. These are surface-enhanced composite test papers that
incorporate two materials, AgNPs and AuNPs. The composite surface-enhanced material
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paper demonstrates outstanding performance, effectively capturing information carried by
materials enhanced with AgNPs or AuNPs. This significantly enhances the convenience of
surface-enhanced Raman detection. It is noteworthy that, under identical testing conditions,
this enhancement not only achieves or surpasses higher values compared to individual
materials but also transcends a simple weighted average of AgNP and AuNP material
proportions. This composite surface-enhanced material paper successfully inherits the
enhancement effects of both AgNPs and AuNPs. To better address each distinct blood
sample, the ratio of AgNPs to AuNPs should be adjusted within the range of 1:4 to 4:1.
The detailed preparation process can be found in the relevant research literature by Wang
et al. [20]. Prior to SERS testing, we rapidly heated the test papers to 65 degrees Celsius and
swiftly immersed them in the sample bottle for 5 s to achieve rapid drying of the papers. It
is noteworthy that we diluted the collected blood with a 0.9% NaCl solution by a factor
of 10 to obtain the final sample solution. During the testing phase, the profound impact
of laser-induced thermal accumulation on dark whole blood samples has been observed,
leading to combustion and damage. Hence, the indispensability of employing dilution
techniques to mitigate the extent of laser-induced thermal accumulation. Subsequently,
we placed the moistened test papers in a microheater at 65 degrees Celsius and baked
them for 1 min. Throughout the sampling process, we repeated the above steps multiple
times to gradually accumulate the concentration of the target molecules in the material.
For better preservation of blood specimens, we chose trisodium citrate as an anticoagulant
and stored the blood at−20 degrees Celsius. During the acquisition of spectral data, we
employed a portable handheld Raman spectrometer (model CR-2000, HT-NOVA Ltd.,
Beijing, China). To acquire high-quality blood spectral data, we employed a portable
handheld Raman spectrometer (model CR-2000, HT-NOVA Limited) for the collection
of spectral data. Utilizing the transmissive and reflective properties of laser light, we
collected two distinct Raman spectral datasets, namely reflective and transmissive, as
illustrated in Figure 1. During the data acquisition process, a laser with a power of 5 mW
and a wavelength of 785 nm was utilized. Additionally, spectral data collection was
complemented by scanning electron microscopy (FE-SEM, SUPRA 55, Carl Zeiss, Germany)
and transmission electron microscopy (Tecnai F30, FEI company, Hillsboro, OR, USA). The
signal range for reflective Raman spectra was 200–2998 cm−1, while that for transmissive
Raman spectra was 166–2084 cm−1. Simultaneously, we ensured that the spectral resolution
remained within the range of 4–6 cm−1. Furthermore, the pertinent parameters of the
optical filter can be found in Table 1.

Figure 1. (a) The procedures for acquiring transmissive Raman spectra by harnessing the transparency
of light. (b) The steps involved in obtaining reflective Raman spectra through the utilization of the
reflectivity of light.



Chemosensors 2024, 12, 29 5 of 17

Table 1. The pertinent parameters of the optical filter.

Angle of Incidence Wavelength Cutoff Average Value of T Average Value of OD

0◦ ± 2◦ ≤797 nmm >90%@800 − 1100 nm >6@640 − 786 nm

Through the aforementioned procedures, we successfully obtained two distinct sets
of animal blood sample data, comprising specimens from 28 different animal species.
Specifically, the reflective blood dataset comprises a total of 2696 data samples, while the
transmissive blood dataset contains 2620 data samples. However, due to challenges in col-
lecting blood samples from certain specific animals, such as pandas and golden snub-nosed
monkeys, both datasets exhibit varying degrees of sample imbalance. The sample distribu-
tion of these two datasets is illustrated in Figure 2. Refer to the detailed sample categories
and corresponding data in Supplementary Tables S1 and S2 for additional materials.

Figure 2. The presented figures illustrate the statistical distribution of the reflective and transmissive
animal blood datasets, respectively. In the graphs, the categories represented by the blue histograms
indicate species with sample counts exceeding 150, the yellow histograms represent species with
sample counts between 100 and 150, and the red histograms reflect the number of species with sample
counts below 100.

2.2. Data Proccessing

In consideration of the potential interference from external factors, such as the quality
of the filter used during blood data collection, to ensure higher data quality and information
accuracy, a series of data preprocessing steps were undertaken. Firstly, we employed the
Savitzky–Golay filtering algorithm (with a window size of 11 and an order of 3) to perform
denoising on the raw spectral data. Subsequently, a combination of the BaselineRemoval
library and the Adaptive Iteratively Reweighted Penalized Least Squares (airPLS) algorithm
proposed by Zhang [21] was utilized for baseline correction and fluorescence reduction
in the spectral data. Additionally, due to the possibility of data point loss under varying
conditions during the spectral data acquisition process, resulting in discrepancies in the
lengths of spectral data for different biological species, a downsampling technique was
employed. This involved uniform sampling of the spectral curves with a fixed step size
(step size of 2), thus achieving uniformity in the length of the spectral data. Following
the completion of downsampling, the spectral range for reflectance blood spectra covered
the range of 200–2998 cm−1, while the range for transmittance blood spectra covered
166–2084 cm−1. Furthermore, to ensure the stability and reliability of the training model,
the spectral data were subjected to min-max normalization. This step aimed to reduce
the adverse effects of outliers on the model’s training performance, ultimately enhancing
its generalization capability. Figures 3 and 4 illustrate a portion of the preprocessed and
augmented spectral data.
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Figure 3. (a) Original reflective blood Raman spectroscopy, (b) transformed spectra following
spectral shifts, (c) introduced noise effects, and (d) reflective spectra subjected to normalization and
downsampling processes.

Figure 4. (a) Original transmissive blood Raman spectroscopy, (b) transformed spectra following
spectral shifts, (c) introduced noise effects, and (d) transmissive spectra subjected to normalization
and downsampling processes.

2.3. Extending Dataset

The high-quality dataset plays a crucial role in facilitating the comprehensive absorp-
tion of feature information by models. It has the capability to effectively enhance the
model’s generalization ability and, to a certain extent, prevent overfitting. Additionally,
this training approach, built upon a high-quality dataset, aids deep learning models in
acquiring a more profound understanding of complex baseline information. As illustrated
in Figure 2, both datasets exhibit varying degrees of sample imbalance, which proves to
be detrimental to the model’s ability to learn intrinsic feature information within Raman
spectra. Therefore, to ensure the model adequately absorbs feature information, data
augmentation becomes an indispensable step.

This paper’s approaches draw upon methodologies outlined in the existing litera-
ture [22,23], primarily encompassing the introduction of random Gaussian noise and the
application of spectral data shifting techniques. Regarding the treatment of spectral data
shifting, it is worth noting that excessive shifts can potentially result in the loss of pivotal
information inherent in the original spectral data. To address this concern, a judicious choice
was made to employ uniformly distributed random variables within the range of −16 cm−1

to 16 cm−1, thereby effecting minor perturbations in the spectral data through shifts of
negligible magnitude. For handling data situated at the dataset’s periphery, a decision was
made to employ neighboring values for padding, thereby upholding the continuity of the
dataset. Introducing Gaussian noise plays a pivotal role in the context of the signal-to-noise
ratio (SNR). The signal-to-noise ratio is a crucial metric for assessing the relative strength or
quality of a signal in the presence of noise. It is typically quantified as the ratio of signal
power to noise power, expressed in decibels (dB). The specific mathematical expression is
represented by Equation (1). It is imperative to note that the signal-to-noise ratio (SNR)
values utilized in this manuscript are set at 40.

SNR = 10 × log10
Psignal

Pnoise
(1)

Psignal is the signal power of input data, expressed as the mean square value of the
data. Expanding upon Psignal , we can obtain 1

N ∑N
i=1 x2

i where N represents the total number
of data points in the input spectral signal, and xi denotes the intensity of the data point at
the corresponding index. Pnoise denotes the power of noise. Equation (2) can be obtained
by transforming Equation (1) through appropriate adjustments.
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Pnoise =
Psignal

10
SNR

10
(2)

By squaring the Pnoise, we obtain the numerical value σ. Ultimately, Gaussian noise
with a mean of 0 and a standard deviation of σ is added to the original spectral data to
achieve the purpose of data augmentation.

To ensure the reliability of the final experimental results, we performed sample division
for two blood datasets that had not undergone data augmentation, with an approximate
ratio of 8:2. Specifically, 20% of the sample data were reserved as the final test dataset,
comprising 535 test samples for the reflective blood dataset and 519 test samples for the
transmissive blood dataset. Subsequently, data augmentation was applied to the remaining
80% of the sample data. In practical implementation, we employed two augmentation
schemes with equal probability to expand the dataset. Real data were introduced for
enhancement through uniform sampling. In the augmentation of the reflective blood
dataset, the sample count for each class was increased to 195. As a result, the overall sample
size of the reflective blood dataset (including test data) increased from 2696 to 5995. In
the case of the transmissive blood dataset, the sample count for each class was augmented
to 187, leading to an increase in the overall sample size of the transmissive blood dataset
(including test data) from 2620 to 5755. Table 2 summarizes the basic information of the
datasets used in this study and the corresponding processing methods. It is imperative
to emphasize that, owing to the distinctive characteristics inherent in the original spectra,
this paper endeavors to perform expansion operations on preprocessed spectral data. The
objective is to maximize the retention of the intrinsic spectral features during this process.

Table 2. Summary of information about related datasets.

Dataset Classes Original Number Augment Number Preprocessing

Reflective Blood 28 2696 5995 Yes
Transmissive Blood 28 2620 5755 Yes

2.4. Dataset Partitioning

K-fold cross validation is widely adopted in Raman spectroscopy detection experi-
ments [24]. This method divides the dataset into K equally sized and mutually exclusive
sub-datasets to ensure consistent data sample distribution within each sub-dataset. In each
validation round, K-1 sub-datasets are combined as the training set, while the 1 remaining
sub-dataset serves as the test set for experimentation. This approach yields K different
combinations of training and test sets, resulting in K distinct experimental outcomes. This
strategy maximizes the utilization of data information while mitigating the impact of
sample distribution imbalance on experimental results.

In the specific experiment, in order to make the model more reliable, we divided the
augmented reflection blood dataset and transmission blood dataset in the form of 9:1. It
should be noted that, as mentioned in Section 2.2, since we had divided the test set in
advance, this part of the dataset for k-fold cross validation did not include the validation
set. Therefore, in the overall experiment process, for the reflective blood dataset, a total of
4928 data were used for training, 532 data were used for validation, and 535 data were used
for testing. For the transmission blood dataset, there are 4732 data for training, 504 data
for validation, and 519 data for testing. Table 3 summarizes the fundamental aspects of
dataset partitioning.

Table 3. Summary of dataset partitioning.

Dataset Train Dataset Valid Dataset Test Dataset

Reflective Blood 4928 532 535
Transmissive Blood 4732 504 519
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2.5. Establishment of RepDwNet Model
2.5.1. Overview of RepDwNet

This section provides a detailed exposition of a one-dimensional convolutional neural
network (CNN) model applied to Raman spectroscopy blood categorization. As shown
in Figure 5, the holistic architecture of the model consists of the Stem layer, the Average
Pooling layer, the Fully Connected layer, and multiple Replicated Depthwise Block (RepDw-
Block) modules. In the diagram, the quantities of RepDwBlock modules are denoted as
ł1, ł2, ł3, and ł4 with values of 2, 2, 4, and 1, respectively. Regarding feature extraction, the
spectral data are initially subjected to preliminary feature extraction via the Stem layer. The
Stem layer encompasses a one-dimensional convolutional layer (Conv1D) and a maximum
pooling layer (MaxPool1D), with kernel sizes of 7 and 3 and strides of 1 each. Subsequently,
through the integration of four RepDwBlock modules, deep feature extraction is applied
to the output of the Stem layer, incorporating residual connections to ensure coherence
in feature information extraction. Ultimately, spectral data classification is accomplished
by means of the Average Pooling layer and Fully Connected layer. Throughout different
stages of feature extraction, the dimensional progression of the input feature sequence is
(1, 16, 32, 64, 128). During the deployment phase of the model, structural reparameteriza-
tion techniques were employed to amalgamate multiple branches, simplifying the model
structure and rendering it more amenable for deployment on resource-constrained devices.
This optimization further enhances the applicability and lucidity of the model.

Figure 5. The overall architecture of RepDwNet exhibits a stratified and phased design. The
framework is demarcated into five successive feature extraction stages, with the latter four stages
being composed of a sequence of RepDwBlock modules, while the initial stage encompasses a Stem
layer. The ultimate two layers are allocated for the purpose of feature classification tasks. For the
sake of brevity, the diagram omits the inclusion of normalization and activation layers.

2.5.2. RepDwNetBlock

The extraction of core features in the model is undertaken by the RepDwBlock module.
The design objective of this module is to integrate multi-scale convolutional kernels to
endow the model with the capability to capture peaks of varying widths. To address the
issue of parameter inflation caused by the multiple-branch convolutional kernels, this
research introduces depthwise separable convolutions for model streamlining. Depthwise
separable convolutions [25] find widespread application in visual tasks, breaking down the
conventional convolution into depthwise and pointwise convolutions, thereby reducing
parameter volume and computational load. In RepDwNet, several convolutional kernels
(1 × 3, 1 × 11) undergo individual depthwise convolutions and their outputs are aggre-
gated within specific branches. Ultimately, feature fusion is achieved through pointwise
convolutions, enabling the model to effectively capture peak features of diverse widths. It
is noteworthy that although depthwise separable convolutions have found extensive use
in the field of visual classification, their application in spectral classification tasks remains
somewhat limited. This primarily stems from the fact that while depthwise separable
convolutions can reduce parameter count, they often come at the cost of decreased model
accuracy. This trade-off appears unfavorable in the context of spectral classification tasks.
However, the strategy adopted in this study precisely manages to counterbalance the con-
tradiction between the accuracy improvement from introducing multi-scale features and
the issue of parameter inflation. Figure 6 provides a detailed overview of the architecture
of the RepDwBlock module.



Chemosensors 2024, 12, 29 9 of 17

Figure 6. (a) Module structure utilized during RepDwNet model training and (b) module structure
employed during RepDwNet model testing or validation.

If confined solely to conventional convolutional operations, there is a potential loss
of coherent spectral feature information to a certain extent. To effectively preserve this
information to the utmost degree, respectively employs residual connection structures. The
intrinsic capabilities of residual connections in addressing the issue of accuracy saturation
degradation and mitigating the vanishing gradient phenomenon [23] render them exten-
sively applicable in various deep learning models. This architectural paradigm proficiently
establishes inter-layer direct connections, thereby endowing the model not only with the
capacity to capture local feature information but also to retain spectral coherence. Conse-
quently, for data possessing coherent spatial or temporal features such as Raman spectra,
residual connections manifest supplementary significance.

2.5.3. Multi-Scale Reparameterization

In the context of classification tasks involving Raman spectroscopy data, models are
predominantly deployed in portable devices. Inspired by models such as RepVGG [26],
this study introduces structural reparameterization techniques. Through this technique,
the model’s structure is simplified while maintaining its original performance, resulting
in improved inference speed. This adaptation makes the model more suitable for deploy-
ment on portable devices. Structural reparameterization plays a crucial role in this paper,
contributing not only to optimizing the computational efficiency of the model but also
effectively maintaining predictive accuracy under the premise of achieving lightweight de-
ployment. This section provides a detailed description of the implementation of structural
reparameterization for the model.

Equations (3) and (4) represent the convolution operation and the normalization op-
eration, respectively. In these equations, the variable X represents the input received by
the operation, and b and γ correspond to the bias terms of the respective operations. In
Equation (3), the variables µ, σ, and β correspond to the mean, variance, and learnable
factor of this operation, respectively. By integrating the convolution operation and batch
normalization operation, they can be transformed into convolution operations with equiva-
lent responses. Specifically, we introduce the output of the initial convolutional layer into
the batch normalization layer and perform the transformation, yielding Equation (5):

Conv(x) = W(x) + b (3)

BN(x) = γ
x − µ

σ
+ β (4)

BN(Conv(x)) =
γ

σ
W(x) + γ

b − µ

σ
+ β (5)

It is not difficult to observe that this form can also be regarded as a convolution
operation denoted as Equation (6):

Conv′ = W ′(x) + b′ (6)

In practical implementation, the fusion of convolutional kernels is achieved by lat-
erally extending smaller convolutional kernels to match the dimensions of the largest
convolutional kernel. Subsequently, the weights and biases of these kernels are aggregated,
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yielding a cohesive amalgamation of the convolutional kernels. In the aforementioned
equation, where W ′(x) is defined as γ

σ W(x), b′(x) can be expressed as γ
b−µ

σ + β.
As depicted in Figure 7, we optimized the model architecture by transitioning from the

original dual-branch structure to a single-branch model. Firstly, we integrated the Conv1D
operation and its adjacent normalization operation (refer to Equation (5)) to form a novel
convolutional operation (refer to Equation (6)). Subsequently, employing zero-padding,
we expanded the 1 × 3 convolutional kernel to the left and right, extending it to a 1 × 11
configuration. Building upon this, we further amalgamated these two 1 × 11 convolutional
kernels. During the merging step, a corresponding summation operation was applied
to the biases and parameter matrices of the two convolutional kernels, ultimately fusing
them into a completely new 1 × 11 convolutional kernel. The objective of these structural
adjustments is to enhance the model’s applicability in production environments while
preserving its performance.

Figure 7. The figure illustrates how dual-branch convolutional kernels undergo a fusion process to
evolve into a single-branch convolutional kernel.

In practical implementation, the effective merging of convolutional kernels requires
special attention to several key details. Firstly, it is essential to ensure that, prior to merging,
the output dimensions of the two convolutional kernels are consistent. This is a crucial fac-
tor in ensuring the smooth progression of the model after merging. Secondly, it is necessary
to maintain equal stride values for both convolutional kernels to uphold the consistency of
the merging operation. This method can also be applied to convolutional kernels with sizes
differing by a factor of 2. Ultimately, the model that undergoes merging enjoys a reduction
in parameter requirements while preserving the same level of inference accuracy as before
the merging process. This operational approach enhances model efficiency while ensuring
accuracy throughout the inference process.

3. Results
3.1. Model Training

This study implemented the described model using the Python programming language
and utilized core modules implemented with major frameworks such as PyTorch and
scikit-learn. The model falls into the category of a classification model, and it is crucial
to judiciously select a loss function and optimizer for fine-tuning its weights to achieve
optimal performance. In our experiments, we employed the Adam optimizer for optimizing
model parameters. Specifically, we set the learning rate of the Adam optimizer to 0.001,
while configuring the exponential decay rates for the first-moment estimate (β1) as 0.9 and
the second-moment estimate (β2) as 0.999. Furthermore, we applied an exponential decay
strategy to adjust the model’s learning rate, with a decay factor of 0.95.

Taking into consideration the multi-class nature of the model, we employed the
technique of one-hot encoding in conjunction with the cross-entropy loss function to
quantify the disparity between the model’s predictions and the actual labels. This evaluative
approach has demonstrated remarkable efficacy when addressing tasks involving multiple
classification categories.

The experimentation was conducted on a server equipped with the NVIDIA GeForce
RTX 4090 GPU which purchased in Shanghai, China. Throughout the experimental pro-
cedure, a batch size of 128 was employed for input data, and the model underwent 80 it-
erations of training. Additionally, an early stopping strategy was implemented, whereby
training ceased if the model’s accuracy failed to exhibit improvement over a consecutive
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span of 10 epochs. Ultimately, the optimal model weight parameters, reflecting superior
performance during the experimentation, were preserved for subsequent evaluative pur-
poses. The fluctuations in metrics such as loss and accuracy during the model training
process are illustrated in Figure 8.

Figure 8. The loss curve and AUC curve of the model in the training process of two blood datasets.
The blue curve is the training set, and the orange curve is the validation set.

3.2. Model Evaluation

Accuracy is one of the most intuitive metrics for assessing model performance. How-
ever, when dealing with imbalanced datasets, traditional calculation methods are prone to
causing the model to overly focus on the majority class, resulting in a bias in performance
metrics. To provide a more objective evaluation of model performance, this study employs
balanced accuracy for analysis. Balanced accuracy aims to address class imbalance issues
by calculating the average sensitivity (recall) for each class and assigning equal weight
to each class. It is worth noting that balanced accuracy shares conceptual similarities
with macro-recall, especially in multi-class tasks, where their formulas are identical. To
clearly distinguish between the two, this paper introduces the adjusted balanced accuracy,
whose formula is presented in Equation (7). The adjusted balanced accuracy incorporates
adjustments for randomness in the results, ensuring that a random performance scores as
0 and a perfect performance scores as 1.

adjusted balanced accuracy =
∑n

i=1 Recalli − 1
n

1 − 1
n

(7)

Additionally, considering the presence of data imbalance in the dataset, this study
employs evaluation metrics such as precision, recall, and F1-Score to comprehensively
assess the model performance. Precision reflects the accuracy of positive predictions, with
its value indicating the proportion of correctly predicted positive instances among all
instances predicted as positive. As for recall, an increase in its numerical value signifies
a stronger ability of the model to detect true positive instances. F1-Score, on the other
hand, integrates both precision and recall, providing a balanced measure of the overall
model performance. During the evaluation process, given the relatively limited number
of true instances for certain species, the corresponding sample size in the test set is also
constrained. Therefore, we adopt a macro-average approach to calculate the relevant
performance metrics to maintain the comprehensiveness of the evaluation. Specifically, the
formulas for computing the performance metrics are provided in Equations (8)–(10).

Macro Precision =
1
n ∑n

i=1
TPi

TPi+FPi
(8)

Macro Recall =
1
n ∑n

i=1
TPi

TPi+FNi
(9)
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Macro F1_score =
1
n ∑n

i=1 2 × Precisioni×Recalli
Precisioni+Recalli

(10)

In the equations, TP, FP, and FN denote true positives, false positives, and false
negatives, respectively.

During the experimental process, we employed functions provided by the sklearn
library to calculate relevant performance metrics. This toolkit afforded us the necessary
support, enabling the effective evaluation of experimental outcomes.

3.3. Model Performance

To enhance the reliability of model outcomes and mitigate the stochasticity during the
model training process, this study employed a 10-fold cross-validation methodology for
conducting multiple experiments while controlling the variables associated with model
parameters. Throughout the experimental procedure, for each cross-validation iteration, we
recorded the model’s performance metrics on the test dataset, including accuracy, precision,
recall, and F1 score. A detailed depiction of the model’s performance evaluation results
on two distinct datasets is presented in Figure 9. Notably, across the transmissive and
reflective Raman spectroscopy datasets, the model exhibited remarkable performance,
achieving balanced accuracies of 97.17% and 97.31%, respectively. It is noteworthy that,
while maintaining elevated precision and recall rates, the model demonstrated significant
stability. Specifically, precision values of 97.80% and 97.70%, along with recall rates of
97.27% and 97.40%, were recorded. The culmination of these high-caliber evaluation metrics
signifies that the model is adept not only at accurately predicting positive samples but also
at effectively identifying a substantial proportion of positive instances within the samples.
Furthermore, the model achieved F1 scores of 97.09% and 97.45% on the transmissive
and reflective datasets, respectively, further underscoring the well-balanced equilibrium
achieved between recall and precision.

Figure 9. Classification performance of the proposed RepDwNet model on two blood datasets. The
dots in the graph represent outliers, meaning their values are significantly higher or lower compared
to the other data points.

The confusion matrix is widely regarded as a valuable tool for intuitively demonstrat-
ing the classification performance of a model on different categories. In Figure 10, the
results of the model’s classification predictions for two distinct test samples are presented.
In this figure, the vertical axis represents the actual categories of the samples, while the
horizontal axis represents the predicted sample categories. It is noteworthy that in the
transmissive blood dataset, the model performs relatively poorly in classifying Syrmaticus
Reevesii compared to other species. We attribute this outcome primarily to the higher
requirements of this species for sample quantity and quality. Despite some degree of data
augmentation, the model still struggles to fully learn more effective feature information.
However, in the classification of other species, the model demonstrates excellent perfor-
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mance. More detailed confusion matrix data can be obtained from Tables S3 and S4 in the
supplementary information. To further assess the sensitivity and specificity of the model’s
classification results, we employ Receiver Operating Characteristic curves (ROC curves)
for a more in-depth examination, as specifically presented in Figure 11. Through analysis
of this figure, it becomes clear that the RepDwNet model exhibits outstanding classifi-
cation efficiency in the small-sized sample dataset after data augmentation. Combining
the aforementioned classification results and analysis, we have reason to believe that the
classification performance of RepDWNet on the two blood datasets is reliable.

Figure 10. The displayed figures depict the confusion matrix results of RepDwNet in two dis-
tinct blood spectral datasets. The (left) figure corresponds to the confusion matrix of transmissive
blood spectral data, while the (right) figure corresponds to the confusion matrix of reflective blood
spectral data.
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Figure 11. The presented illustrations depict the ROC curve results of RepDwNet on two distinct
blood spectroscopy datasets. The ROC curve corresponding to transmissive blood spectroscopy is
shown in the (left) figure, whereas the (right) figure corresponds to the curve derived from reflective
blood spectroscopy.

3.4. Comparison with Other Classification Methods

To assess the performance of Raman RepDwNet in Raman spectroscopy classification,
we conducted a comparative analysis with other network classification models proposed
by scholars in the last two years. These models include a one-dimensional VGG Raman
spectroscopy classification network proposed by Sang [27], a model combining LSTM
with convolutional neural networks proposed by Bratchenkoa [28], a one-dimensional
AlexNet Raman spectroscopy classification network designed by Zhang [29], as well as a
pure multi-head attention mechanism network adopted by Liu et al. [30] and an adaptive
multi-scale convolutional neural network designed by Deng et al. [19]. In the process
of experimental comparison, we utilized the same experimental dataset and employed a
10-fold cross-validation method. To achieve optimal classification predictive performance,
we fine-tuned each model.

According to the experimental results in Table 4, RepDWNet demonstrates unique
advantages in extracting blood spectral features compared to models designed by scholars
such as Song, Zhang, and Liu. On both the transmissive blood dataset and reflective blood
dataset, RepDWNet achieves classification-balanced accuracies of 97.17% and 97.31%,
respectively. This indicates that even when facing imbalanced datasets, RepDWNet can still
make accurate predictions for the majority of cases. Furthermore, the model has achieved
breakthroughs in terms of parameter size and inference speed. In comparison to models
designed by Bratchenko et al. [28], although RepDWNet exhibits a slightly lower inference
speed, it demonstrates relatively high classification performance under a smaller memory
footprint. In addition, despite not achieving a significant breakthrough in classification
performance compared to the network designed by Deng et al. [19], as mentioned earlier,
RepDWNet has not addressed the parameter growth issue caused by multi-scale models.
While RepDWNet experiences a slight decline in classification performance, this decrease
contributes to the model’s characteristics of being more lightweight and having a faster
inference speed. Therefore, compared to other Raman spectroscopy classification networks
on the market, RepDWNet possesses unique model performance advantages. It successfully
maintains high classification performance while reducing the model’s parameter size and
improving inference speed.



Chemosensors 2024, 12, 29 15 of 17

Table 4. The present study presents a comparative experimental analysis of the RepDwNet model,
proposed herein, with respect to Raman spectroscopy classification approaches put forth by other
researchers. This comparison is conducted using transmissive and reflective blood datasets.

Bal_Acc Macro_Precision Macro_Recall Macro_F1_score Parameters (M) FLOPs (G)

Ours T 97.17% 97.80% 97.27% 97.09% 0.24 M 0.06 G
Song el al. [27] T 96.75% 96.87% 96.87% 96.35% 14.83 M 0.74 G

Bratchenko et al. [28] T 96.95% 97.69% 97.06% 96.87% 2.44 M 0.03 G
Zhang et al. [29] T 93.36% 94.64% 93.60% 92.52% 23.97 M 0.07 G

Liu et al. [30] T 96.96% 97.45% 97.07% 96.80% 7.97 M 0.09 G
Deng et al. [19] T 97.61% 98.24% 97.70% 97.53% 2.24 M 0.1 G

Ours R 97.31% 97.70% 97.40% 97.45% 0.24 M 0.08 G
Song et al. [27] R 96.07% 96.66% 96.21% 96.22% 18.24 M 1.08 G

Bratchenko et al. [28] R 96.99% 97.35% 97.10% 97.09% 2.47 M 0.03 G
Zhang et al. [29] R 93.17% 93.81% 93.41% 93.39% 23.97 M 0.10 G

Liu et al. [30] R 97.08% 97.34% 97.18% 97.12% 8.02 M 0.09 G
Deng et al. [19] R 97.60% 97.95% 97.69% 97.71% 2.25 M 0.14 G

T Transmission datasets. R Reflection datasets.

In addition, this study conducted a subtle evaluation of machine learning algorithms
commonly used for Raman spectroscopy classification. As evidenced by the compara-
tive results in Table 5, RepDWNet demonstrates outstanding classification performance
compared to the traditional Partial Least Squares (PLS) algorithm. Furthermore, an em-
pirical comparison was performed between RepDWNet and the combination of Principal
Component Analysis (PCA) with Support Vector Machine(SVM). However, the PCA+SVM
algorithm exhibited a noticeable overfitting phenomenon on the test set, despite achieving
significant effectiveness on the training and validation sets. We attribute this to the possi-
bility that PCA+SVM learned inappropriate information, during the process of acquiring
blood spectral feature information. Therefore, we chose not to present the experimen-
tal results of PCA+SVM in the table. Consequently, from a comprehensive perspective,
RepDWNet demonstrates unique superiority in extracting feature information from blood
Raman spectra.

Table 5. The table presented herein illustrates a comparative analysis between RepDWNet and
selected mainstream machine learning algorithms.

Bal_Acc Macro_Precision Macro_Recall Macro_F1_score

Ours T 97.10% 97.75% 97.21% 97.03%
PLS_DA T 89.37% 91.67% 89.75% 83.03 %

Ours R 97.18% 97.77% 97.28% 97.49%
PLS_DA R 84.94% 85.48% 83.88% 82.93 %

T Transmission datasets. R Reflection datasets.

4. Conclusions

In this study, we introduce RepDWNet, a lightweight Raman spectroscopy classifica-
tion network. This model combines multiple-scale convolutional kernels while maintaining
a smaller model parameter size and faster inference speed. To address the coherence of Ra-
man spectroscopy, we incorporate residual connections to facilitate inter-layer information
transfer. Simultaneously, to enhance the model’s suitability for portable devices, we employ
result reparameterization techniques, rendering the model more concise and expediting
the inference speed. Furthermore, to better capture the intrinsic features of Raman spectra,
data augmentation techniques are applied to augment two imbalanced datasets. Com-
prehensive experimental results demonstrate that data augmentation operations, coupled
with RepDWNet, yield significant balanced accuracy on both transmissive and reflective
blood datasets, achieving 97.17% and 97.31%, respectively. Through ablation experiments,
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we observe that, for Raman spectroscopy classification, larger convolutional kernels may
outperform smaller ones, a direction we aim to thoroughly validate in future investigations.
Finally, the Raman spectroscopy augmentation techniques and RepDWNet proposed in
this paper can be extended to other spectral classification domains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors12020029/s1, Table S1: Reflective Raman spec-
troscopy dataset category and sample details; Table S2: Transmission Raman spectroscopy dataset
category and sample details; Table S3: Classification report of Raman RepDwNet for reflective Raman
spectral of blood species identification; Table S4: Classification report of Raman RepDwNet for
transmission Raman spectral of blood species identification
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