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Abstract: Imaging methods by the means of optical sensors are applied in diverse scientific areas such
as medical research and diagnostics, aerodynamics, environmental analysis, or marine research. After
a general introduction to the field, this review is focused on works published between 2012 and 2022.
The covered topics include planar sensors (optrodes), nanoprobes, and sensitive coatings. Advanced
sensor materials combined with imaging technologies enable the visualization of parameters which
exhibit no intrinsic color or fluorescence, such as oxygen, pH, CO2, H2O2, Ca2+, or temperature. The
progress on the development of multiple sensors and methods for referenced signal read out is also
highlighted, as is the recent progress in device design and application formats using model systems
in the lab or methods for measurements’ in the field.
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1. Introduction

Fluorescence imaging in combination with optical chemical sensors has become a
powerful analytical tool that enables the visualization and quantification of chemical species
within a sample or on sample surfaces. By the use of fluorescent sensor parameters which
exhibit no intrinsic color or fluorescence, e.g., oxygen, pH, CO2, and H2O2, various metal
cations or temperature can be imaged. This topic was extensively reviewed last time
in 2012 [1]. Therefore, it is well-founded to now summarize the progress in this highly
interdisciplinary field over the past ten years.

The chemical sensors considered in this review contain two basic components con-
nected in series: a chemical or molecular recognition system (receptor or molecular probe)
and a physicochemical transducer [2]. Photoluminescent probes can synergize the molec-
ular recognition system with the signal transduction mechanism in one molecule. They
have the advantage that they can be delivered directly into the sample, even in living
tissue or cells, and detected by remote sensing and imaging methods from outside. The
selectivity and sensitivity of the response can be optimized by the encapsulation of the
dyes in polymer nanoparticles, which paves the way for a target-specific nanosensors [3].
In addition, inorganic luminescent nanoparticles based on gold, carbon, semiconductor
quantum dots, or photon upconversion crystals were modified to obtain nanosensors for
various applications [4].

This review updates the state of the art in photoluminescence (fluorescence or phos-
phorescence) sensing and imaging, discussing the developments in diverse scientific areas,
particularly medical and pharmaceutical research, aerodynamics, material science, and
marine research. Optical imaging in this context mainly involves fluorescence microscopy,
fluorescence scanning systems, and the application of planar optrodes in combination
with CMOS or CCD cameras. The main focus of this overview is set on the integration
of sensitive fluorescent probes into sensor materials, as well as on multiple sensors and
methods for referenced signal read out. It covers the work published in the past ten years
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(2012–2022) and is, after discussing some general aspects, structured according to different
fields of application.

The first part of the overlook will highlight planar sensors, which are often termed as
planar opt(r)odes. Koren and Zieger reviewed the use of such optrodes in chemical imag-
ing [5]. Thereafter, the use of fluorescent nanoparticles in biomedical imaging techniques
will be highlighted. The second main topic will be environmental analysis and marine
research, and the third will be aerodynamics using pressure and temperature-sensitive
paints. Because of the large extent of the work published in this context, this review will
be restricted to photoluminescent sensor materials, i.e., planar optrodes and nano- or
microparticles, and sensor coatings, whose applicability has been demonstrated by the
means of imaging methods. The development of new molecular probes is only considered
if they have been applied in this manner. Fiber optic sensors are not included. The same
is the case for nano thermometry used in bioimaging, which was reviewed recently [6].
The integration of optical chemical sensors into microfluidic systems is a new emerging
approach which has aroused high interest [7]. However, this topic would exceed the scope
of this article and will be reviewed separately.

2. General Aspects and Imaging Systems

Fluorescent sensor materials frequently consist of a polymer binder including indicator
dyes, which should be permeable to the analyte. Alternatively, polymeric nanoprobes can
be applied to imaging analysis. Simple fluorescence imaging systems consist of a light
source, usually an array of light-emitting diodes (LEDs), a set of optical filters and beam
splitters (dichroic mirrors) separating excitation light from luminescent light, a camera
(CCD or CMOS), and a computer-aided control unit for the optoelectronic system with
software for image processing. Scanner systems are equipped with several lasers, a movable
x/y stage, and a photomultiplier tube (PMT) as a detector [1].

In the ideal case, a fluorescent sensor responds reversibly and fast (within a few
seconds to few minutes) to changing analyte concentrations, which enables the visualization
of the distribution of an analyte in a sample with a high spatial and temporal resolution.
In fact, some sensors are capable of responding in the microsecond range, particularly
in the case of oxygen- or temperature-sensitive probes used for instationary pressure
and temperature measurements on surfaces. As the excitation of the fluorophores and
fluorescence imaging can be performed in a remote way, optrodes or nanoprobes can be
applied in a nondestructive way with a low impact on the sample. This paves the way for
tracking chemical species in living systems.

The imaging of fluorescent probes and sensors is an important method in the field of
chemical imaging, but photobleaching, light scatter, autofluorescence of the sample, and
inhomogeneous illumination and unsteadiness of the light source can falsify the results.
Hence, referenced methods are preferred in fluorescence sensor technology because they
enable the elimination of these interferences. Referencing can be based on ratiometric
measurements, e.g., by the addition of reference dyes or the application of dual wavelength
(2-λ) probes [8].

Intensity-based imaging is, therefore, usually carried out in a ratiometric manner,
where the signals from the probe and reference are separated by optical filters. Fluores-
cence lifetime imaging (FLIM) is another highly valuable internally referenced technique.
Methods for lifetime determination can be classified into time domain and frequency do-
main techniques and have been reviewed several times [1,8–10]. FLIM is the preferred
technique to obtain robust and referenced quantitative data, and many camera systems
use time domain measurements. However, it was demonstrated in a comparative study
that frequency-domain-based camera systems are a valuable alternative for the read out of
chemical sensors by testing different sensors with different indicator dyes for O2 and pH
imaging in environmental samples [11].

It is noticeable that digital color cameras with RGB pixels have been applied more
and more as alternatives to scientific CCD or CMOS cameras for 2D sensor read outs.
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A comparative study revealed that RGB cameras can be used for certain sensor applica-
tions. However, a quantitative evaluation of a typical oxygen sensor based on PtTFPP in
polystyrene showed only a limited analytical sensitivity compared to luminescence lifetime
imaging and ratiometric imaging utilizing a CCD camera [12].

Hakonen et al. compared intensity-, ratiometric-, and hue-based quantification in
chemical imaging [13]. HSV (Hue, Saturation, Value) is a commonly used cylindrical color
space in digital imaging. They used the fluorescent pH-sensitive dye di-hydroxypyrene-di-
sulphonate, which was immobilized to quaternary ammonium functionalized ion exchange
microparticles. These were dispersed in aqueous solutions between pH 5 and 10 and
imaged with a simple digital camera and a CMOS color camera. It was demonstrated
that hue quantification is superior to ratiometric- and intensity-based methods regarding
accuracy and precision.

In hyperspectral imaging, the recorded luminescence signal is divided into a high
number of spectral bands, giving complete spectral information from every pixel of the
camera. These collect information as a set of images, each consisting of a narrow wavelength
range. Single images can be combined to form a three-dimensional hyperspectral cube of
data. Hence, the chemical imaging of multiple luminescent indicator dyes can be processed
by hyperspectral imaging in combination with the signal deconvolution of overlapping
emission spectra [14]. By the means of a least-squares fit, the percent contribution of the
different indicator dyes compared to the total measured signal can be determined. A
sensor for O2 was evaluated as a proof of concept, which was composed of red-emitting
Pd(II)/Pt(II) porphyrins and NIR-emitting Pd(II)/Pt(II) benzoporphyrins. It showed a
broad dynamic range from 0 to 950 hPa using a hyperspectral camera (470–900 nm) with
a four-channel RGB-NIR system. Macrolex Fluorescence Yellow (MFY 10GN) was added
as a reference dye. The sensor foils were prepared by the immobilization of the dyes in
polystyrene. The used hyperspectral camera can record up to 150 spectral bands in a
wavelength range from 470 to 900 nm by moving a filter plate in front of the camera chip.

3. Biomedical Imaging and Tissue Engineering

Oxygen, pH, CO2, and some metal cations such Ca2+, Mg2+, and K+ are the most
important analytes which are targeted by fluorescent chemical sensors. Almost all living
organisms utilize oxygen for energy generation and respiration. Since pO2 is significantly
reduced in tumorous tissue, the imaging of oxygen distribution by the means of optical
sensors is a useful tool in cancer research. Generally, hypoxia is a pathological condition in
which different regions of the body can suffer from an insufficient oxygen supply at the
tissue level, which can be connected to various diseases. Decreased pO2 or an imbalance
between oxygen supply and demand may lead to pathological states and, ultimately,
death of the cell and the whole organism. Therefore, there is a high demand for imaging
sensors for pO2 in biomedical research and diagnostics. Wang and Wolfbeis summarized
the field of optical oxygen sensors extensively in 2014 [15]. Papkovsky and Dmitriev
highlighted the phosphorescence-quenching mechanisms and biomedical applications of
typical oxygen-sensitive fluorophores [16]. They discussed applications of oxygen sensors
to enzymatic assays for the analysis of the respiration of mammalian and microbial cells,
small organisms, and plants and for the monitoring of oxygenation in cell cultures and 3D
models of live tissue. The same authors also compared the applicability of oxygen-sensitive
molecular probes for cellular imaging concerning their brightness, staining efficiency,
toxicity, photostability, cell specificity, and sensing performance [17].

In diseased tissue, the pH is also reduced, whereas it is increased in wound skin.
Therefore, photoluminescent methods for imaging of pH are a valuable tool in medical
research and diagnostics [18], as pH impacts the structure and function of all biologically
active macromolecules, particularly proteins. Many cellular dysfunctions are character-
ized by a pathological acidic pH [19], including cancer [20] and Alzheimer’s disease [21].
Cellular compartments such as endosomes or lysosomes are also characterized by a re-
duced pH between 6 and 4 [22]. The monitoring of pH changes can help to reveal cellular
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internalization processes such as phagocytosis [23], endocytosis [24], or receptor-mediated
internalization [25].

The pKa value of the indicator determines the working range of a luminescent pH
sensor. The relevant interval for intracellular measurements is between pH 7.4 and 4.5,
which includes the typical pH ranges in cytosol (pH 7.40–6.80) and cellular compartments
such as endosomes (pH 6.0–4.4) and lysosomes (pH 5.0–4.5). The pH of the extracellular
matrix varies between 7.45 and 7.35. Hence, an optimal pH sensor shows a high signal
change within a narrow pH range to achieve the maximal analytical sensitivity. Optical
pH sensors were reviewed by Wencel et al., with a general look at pH indicators and
suitable polymer matrices [26]. A more specialized article was focused on the application
of pH-sensitive nanoprobes, including organic polymer and inorganic crystalline materials
for intracellular imaging [18].

3.1. Planar Optrodes

Detailed discussions on the sensor chemistry, fabrication, and mode of operation of
planar optrodes can be found in the literature [1]. Groundbreaking reports on the use
of planar optrodes for biomolecular imaging include the monitoring of oxygen supply
in malignant melanomas [27] and the study of wound healing processes with the help
of 2D pH sensors [28]. These techniques were consequently exploited in various studies
on the oxygen supply to tissues and tumor hypoxia, e.g., for the imaging of the tumor
microenvironment in preclinical models. These were reviewed by Boss et al. [29].

3.1.1. Oxygen Sensors

Widely used probes for optical oxygen sensors are transition metal complexes, whose
phosphorescence is strongly quenched by oxygen. Prominent examples are ruthenium or
iridium complexes and platinum or palladium porphyrins. Due to the strong quenching,
which is affected by temperature, the sensor matrix in which the dyes are incorporated,
and other environmental factors, it is difficult to compare the performances of the probes
regarding quantum yields, brightness, and sensitivity. Generally, from the Stern–Volmer
equation, it can be deduced that, the longer the phosphorescence lifetime of the probe, the
higher the extent of oxygen quenching. The probes mentioned above have lifetimes in
the microsecond range. The spectroscopic properties of the widely used oxygen sensitive
probes can be found in reference [15].

However, the development of new oxygen-sensitive probes with specific features is in
permanent progress. Borisov et al. synthesized and characterized a series of europium(III)
and gadolinium(III) complexes bearing 8-hydroxyphenalenone as antenna chromophors
as oxygen-sensitive dyes with the capability for trace oxygen sensing [30]. Their chem-
ical structures are depicted in Figure 1. The quantum yields were around 20% for the
europium(III) complexes and 50% for the gadolinium(III) dyes. The latter showed lifetimes
higher than 1 ms. Both complex types could be excited at 460 nm and showed the typical
sharp red emission lines of europium(III) or phosphorescence emissions of gadolinium(III)
from 540 to 600 nm. Planar optrodes were prepared by incorporating the complexes in
polystyrene. The emission of Eu(III) complexes matched the spectral sensitivity of the red
channel of a digital RGB camera. Therefore, ratiometric imaging was performed with a
consumer digital camera. In order to obtain a system for ratiometric read out, a coumarin
dye was added as a reference, which emits in the green part of the spectrum. Both dyes can
be excited with a blue LED.

Commercialized oxygen sensor foils in combination with a USB-handheld fluorescence
microscope (VisiSens system from PreSens, Regensburg, Germany) were applied to dis-
cover vessel thrombosis in free flaps. In this study, microvascular flaps were transplanted
into patients requiring tissue reconstruction after tumor surgery or because of chronic
wounds. The sensor set up contained an oxygen reservoir which was consumed by the
tissue corresponding to the perfusion status of the flap [31]. A similar system was used for
ratiometric luminescence 2D in vivo imaging and the monitoring of mouse skin oxygena-
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tion [32]. Ratiometric luminescence imaging was carried out by the means of a sensor foil
with the red-emitting oxygen-sensitive phosphorescent dye platinum(II)-5,10,15,20-tetrakis-
(2,3,4,5,6-pentafluorphenyl)-porphyrin (PtTFPP) and N-(5-carboxy-pentyl)-4-piperidino-
1,8-naphthalimide as a green-emitting reference dye. The read out can be performed by
fluorescence lifetime imaging (Figure 2) or ratiometric imaging with a color RGB camera,
which were integrated in portable sensor device. This technology can help to understand
the local regulation of skin tissue oxygenation in various disease conditions. Using the
same approach, the gut tissue oxygen levels in a model of Salmonella enterocoliti were mea-
sured [33]. The gut tissue oxygen levels dropped significantly during infection. From the
data, it was concluded that the hypoxia-induced impairment of antimicrobial activity and
Salmonella virulence cooperate to allow for enhanced Salmonella replication in monocytic
phagocytes/macrophages.
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Figure 1. Synthesis route and chemical structures of new oxygen-sensitive europium and gadolinium
complexes. Reprinted from Borisov et al. Adv. Funct. Mat. 2014, 24, 6548, Copyright 2014 John Wiley
and Sons [30].

Microporous polystyrene-based scaffolds stained with PtTFPP were used to image O2
gradients within 3D cell cultures [34]. The system was optimized for the imaging of O2 in
diverse cultured cells, including cancer cells, multicellular aggregates, and also in rat brain
slices. It was shown that the impregnated scaffolds could indicate tissue oxygenation at
different depths and cell densities, changes in respiration activity, and responses to drug
treatment. It was concluded that scaffolds with integrated oxygen sensors allowed for
better control of the conditions in 3D tissue cultures.

Planar optrodes were also used to investigate how high-velocity fluid jets and sprays
disrupt anoxic niches in dental biofilms which create anoxic microenvironments. The
dissolved oxygen concentration at the base of these in vitro biofilms was measured using a
planar optrode consisting of platinum octaethylporphyrin (PtOEP) as an oxygen-sensitive
dye, a coumarin dye (Bu3Coum) acting as an antenna, and TiO2 nanoparticles, both to
increase the brightness of the porphyrin, embedded in polystyrene. The sensing layer was
cast on a polyethylene terephthalate sheet. It was demonstrated that a sufficient amount
of biofilm was removed by high-velocity microsprays to disrupt the anoxic region at the
biofilm–surface interface [35].

Meanwhile, cell culturing and tissue engineering became the most targeted application
areas for planar oxygen optrodes. Again, imaging systems with the corresponding bio-
compatible and sterilizable planar luminescent sensor foils for oxygen and pH have been
developed and commercialized. For example, bone tissue engineering utilizing biomaterial
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scaffolds and human mesenchymal stem cells is a promising approach for the treatment
of bone defects. Cell density and oxygen supply affect the quality of the engineered tis-
sue. Thus, imaging oxygen sensors were integrated to monitor the oxygen distribution
in 3D scaffolds to study cell-seeding strategies [36]. In another study, the level of locally
dissolved oxygen within 3D cell-loaded collagen I gels was analyzed in vitro by applying
optical sensor foil technique [37]. It was demonstrated that five weeks were required for
establishing an equilibrium of the in vitro oxygen concentration.
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Figure 2. (A) Experimental set up to determine skin oxygenation using the LLI-based imaging
technology. The LLI-device excites the sensor foils with a pulsable LED array (blue light). Subsequent
to the pulse of excitation light, the oxygen-dependent decay of the red light emitted from the sensor
foil will be recorded by the LLI-device with the use of a time-gated CCD camera. The transparent
sensor foil consists of a sensor layer, which comprises an oxygen-dependent probe immobilized in
a highly oxygen-permeable polymer matrix. (B) Calibration of the LLI-sensor foil. (C) LLI-sensor
foil (green) on the footpad (white edging) of a hind leg of a restrained mouse that is positioned
on a heating foil (black). (D) Representative black and white intensity image of the sensor (left)
and the corresponding referenced pseudocolour image (right) of the calculated skin tissue oxygen
distribution. Reprinted from Hofmann et al. Methods Appl. Fluoresc. 2013, [32]. © IOP Publishing.
Reproduced with permission. All rights reserved.

The influence of transport phenomena and culture parameters on cell growth was
investigated using a perfused bioreactor with a macroporous scaffold [38]. Sensor foils
were integrated into the bioreactor and imaged with a camera unit. The experimental set
up is shown in Figure 3. The concentrations of oxygen, glucose, and lactate were measured
and compared with cell viability and growth. The fluid dynamics and mass transport of
nutrients in the perfused reactor were studied by a numerical model. The experimental
and numerical results indicated that the cell metabolic activity in scaffolds cultured under
perfusion was 30% greater than scaffolds cultured under static conditions. Optical sensor
foils are therefore suitable for measuring the 3D oxygen gradients formed during cell
culturing. Oxygen optrodes were also attached to 3D-printed ramps [39]. These were
placed inside the wells of a culture plate before cell seeding. The oxygen gradient observed
after 96 h showed lower oxygen concentrations closer to the bottom of the well compared
to that of lower-cell-density cultures. The oxygen concentration near the cell layer was
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lower compared the incubator atmosphere. Accordingly, the oxygen consumption rate of
the cells could be calculated.
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Figure 3. Perfused bioreactor experimental set up. The culture medium in reservoir 1 flows through
gas-permeable tubes to the culture chamber and to reservoir 2. The culture chamber may hold
3 scaffolds. At the outlet of the culture chamber, a bypass circuit composed of a 3-way valve and
a gas-impermeable tubing with an optically accessible miniaturized bioreactor allows the oxygen
concentration in the culture medium to be measured. The exhausted culture medium in reservoir 2
was reversed and collected in a waste reservoir to assess glucose and lactate content. Reprinted from
Eghbali et al. Int. J. Artif. Organs. 2017, 40, 185. Copyright 2017 Springer [38].

Deygas et al. showed that epithelial cells from various tissues migrate with a high
directionality towards oxygen (aerotaxis) to escape hypoxia [40]. Simultaneously, a gradient
of reactive oxygen species (ROS) develops, and antioxidants dampen the aerotaxis. It was
concluded that aerotaxis is a property of higher eukaryotic cells, proceeding from the
conversion of oxygen into ROS. Cell respiration under confinement rapidly generates
hypoxia and an oxygen gradient at the periphery of the cell cluster, which was visualized
by measurements of oxygen levels using the Visisens detector unit.

3.1.2. Sensors for pH, Carbon Dioxide, and Ions

The integration of theranostic sensors provides tremendous potential to monitor
the healing of acute and chronic wounds, because extracellular pH is precisely regu-
lated and potentially important in signaling within wounds due to its diverse cellular
effects. Imaging studies on wound healing using pH sensors were extensively reviewed by
Dargaville et al. [41].

Commonly used pH-sensitive dyes bear carboxylic acid groups or amine groups,
which can be deprotonated or protonated, respectively, depending on the pH. In every
case, the protonated and deprotonated forms display different absorption spectra and
one of the two forms is charged. Thus, the polarity of the dye changes significantly if it
is switched from the neutral to the charged form. This makes the incorporation of pH
indicators into polymeric binding matrices challenging and often requires the addition of
lipophilic counterions. A pH sensor film free of background signals and autofluorescence
was prepared from upconversion phosphor microparticles (UCPs) and a pH indicator
(Neutral Red) in a polyurethane matrix [42]. The ratiometric sensor response was achieved
because Neutral Red absorbed only the green emission of the UCPs, while their red emission
was unaffected and acted as an inert reference signal. The excitation of the UCPs could be
carried out with a 980 nm laser diode. Both emission peaks of the applied UCPs matched
the red and green color channels of standard RGB digital cameras. The fundamentals of
upconversion luminescence will be discussed in Section 3.2.3.

Dalfen et al. prepared fluorescent diazaoxatriangulenium dyes which are suitable as
pH indicators for lifetime-based pH sensing [43]. The dyes were modified with phenolic-
receptor groups which induced fluorescence quenching via a photoinduced electron transfer
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(PET) mechanism. The chromophores were substituted to ensure a response in the relevant
pH range. The dyes featured high quantum yields (∼60%), a high photostability, and long
fluorescence lifetimes (17–20 ns), which makes them suitable for self-referenced lifetime
imaging. The three synthesized dyes had absorption maxima around 560 nm and emission
maxima around 590 nm. The general chemical structure of the dyes and the PET effect are
displayed in Figure 4. Planar optrodes were prepared by the immobilization of the dyes in
a polyurethane hydrogel, which showed pH-dependent fluorescence lifetime behavior.
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Sensor films that can be directly sprayed on skin or tissue surfaces are a valuable
further development. For referenced pH imaging in wounds, the signal of the pH indicator
fluorescein isothiocyanate was recorded with the green channel, and that of Ru(dpp)3
[ruthenium(II)-tris-(4,7-diphenyl-1,10-phenanthroline)] as a reference dye was stored in
the red channel of a digital RGB camera [44]. The images were processed by rationing
both luminescence intensities. The indicator dye was incorporated in microparticles of
aminoethyl cellulose, and the reference dyes in polyacrylonitrile. Both particles were em-
bedded in Traumasept wound gel as a sprayable binding matrix for film formation. Other
thermogelating, biocompatible, and water-sprayable polymer hosts for the formation of
sensor films that can be used for the imaging of pH, oxygen, or temperature are Poloxamer
or Pluronic [45]. These are blockcoplymers of ethylene oxide and propylene oxide. The
same mixture of pH-sensitive dye and reference dye in a polyurethane hydrogel was used
to study the impact of age and body site on the skin surface pH of women in vivo. It was
shown that skin surface pH slightly increases with age, but is independent of body sites. In
this case, time domain dual lifetime referencing was used for a referenced read out of the
sensor films [46].

Microenvironments which are similar to poorly vascularized tumors can be produced
by paper-based cultures. These are useful platforms for the preparation of 3D tissue-like
structures and generating chemical gradients. Using culture platforms which contain
pH-sensing optrodes, high-spatial- and temporal-resolution maps of pH gradients in paper-
based cultures can be assessed [47]. The sensor is composed of suspended microparticles
containing pH-sensitive fluorescein dyes and pH-insensitive reference dyes (diphenyl an-
thracene) in a polyurethane hydrogel (Figure 5). The films showed a pKa around 7.61 and
are applicable in a pH range including normal and tumorigenic tissues. Thus, the spatiotem-
poral development of pH gradients in tumor models could be analyzed. An autonomous
set up for pH sensing on-site was achieved by embedding probes and reference dyes in
hydrogel spots on a plastic strip.
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Figure 5. (a) Diagram of a pH-sensing film integrated into a paper-based culture platform. A single
sheet of paper, wax-patterned with three identical channels, was seeded with cells, sandwiched
between a PET film and pH sensor, and placed in a custom-made acrylic holder. (b) Representative
micrographs of a (top) single channel seeded with mCherry-expressing MDA-MB-231 cells, (middle)
the pH-sensitive fluorescein particles, and (bottom) the pH-insensitive DPA reference particles. The
wax lines were used to limit cellular movement during the experiment and are visible through the
sensing film. (c) Schematic of the pH sensor (not to scale). Reprinted with permission from Kenney
et al. Anal. Chem. 2018 [47]. Copyright 2018 American Chemical Society.

A series of pH-responsive fluorescent probes based on boron–dipyrromethene (BOD-
IPY) was designed, which covered the entire pH range from 0 to 14. An optical readout can
be performed with simple devices using a smartphone camera and Android application
software. The USB port drives the integrated LED for excitation [48]. The combination
of dye-coated sensor stripes and mobile read out devices enables autonomous operation
on-site or in the field. BODIPY dyes are generally characterized by their high fluorescence
quantum yields (>0.9) and brightness. The attachment of phenol receptors renders BODIPY
dyes pH sensitive, induced by fluorescence quenching in the phenolate form. It is assumed
that the fluorescence emission of the deprotonated dye is switched off by photoinduced
electron transfer (PET). The dyes have absorption maxima around 520 nm and emission
maxima at 530 nm, which can be excited efficiently at a wavelength of 495 nm. Staudinger
et al. presented NIR aza-BODIPY dyes with pH-sensitive hydroxyl groups working in
the neutral to highly alkaline range [49]. Such dyes can be immobilized in ethyl cellulose
along with tetraoctylammonium hydrogen carbonate as a lipophilic cation for the prepa-
ration of carbon dioxide sensors, which can resolve ambient CO2 levels with an LOD of
0.009 hPa [50]. The fluorescence is quenched in the deprotonated phenolate form. An
extension of the π system of the BODIPY moiety with phenyl substituents results in a
bathochromic shift in the absorption maximum from 505–510 nm to 635. The emission
maxima are shifted from 516–522 nm to 646 nm, respectively. A further extension of the π

system with 3-chloro-4-methoxyphenyl substituents results in an additional bathochromic
shift of about 30 nm.

Another family of new pH-sensitive probes is based on 1,4-diketopyrrolo-[3,4-c]pyrroles
(DPPs). Two different sensing mechanisms can be exploited. In the first case, at a high pH
(>9), a change in absorption and fluorescence spectra takes place due to the deprotonation
of the nitrogen atoms. In the second case, a phenolic group is introduced. Highly effective
quenching at a near-neutral pH occurs due to PET in the deprotonated phenolate form
(Figure 6). The fluorescence can be excited at 540 nm and has an emission maximum of
610 nm. Immobilized in hydrogels, they can also be used for pH sensing and imaging.
It was demonstrated that a ratiometric sensor can be prepared which is suitable for RGB
camera read outs [51]. Commercially available DPP pigments were modified with sul-
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fonamide groups and embedded into ethyl cellulose for the preparation of fluorescent
carbon dioxide sensors [52]. The DPP pigments exhibited quantum yields close to one.
The absorption and emission spectra of the deprotonated form were bathochromically
shifted by more than 100 nm compared to the neutral form, which had absorption maxima
between 496 and 550 nm and emission maxima of 564–587 nm. The DPP ‘Pigment Orange
73’ was modified with a tert-butyl benzyl group. This indicator dye was embedded in
ethyl cellulose and showed pH-dependent dual absorption and emission properties for the
protonated and deprotonated form, and is therefore applicable to ratiometric fluorescence
intensity measurements matching the response of the green and red channels of an RGB
camera [53].
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Figure 6. Chemical structures and reaction mechanisms of DPP-based fluorescent pH indicators.
(a) Photoinduced electron transfer induced by deprotonation of the phenol group, and (b) shift in
fluorescence emission maximum induced by deprotonation of nitrogen. Reproduced from Ref. [51]
with permission from the Royal Society of Chemistry.

Pederson et al. constructed a sensor for nitrate anions based on the coextraction prin-
ciple [54]. This is generally a valuable alternative for ion sensing, combining an ionophore
and a fluorescent pH indicator in a sensor layer. In this case, tridodecylmethylammonium
(TDMA) chloride and 1-hydroxypyrene-tris-3,6,8-octadecylsulfonamide (HPTS-TOA) were
integrated in a polyurethane hydrogel matrix. If TDMA cations bind nitrate anions dif-
fusing from the sample solution into the sensor membrane, electroneutrality has to be
maintained. This is achieved by the coextraction of a proton from H2O molecules, which
results in the protonation of the pH indicator HPTS-TOA. Additionally, the coumarin dye
Macrolex Fluoreszenzgelb 10GN was added to the sensor film as an internal reference. The
response is linear to nitrate concentrations from 1 mM to 50 mM with a fast response time
of less than 10 s. The optrode was successfully applied to track the nitrate plume in a flow
cell. Imaging was performed by ratiometric RGB analysis.

As can be concluded from these examples, planar oprtode technology is now mainly
limited to imaging oxygen, pH, or carbon dioxide distributions. Only very few examples
have been reported for other target analytes. Kumar et al. prepared an optode for the
determination of Zn2+ ions in water and pharmaceutical samples [55]. The fluorescent
probe tetra butyl 2,20-bisbipyridine-5,50-diylbis(methylene) diphosphonate worked as
chelator for Zn2+. Complex formation was accompanied by a strong fluorescence increase
(chelation enhanced fluorescence). The optrode was fabricated by incorporating the probe
with dioctyl phthalate as a plasticizer and sodium tetraphenyl borate as an anionic addi-
tive in a poly(vinyl chloride) membrane. The bipyridine-bisphosphonate probe was also
applied to monitor Zn2+ in HeLa cells with an optical fluorescence microscope. The UV
emission maximum around 350 nm is clearly a drawback of this probe when exposed to
living systems.



Chemosensors 2024, 12, 31 11 of 47

3.1.3. Multiple Sensors

The interest in the development of multiple sensors has been increased in recent years.
These enable access to complementary chemical information within one measurement,
e.g., changes in pO2 and pH in biological systems. The parallel detection of diverse
analytes is a promising approach for clinical chemistry, because it would reduce the time for
diagnostic indications and increase the information content. Because optrodes can transmit
multiple pieces of information from each reading point of the sensing layer, they are highly
interesting for imaging methods. This represents a unique feature, because fluorescent
signals can be separated spectrally or with the help of time-resolved imaging methods.
Various dual sensors for oxygen and temperature, pH and oxygen, or pH and temperature
have been described [1], as has a triple sensor material for all the three parameters [56]. Even
a quadruple planar luminescent sensor was presented for the simultaneous monitoring of
oxygen, carbon dioxide, pH, and temperature [57].

Schreml et al. reported a biocompatible sensor foil for the dual imaging of extracel-
lular pH and oxygenation in vivo [58]. They used time-resolved fluorescence imaging
methods such as time domain dual lifetime referencing and luminescence lifetime imaging
to visualize pH and oxygen simultaneously. Centripetally increasing pH gradients on
human chronic wound surfaces were discovered using the dual sensors. It was demon-
strated that pH gradients are pivotal regulators of cell proliferation and migration, and
disrupt epidermal barrier repair and wound closure. Parallel oxygen imaging also revealed
hypoxia. This sensor combined the established oxygen-sensitive probe palladium(II)-
meso-tetraphenyltetrabenzoporphyrin in poly(styrene-co-acrylonitrile) microparticles with
pH-responsive fluorescein-isothiocyanate covalently bound to aminoethylcellulose mi-
croparticles. Commercialized 2D imaging systems with the corresponding biocompatible
planar luminescent sensor foils were used to determine the pH and oxygen in non-healing
wounds after radiotherapy (Figure 7). It was shown that there were significant differences
in pH and oxygen saturation between non-irradiated skin and irradiated skin. Radiogenic
wounds exhibited the highest pH values and had a poor oxygen saturation [59].
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Figure 7. Clinical case of a 51-year-old male, three years after laryngectomy and radiochemotherapy,
who suffered from severe wound healing disorder after treatment of a voice fistula insufficency.
(a) Photo documentation. (b) pO2 sensor response. (c) pH sensor response. Sensor foils have a size
of 2 × 2 cm. Copyright © 2019, Springer Nature, Auerswald et al., Radiat. Oncol. 2019, 14, 199 [59].
https://creativecommons.org/licenses/by/4.0/ (accessed on 2 February 2024).

These examples show that the use of planar optrodes in the medical field is a valuable
tool in basic research, clinical studies, and theranostics. Portable sensor devices can be
designed for point-of-care use. However, to date, applications are limited to studies on skin

https://creativecommons.org/licenses/by/4.0/
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cancer or wound healing and the monitoring of pO2 and pH changes. However, approaches
using cell-membrane-permeable molecular probes or nanoparticles which can directly be
dispersed in cells or tissues are much more versatile for molecular imaging with respect to
their utility and the addressed analytes.

3.2. Nanoprobes

The attachment of dyes to nanoparticles (NPs) can lead to an improved cell permeabil-
ity, protection from interferences, and higher brightness compared to individual molecular
probes. This paves the way for more robust intracellular applications in combination with
fluorescence microscopy. This chapter summarizes the approaches to the design, fabrica-
tion, and application of polymeric and inorganic nanoprobes for molecular sensing and
imaging. These should also exhibit a high photostability, low cytotoxicity, and highly sensi-
tive response to changes in analyte concentrations. The response should match the practical
relevant working range. These aspects are of a particularly high interest for probe design:

- the capability for trace analysis
- NIR excitation
- a broad dynamic range
- improved chemical robustness and photostability

Generally, only noncharged and lipophilic molecules can pass the cell membrane
directly by a passive pathway. Active uptake by endocytosis is possible in the case of larger
particles with a maximum size of 200–300 nm.

Nanoprobes for chemical sensing consist of dye-doped silica, polymer particles, or
those from inorganic materials such as metals, semiconductors, or lanthanide-doped
crystals. The state of the art of pH-sensitive nanoprobes was extensively reviewed [18].
Wang et al. summarized the application of functionalized silica nanoparticles to imaging
on the cellular and small animal level [60]. Fluorescence cell imaging with fluoroionophore-
functionalized NPs was recently reviewed by Du et al. They highlighted approaches for
ion-selective nanoprobes for biologically relevant ions such as Na+, K+, Ca2+, and Cl−,
based on polymer and quantum dot particles [61]. This overview on nanoprobes for
biomedical imaging cannot claim to be comprehensive due to the multitude of research
articles published in this field in the past years. Every subchapter in this section could
constitute a separate full review article. Therefore, numerous review articles on fluorescent
NPs are referenced in this section.

3.2.1. Silica Nanoparticles

Generally, functionalized silica (SiO2) nanoparticles (Si-NPs) doped with fluorescent
dyes are widely used flexible platforms for developing fluorescence imaging techniques for
living cells or the whole body of small animals. A large variety of dyes can be incorporated
inside the silica matrix either noncovalently or covalently or be attached covalently to
the particle surface. These form the basis for multiplex labeled particles, which support
ratiometric sensing in living systems. The silica matrix protects dyes from quenching
and chemical degrading and enhances the fluorescence intensities, photostability, and
biocompatibility of molecular probes. Fluorescent dyes can be encapsulated into nanosilica
matrices via a modified Stöber synthesis or by the water-in-oil microemulsion technique [62].
Multifunctional fluorescent sensors based on silica nanomaterials can be achieved with core–
shell structures, e.g., from Fe3O4@SiO2, providing nanoprobes with magnetic properties.
Such core–shell hybrid systems for metal ion sensing were reviewed by Chatterjee et al. [63].

Examples of mesoporous silica nanoparticles for chemical sensing were recently re-
viewed by Parra et al. [64]. They highlighted methods for the loading of particles with
fluorescent dyes and their surface modification by grafting methods or co-condensation
with functionalized trialkoxysilanes. Numerous applications are shown, including the
detection of cations, anions, radical oxygen species, gases, drugs, mycotoxins, and biogenic
thiols. Chen et al. studied the influence of the surface charge of mesoporous silica nanopar-
ticles on their cell uptake and intracellular distribution [65]. They localized the particles by
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measuring the local pH value of the particles in HeLa cells with confocal laser scanning
microscopy, and found that positively charged NPs were located in higher pH regions
in the cytosol and negatively charged NPs were trapped in acidic endosomes. The ratio-
metric sensor was obtained utilizing fluorescein isothiocyanate (FITC) as a pH-sensitive
dye and tetramethyl rhodamine isothiocyanate (TRITC) as a reference. A broad-range pH
sensor with a sensitive range between pH 4.5 and 8.5 was synthesized by loading FITC and
rhodamine B isothiocyanate (RITC) as a reference into hollow mesoporous silica NPs [66].
It was assumed that the broad surface curvature distribution affected the apparent pKa
values of the FITC dye. Confocal ratiometric images of loaded HeLa cells demonstrated
that broad-range nanoprobes can differentiate between local pHs in various environments,
e.g., in the medium (pH = 7.2), cytosol (pH ~ 7), and the endosome–lysosome pathway
(pH = 4.0–5.5).

Negatively charged silica nanoparticles were used as carriers for a multiple sensor for
the identification of heavy metal ions. The nanoprobe was achieved by absorbing three
different positively charged fluorophores on the surface of the particles. The fluorophores
acted as chelators for different heavy metal ions such as Hg2+, Zn2+, Cd2+, Pb2+, and
Cr3+ [67].

1,8-naphtyl-imide and a rhodamine B derivative were covalently linked to silica
mesoporous nanoparticles for the determination of biothiols. The dual-fluorophore system
generated a distinct recognition pattern which enabled the discrimination of the four
biothiols H2S, cysteine, homocysteine, and glutathione [68].

Nanohybrid probes consisting of a peroxynitrite-responsive phosphorescent cyclomet-
alated iridium(III) complex embedded in mesoporous silica nanoparticles were applied
to the visualization of peroxynitrite in vitro (in RAW 264.7 cells) and for the high-contrast
imaging of endogenous peroxynitrite in vivo (living zebrafish and mouse) [69]. A nonre-
active iridium(III) complex acted as a reference. Ratiometric photoluminescence imaging
was used to map peroxynitrite in vitro and time-resolved photoluminescence imaging for
in vivo measurements. The sensitive iridium complex bore ligands with phenylboronate
groups as a recognition site for peroxynitrite. These reacted with peroxynitrite-generating
phenolic groups, resulting in a quenching of the phosphorescence of the responsive iridium
complex due to PET (Figure 8), which has an emission maximum at 474 nm with a dynamic
range of 1–10 µM of peroxynitrite.
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3.2.2. Polymer Nanoparticles

The first polymer-based NPs for intracellular measurements were developed by the
group of Kopelman. They prepared NPs for pH detection using fluorescein as a sensitive
dye and sulforhodamine 101 as a reference entrapped in a polyacrylamide matrix [70]. They
created the term “PEBBLE” (probes encapsulated by biologically localized embedding) for
such types of nanosensors used in biological environments. Different types of polymer
matrices can be used for the fabrication of the particles. The selection depends on the
polarity of the incorporated dye and the nature of the analyte, i.e., if ions, neutral molecules,
or gases should be detected. Polymer materials such as polystyrene, polyethylene glycol, or
polyacrylamide are suitable for in vivo imaging applications, as are polyelectrolytes such as
polyacrylic acid and derivatives, or amphiphilic micelle-forming block-copolymers. Meth-
ods and materials for nanoparticle synthesis, dye loading, and surface functionalization
have been reviewed several times [4,18,71,72].

Srivastava et al. prepared a set of blue-red-green-emissive pH sensors from polystyrene
NPs, immobilizing two spectrally distinguishable pH-sensitive dyes with different pKa
values for the measurement of proton concentration in a very broad range [73]. The particle
cores were stained with a rhodamine dye responsive to acidic pH values, and a pH-inert
quinoline fluorophore as a reference, followed by the covalent attachment of a fluorescein
dye to the particle surface that responds to neutral and basic pH values with a green
fluorescence. The multicolor sensor particles can monitor acidic pH values, which makes
them suitable for lysosomal tracking. Their applicability was demonstrated by cellular
uptake studies, utilizing widefield microscopy and confocal fluorescence microscopy by
visualizing different compartments of the endosomal–lysosomal uptake pathway.

A high efficiency for cellular uptake can be achieved with polyelectrolytes as a poly-
mer matrix, particularly with cationic hydrogels. Conjugates of perylene bisimide (PBI)
and oligo-guanidine in cationic hydrogel nanoparticles were designed for sensing the
intracellular pH in live cell FLIM [74]. Mammalian cells and neurosphere cell models were
used to evaluate their performance by confocal FLIM-TCSPC. The lifetime of the encap-
sulated probes dropped from 3.86 ns at pH 4.4 to 2.86 ns at pH 8.0. in mouse embryonic
fibroblast cells. The pH response of the perylene-bisimide probes was due to PET (Figure 9).
The encapsulation of the probe into a polymer matrix is required to avoid interferences
from the microenvironment. The PBI probe was excited at 540 nm and showed emission
between 565 and 605 nm. Another cell-penetrating phosphorescent nanosensor material
was developed, in which the oxygen-sensitive dye PtTFPP and poly(9,9-dioctyl-fluorene),
which acts both as Förster resonance energy transfer donor and two-photon antennae for
the excitation of PtTFPP, were embedded in biocompatible commercially available cationic
hydrogel nanoparticles with trimethylammoniumethyl groups. The nanoprobes can be
used for the high-resolution imaging of cellular O2 in different detection modalities, includ-
ing ratiometric intensity and phosphorescence lifetime-based sensing under one-photon
and two-photon excitation conditions [75].

These nanoprobes were commercialized and subsequently used to perform the high-
resolution 2D and 3D mapping of O2 in spheroid structures by live cell fluorescence
imaging [76]. Micrometer-sized cellular spheroids are useful models of mammalian tissue
for studies of cell proliferation, differentiation, replacement therapies, and drug action.
Oxygenation was studied on different live cell imaging platforms, including widefield and
confocal phosphorescence lifetime imaging microscopy. A similar FRET system consisting
of substituted conjugated polymers polyfluorene or poly(fluorene-alt-benzothiadiazole)
acting both as an antenna and as a fluorescent reference and covalently bound PtTFPP
or PtTPTBPF was used with one- and two-photon excitation. Their cell-staining proper-
ties could be modulated with positively and negatively charged groups grafted to the
backbone. These tunable properties make the conjugated-polymer-based phosphorescent
nanoparticles a versatile tool for quantitative O2 imaging with a broad range of cell and
3D tissue models. The uptake of the particles in Balb/c mice was studied by in vivo
imaging [77]. A FRET system with a reference/antennae dye poly(9,9-diheptylfluorene-alt-
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9,9-di-p-tolyl-9H-fluorene) and PtPFPP encapsulated in negatively charged poly(methyl
methacrylate-co-methacrylic acid)-based nanoparticles was used to probe neural cells
and tissues [78]. The particles were internalized by endocytosis, which resulted in the
efficient staining of primary neurons, astrocytes, and PC12 cells and multi-cellular aggre-
gates. Local O2 levels were monitored on a time-resolved fluorescence plate reader and a
phosphorescence lifetime microscope.
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Figure 9. Synthesis and structure of molecular probes and nanosensor particles based on pH-sensitive
perylene-bisimide dyes. Insert: Turn on fluorescence mechanism by interruption of PET due to the
protonation of amino groups. Used with permission of Royal Society of Chemistry, Aigner et al.
J. Mater. Chem. B, 2014, 2, 6792–6801, permission conveyed through Copyright Clearance Center,
Inc. [74].

Hyperbranched polymers have also received much attention in the past years. With
a large number of end groups, they can be easily functionalized with various functional
groups, being an ideal platform for the construction of nanosensors with different func-
tions. Materials like branched polyamines or conjugated polymers are frequently used.
Bao et al. designed a hyperbranched polylactide structure which was functionalized with
naphthalimide fluorophores as a pH-sensitive dye and a reference dye for ratiometric pH
sensing [79]. The 1,8-naphthalimide-based dyes showed aggregation-induced emission
activity. The fluorescent polymer nanoparticles accumulated in acidic organelles of living
cells by the endocytosis process, and the quantitative analysis of intracellular pH values
was successfully demonstrated in HeLa cells by confocal fluorescence microscopy. Due to
the protonation of the naphthalimide fluorophore by decreasing the pH values from 8.1 to
5.0, the intramolecular PET process was inhibited (Figure 10). Therefore, the fluorescence
emissions of the dye at 525 nm increased when excited with a UV lamp at 365 nm.

The imaging of the real-time fluxes of K+ ions in live cells was demonstrated by
Müller et al. [80]. They prepared a deep-red fluorescent nanosensor based on a BODIPY
fluoroionophore which was sensitive for K+ and encapsulated in cationic polymer NPs,
as illustrated in Figure 11. These displayed a strong efficiency in the staining of a broad
spectrum of cell models, such as primary neurons and intestinal organoids, and showed
improved brightness and photostability compared to the free dye. The nanoprobes were
applicable to FLIM and a proof-of-concept study was carried out with cultured neural cells,
rat brain slices, and by in vivo brain imaging.
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A different approach for the imaging of intracellular K+ concentrations used micelles
with a size of 60 nm formed by Pluronic polymers, which were stabilized by the poly-
merization of acrylic monomers located in the cores of the micelles. A chromoionophore
based on a modified crown ether was integrated into the core. By the binding of K+, the
chromoionophore was deprotonated, resulting in a shift in the absorption maximum from
660 nm to 540 nm. The probe showed emission at 660 nm when excited at 540 nm. The
surface of the micelles was partially modified with primary amine groups, which were uti-
lized for the covalent attachment of a reference dye (NIR-797) for ratiometric fluorescence
imaging. The nanosensor enabled potassium sensing in the range from 20 mM to 1 M. It can
be used as dual mode sensor, because it is also applicable to photoacoustic imaging [81].

Another nanosensor for K+ fabricated from PVC particles formed by nanoemulsion
consists of potassium ionophore III and a quencher (blueberry-C6-ester-652), which is
deprotonated if K+ binds to the ionophore according to a coextraction mechanism. The
quencher shows strong absorbance at 665 nm after deprotonation and quenches the flu-
orescence of the integrated dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine.
Regrettably, imaging applications were not demonstrated in this work [82].

Calcium-selective nanospheres were prepared by the incorporation of calix[4]arene-
functionalized Bodipy (λex/em = 480/516 nm) or 9-(diethylamino)-5-[(2-octyldecyl)imino]
benzo[a]phenoxazine (λex/em = 645/673 nm) as chromoionophores in micellar structures
formed by Pluronic F127. Additionally, sodium tetrakis[3.5-bis(trifluoromethylphenyl)borate
was added to the nanospheres as an ion exchanger [83]. The two different particles showed
limits of detection for Ca2+ of 1 µM and 10 µM, respectively. These were loaded into
HeLa cells and imaged by confocal laser scanning microscopy to continuously monitor the
fluctuations in intracellular Ca2+ concentration. The nanospheres were retained inside the
cells for 24 h, which exhibited the feasibility of long-term ion monitoring.

3.2.3. Inorganic Nanomaterials

A broad variety of inorganic materials such as quantum dots, carbon dots, gold, silver,
platinum oxide, iron oxide, and zirconium oxide have been used for the development of
nanoprobes for chemical sensing [84]. Most examples in the literature aim for the imaging
of intracellular pH [18].

Quantum Dots

Spherical semiconductor nanocrystals are known as quantum dots (QDs). They have
typical core sizes between 2 and 10 nm and can be coated with biocompatible surfaces [85–87].
The quantum confinement effect determines the optical and electronical properties, because
the energy gap between the valence and conduction band increases with a decreasing size.
Commercially available QDs are frequently composed of CdSe, and can be synthesized
in different particle sizes to yield luminescence emissions over the entire visible range.
The luminescent core is passivated by the epitaxial growth of a thin surface-coating layer,
which consists of a material with a higher band gap, e.g., ZnS or CdS. This leads to a
significant increase in their quantum yields. Other merits of core–shell crystals are their
narrow emission spectra and their insensitivity toward photobleaching and luminescence
quenching by environmental interferences.

Freeman and Willner [88] reviewed strategies for the chemical modification of QDs
for sensing low-molecular-weight substrates, metal ions, anions, and gases. These include
the functionalization of QDs with ionophores and the modification of QDs with substrate-
specific ligands or receptor units. Other mechanisms that can be used for analyte detection
are analyte-stimulated aggregation or Förster resonance energy transfer (FRET). Quantum-
dot-based sensors find use in the detection of ions, organic compounds (e.g., proteins,
sugars, and volatile substances), bacteria, and viruses [89].

CdSe/ZnS quantum dot NPs were capped with mercaptopropionic acid for the sensing
of intracellular pH. The fluorescence lifetime of this functionalized particles changes from
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8.7 ns at pH < 5 to 15.4 ns at pH > 8. Their applicability was demonstrated by FLIM in
MC3T3-E1 cells [90].

Metal Nanoparticles

Marin et al. designed a ratiometric nanosensor which consisted of a thiolated an-
thracene molecule as a fluorescent PET-based pH indicator and a thiolated rhodamine.
Both dyes were immobilized on the surface of gold NPs with a 3.6 nm diameter. They
can be excited at 364 nm. The dyes had a reverse response because the fluorescence of the
anthracene-based PET probe was turned on at an acidic pH, while the fluorescence of the
rhodamine dye decreased with an increasing acidity. This is ideal for a ratiometric read out,
which was performed by the means of confocal fluorescence imaging with incubated CHO
cells [91].

A further dual-emission probe for pH determination is based on agglomerates of
bovine serum albumin (BSA) and Ce/Au nanoclusters, which were prepared from cerium(IV)
and gold(III) ions in the presence of BSA under alkaline conditions. The clusters emit a
pH-dependent fluorescence at 410 and an inert fluorescence at 650 nm, used as a reference
upon excitation at 325 nm. The ratiometric response covers a range from pH 5.5 to 9.0. The
nanoclusters were located mainly in the cytosol of loaded HeLa cells [92].

Nanocarbons

Carbon nanodots (CDs) are carbon materials forming quasi-spherical NPs with sizes
below 10 nm. They display size- and excitation-wavelength-dependent photoluminescence,
a tunable fluorescence emission, and are highly biocompatible. CDs bear carboxylic acid
moieties at their surface, which makes them easily dispersible in water and suitable for
functionalization with organic, polymeric, inorganic, or biological molecules [93]. Their
simple synthesis routes, cheap starting materials, and chemical stability are promising
for the fabrication of nanosensors [94], for theranostics and bioimaging [95,96], and for
optoelectronics [97].

Amino-coated CDs can be prepared by heating citric acid in glycerol in the presence
of 4,7,10-trioxa-1,13-tridecanediamine as a surface coating agent. FITC and RBITC as a
sensitive dye and reference, respectively, were covalently bound to the surfaces of these
particles (Figure 12). The dual-labeled CDs enabled ratiometric pH determination with a
working range from pH 5.2 to 8.2. Intracellular pH calibration was carried out in HeLa
cells by the addition of nigericin. A fluorescence imaging analysis revealed that the CDs
were distributed overall in the HeLa cells [98]. Alternatively, the photoluminescence of
CDs can be used as a reference. In this case, the pH value can be determined by measuring
the fluorescence intensity ratio of FITC, which was conjugated to the CD surface (emission
at 524 nm) to that of the CD emission at 470 nm using a single excitation mode (405 nm).
The FITC-CDs conjugates were introduced into HeLa cells via endocytosis. Ratiometric
confocal images showed that the nanoprobes were located in lysosomes, indicating a pH of
5.1 [99].

A two-photon fluorescent probe was designed by Kong et al. [100]. The surfaces of
CDs were covalently modified with 4′-(aminomethylphenyl)-2,2′:6′,2′′-terpyridine, which
acts as a receptor for protons. The nanoprobe exhibits fluorescence emission by two-
photon excitation at a wavelength of 800 nm. If the pH changes from 8.5 to 6.0, its broad
luminescence band between 440 and 650 nm increases. The sensing of pH was demonstrated
in living human lung cancer A549 cells, mouse LLC-MK2 cells, and in vivo in tumor
tissues (>100 µm depth) generated by implanting tumor cells in nude mice. Two-photon
microscopy was applied. Chen et al. reported on a dual emissive CD co-doped with sulfur
and nitrogen, showing an increasing fluorescence emission with an increasing pH. The
nanoprobes were used for the fluorescence imaging of pH in living cells [101].

Single-walled carbon nanotubes (SWCNs) are another promising type of material for
biomedical imaging, because they exhibit a fluorescent signal in the NIR spectral region,
where there is minimal interference from biological media. Iverson et al. modified SWCNs
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with a polyethylene glycol ligated copolymer [102]. They prepared NIR-fluorescent SWCN
sensors for intravenous injection into mice for the selective detection of local nitric oxide.
The nanotubes were localized within the liver, and it was possible to follow the transient
inflammation using nitric oxide as a marker and signaling molecule.
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Dopamine-sensitive nanosensors based on SWCNTs have been developed for two-
photon excitation. DNA-wrapped SWCNs are capable of the molecular recognition of
dopamine, as indicated by a twofold fluorescence increase in fluorescence (Figure 13). The
SWCNs were excited with a 1560 nm femtosecond pulsed erbium laser. The nanoprobes
were imaged in a scattering intralipid brain-mimetic tissue phantom at a 2 mm depth [103].
The same group derived dopamine nanosensors by the noncovalent conjugation of SWCNTs
to single-strand oligonucleotides. Utilizing the NIR fluorescent emission of the nanosensors
in the 1000–1300 nm window, they were able to detect dopamine transmission in ex vivo
brain slices in the presence of dopamine receptor agonists using electrical and optogenetic
stimulation methods [104].
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Figure 13. (a) Scheme of the structure of a dopamine nanosensor and the resulting fluorescence
emission enhancement of (GT)15DNA-wrapped SWNTs after binding of dopamine. Dopamine
increases the fluorescence emission intensity of using both 1PE (b) and 2PE (c). The dashed line indicates
the original signal, while solid the line indicates signal after dopamine addition. Reprinted from Del
Bonis-O’Donnell et al., Adv. Funct. Mater. 2017, 27, 1702112 [103]. Copyright 2018 John Wiley and Sons.
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Photon Upconversion Nanosensors

Upconversion luminescence (UCL) is free of autofluorescence background and, there-
fore, is particularly suited for measurements in complex biological samples and for cellular
or in vivo imaging [105]. Its NIR excitation minimizes the photodamage of tissue and
enables a high penetration depth. Photon upconversion can be achieved in inorganic crys-
talline materials doped with lanthanide ions. Thereby, higher-energy emission is generated
from low-energy excitation radiation [106]. A high upconversion efficiency can be obtained
with hexagonal nanocrystals of NaYF4 as a host matrix which are doped with Yb3+ and
Er3+. These exhibit two sharp luminescence emission bands in the green (~550 nm) and red
(~660 nm) spectral range upon 980 nm excitation. Alternatively, Yb3+- and Tm3+-doped
nanocrystals are frequently used. Both compositions are applied to sensing and bioimaging
applications because of their superior brightness compared to other host materials [107].
The basis of upconversion luminescence and its use in fluorescent sensors, particularly
in combination with energy transfer systems, the advantages of core–shell systems, and
methods for surface functionalization are discussed in numerous articles [108–110] and do
not need to be repeated here.

A multitude of pH nanosensors have been established by linking UCNPs with pH-
sensitive probes. These absorb at least one of the two UC emissions. The pH is measured
following the change in absolute luminescence intensity or ratiometric intensity changes in
dual emission modes. Resonance energy transfer or the simple reabsorption of UCL by an
inner filter effect are discussed as processes for the sensitization of the dye molecules [111].
This general probe design was used for the sensing and imaging of intracellular pH. The
covalent conjugation of the red-emitting pH indicator pHrodo Red to aminosilane-coated
UCNPs resulted in a pH-sensitive nanoprobe with an almost linear response in the range
from pH 3.0 to 7.0. The ratiometric signal was generated by an energy transfer from Yb,Er-
doped nanocrystals to the fluorogenic indicator dye or by reabsorption; the sensitizing
mechanism was not clear. A referenced read out can be achieved by measuring the ratio
of the green UCL emission (550 nm) as a reference and the sensitized red emission of
the indicator (590 nm), which rises with a decreasing pH. The probe was used for pH
imaging inside living cells and their compartments using a laser scanning luminescence
microscope equipped with a 980 nm excitation source, showing efficient internalization by
HeLa cells [112].

This system was further improved by using a polyethyleneimine (PEI) coating for
the nanoparticles and the covalent attachment of pHrodo Red, leading to a more efficient
energy transfer. The highly branched PEI is a polycationic macromolecule which is able to
facilitate cellular uptake. After internalization, the PEI-coated nanoprobes were distributed
across different cellular compartments and were applied as probes to study compartmental-
ization, compartment acidification, and the processing of endocytosed material (Figure 14).
Cytoplasmic, endosomal, and lysosomal particle populations could be distinguished. Intra-
cellular pH response was demonstrated by treatment with Nigericin, leading to a total loss
of lysosomal compartments and a significant pH change in endosomal compartments [113].

In another study, PEI-coated UCNPs were modified with the pH-sensitive anthraquinone
dyes Calcium Red and Alizarin Red S. It was demonstrated that the green emission band
of the UCNPs was quenched by a pH-dependent inner filter effect of the dyes and not
by a resonance energy transfer effect [114]. PEI-coated UCNPs conjugated to the pH
indicator pHAb were used to evaluate upconversion resonance energy transfer efficiency
and the corresponding Förster distance, which were calculated to be 25 to 30% and 2.56 nm,
respectively. Human neuroblastoma SH-SY5Y cells were equilibrated with nigericin H+/K+

ionophore, which equalized the intra- and extracellular pH. These were loaded with the
nanoprobes, which exhibited a ratiometric pH response with an apparent pKa of ~5.1. The
UCNP-pHAb composites were found to be colocalized with the lysosome marker LysoBrite.
The drug inhibitors chlorpromazine and nystatin, which interfere with clathrin-mediated
endocytosis and caveolae-mediated endocytosis, were applied to elucidate the mechanism
of nanoparticle uptake into the cell [115].
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Figure 14. Top: Scheme of a ratiometric core–shell UC nanoprobe for intracellular pH sensing. The
fluorescence of the pH-sensitive dye pHrodo Red is sensitized by the red upconversion luminescence
(LRET), the green emission acts as reference. Bottom: Ratiometric imaging of pH probes reveals
their localization in three types of microenvironment. Panel A shows localization of UCNPs by
means of its green emission (550 nm) using 980 nm excitation, panel B sensitized UC-RET emission
from pHrodo Red, panel C shows outlines of the cell in transmitted light, and panel D shows an
overlaid ratiometric image of pH nanoprobes with different ratio depending on the localization.
Different intensity ratios indicate localization of the nanoprobes in extracellular medium (ctrl), small
endosomes, large endosomes, and lysosomes. Scale bar 10 µm [113].

In a related approach, a ratiometric sensor was prepared from NaYF4:Yb3+,Tm3+ UC-
NPs and pH-sensitive BODIPY dyes embedded into a polyurethane hydrogel shell. As the
blue emission of NaYF4:Yb3+,Tm3+ overlapped with the absorption of the pH-sensitive dye,
its fluorescence could be switched on upon protonation in an acidic environment, which
led to the interruption of PET. The fluorescence of the dye was excited by a reabsorption
mechanism. The utility of the nanoprobes was assessed by monitoring the time-dependent
pH changes of a suspension of E. coli-metabolizing D-glucose [116].

Core–shell nanosensors for the detection of hypoxia were designed by Liu et al. [117].
UCNPs served as the core and hollow mesoporous silica as the shell. The phosphorescent
oxygen indicator [Ru(dpp)3]2+Cl2 was immobilized in the shell, whereas the core provided
the excitation light for the ruthenium complex by UCL under 980 nm exposure (Figure 15).
The fluorescence of the nanosensors increased under hypoxic conditions. In vivo exper-
iments were carried out with living U87MG cells and zebrafish embryos. In a related
approach, an iridium(III) complex was covalently linked to a mesoporous silica-coated
core–shell UCNP [118]. The lifetime of the oxygen-sensitive long-lived phosphorescence of
the complex was reduced from 4.0 to 0.8 µs when the environment changed from hypoxic
to normoxic conditions. This can be visualized via phosphorescence lifetime imaging
microscopy. Oxygen levels were monitored in HeLa cells.
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Figure 15. Normalized absorption and emission spectra showing the spectral overlap of the emission
of NaYF4:Yb/Tm nanoparticles with the absorption of the oxygen-sensitive probe [Ru(dpp)3]2+Cl2.
Black line: emission spectrum of the nanoparticles under photoexcitation at 980 nm. Red and blue
line: absorbance and emission spectrum of [Ru(dpp)3]2+Cl2, respectively [117]. Reprinted with
permission from Liu et al., J. Amer. Chem. Soc. 2015, Copyright 2015 American Chemical Society.

Oxygen nanosensors were alternatively prepared by a coating of NaYF4:Yb3+,Tm3+

with PtTFPP in a polystyrene matrix [119]. The excitation of PtTFPP with a 980 nm laser
and upconversion energy transfer could be achieved with a high efficiency. The sensor was
implanted under the skin of a chicken, and it was demonstrated that the photoluminescence
intensity was amplified more than 12 times by employing the 980 nm laser instead of 410 nm
laser light. It was concluded that this paves the way for the development of implantable
oxygen nanosensor platforms.

Yolk–shell-structured upconversion nanoparticles have been developed for the deter-
mination of cysteine/homocysteine [120]. UCNPs were used as the core and mesoporous
silica was used to accommodate a colorimetric chemodosimeter for cysteine/ homocys-
teine in the hollow cavities. 8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile was used
as a colorimetric dye which could turn on and off the green UCL by resonance energy
transfer, because it showed a broad absorption band with two peaks at 544 and 572 nm
after reacting with cysteine. Cellular experiments carried out with laser-scanning UCL
demonstrated that the dye-loaded UCNPs could serve as an intracellular nanoprobe to
detect cysteine/homocysteine.

UCNPs modified with a pyrogallic acid–titanium(IV) complex were applied for the
capturing and real-time quantification of fluoride anions. Due to the strong interaction
between Ti4+ and F−, which decomposed the complex, the resonance energy transfer
between the particle and complex was weakened and UCL recovered. Both in vitro and
in vivo imaging experiments with nude mice demonstrated a highly sensitive UCL response
to F− and therapeutic efficiency [121]. A merocyanine dye adsorbed into a mesoporous
SiO2 shell of NaYF4:Yb, Er,Tm nanocrystals was used to synthesize a ratiometric UCL
probe for the selective detection of hydrogen sulfide anions (HS−) in living HeLa cells.
The sensing mechanism is illustrated in Figure 16. It was based on the inhibition of the
energy transfer from the UCNP core to the merocyanine units, leading to an increase
in the green UCL emission after reacting with HS−. The red UCL emission served as a
reference [122].
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Figure 16. (a) General design and synthetic route of silica coated upconversion nanoprobe functional-
ized with a merocyanaine dye (MC) UCNPs@SiO2-MC. (b) Sensing mechanism for HS− detection
and energy transfer (LRET) process of UCNPs@SiO2-MC [122]. Reprinted with permission from Liu
et al., ACS Appl. Mater. Interfaces 2014, 6, 14, 11013. Copyright 2014 American Chemical Society.

A ratiometric UCL sensor for the detection of Hg2+ in an aqueous solution with a high
selectivity, sensitivity, and a limit of detection of 1.95 ppb was prepared by the binding
of a ruthenium bipyridine complex to the surface of UCNPs. Adducts of Hg2+ with the
ruthenium complex underwent a change in absorption maximum, which inhibited the
energy transfer from the UCNP to the complex. Hence, the green UCL increased in the
presence of Hg2+.The nanoprobe was capable of monitoring changes in the distribution of
Hg2+ in living cells by confocal fluorescence microscopy [123].

Rhodamine B-labeled phospholipids were bound on the surface of NaYF4:Yb,Er UC-
NPS. This led to RET from the UCF emission at 540 nm to rhodamine B. The nanoprobes
were applied to monitor the activity of the enzyme phospholipase D (PLD) in living MCF-
10A cells. The enzyme hydrolyzed the phosphodiester bond of the phospholipid and
cleaved rhodamine B apart from the UCNP surface. This led to an interruption of RET.
Using the second UCL emission at 655 nm, which was not affected, as an internal standard,
the nanoprobe could be used for the ratiometric detection of PLD [124].

The nanosensors summarized in this chapter were mostly evaluated in live cells.
Probes capable of NIR excitation and emission are particularly promising for the in vivo
imaging of small animals. However, due to the limited transmission of UV and visible light
through biological tissue, the use of fluorescence imaging is rather confined compared to
other molecular imaging techniques. On the other hand, these do not provide a chemical
sensing function. Thus, whenever information on the temporal and spatial distribution of
certain analytes is required, these types of nanoprobes are indispensable aids. To date, only
polymeric NPs for oxygen determination have been commercialized. All other approaches
are in the development stage. It can hardly be foreseen which materials and sensor designs
will find acceptance by researchers in the biomedical field and for broader applications.
Particularly, the utilization of UCNP sensors requires non-standard instrumentation with
NIR excitation and their luminescence intensities are weak compared to other materials.
The general characteristics of the nanomaterials used for chemical sensing are summarized
in Table 1.
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Table 1. Characteristics of fluorescent nanoprobes for chemical sensing.

Material Composition Luminescence Properties Sensing Mechanism

Polymer NPs PS, PMMA, PAM,
cationic hydrogel - Fluorescent probes incorporated or

attached to surface

Silica NPs SiO2 - Fluorescent probes incorporated or
attached to surface

Quantum dots CdSe/CdS
CdSe/ZnS

Intrinsic size-dependent fluorescence,
high photostability

Surface modification with
fluorescent probes

Nanocarbon C Intrinsic tunable fluorescence, size- and
excitation-wavelength-dependent

Surface modification with
fluorescent probes

UCNPs NaYF4:Yb3+,Er3+

NaYF4:Yb3+,Tm3+ Sensitized emission of Yb3+ or Er3+ Surface modification with fluorescent
probes, energy transfer

4. Environmental Monitoring and Marine Research

Planar optrodes are useful tools in marine research, particularly in marine microbi-
ology. The acidification of sea water due to the global increase in atmospheric CO2 is
a major problem for calcifying organisms such as shellfish and corals at the sea bottom.
Seasonal changes in oxygen concentration and pH are further objects of systematic scientific
studies. Oxygen penetration into sediments and its dynamics or oxygen consumption due
to the degradation of organic matter can be also monitored with fluorescence imaging
methods [1].

4.1. Planar Optrodes

Imaging methods are mainly applied at sediment–water interfaces. Changes in the
chemical composition in the depth of sediments are considered as relatively steady. How-
ever, the activities of benthic organisms can generate heterogeneities and complex 3D
transport and reaction patterns over millimeter to meter scales in surficial sediments. The
state of the art in 2D imaging techniques using planar optrodes to investigate biogeo-
chemical processes in heterogeneous sediments and soils was reviewed by Li et al. [125].
Scholz et al. reviewed different methods for mapping chemical gradients around seagrass
roots, including planar-optrode-based techniques for O2 and pH imaging [126]. Optrodes
together with other techniques for sensing pCO2 in seawater were summarized 2016 by
Clarke et al. [127].

4.1.1. Oxygen Sensors

Studying the impact of temperature and irradiance on benthic microalgal communities
is one specific aspect of major interest. For this purpose, the effects of temperature and
light on oxygen production and photosynthesis were studied by the 2D imaging of O2 and
recording chlorophyll A fluorescence [128]. It was shown that irradiance increased pore-
water O2 concentration, sediment net O2 production, and gross photosynthesis. Increasing
temperatures stimulated the consumption of O2 more than photosynthesis. Thus, the
community becomes more heterotrophic at elevated temperatures. The authors concluded
that the imaging approach demonstrates a great potential for studying environmental effects
on photosynthetic activity and O2 turnover in complex phototrophic benthic communities.
The optrode was prepared from an iridium(III) complex (Ir(CS)2acac) with polystyrene as a
polymer binder. The sensors were integrated in a flume with two fiber optic faceplates as
windows containing sediments and a read out with a CCD camera.

PtTFPP combined with a coumarin dye Macrolex® fluorescent yellow 10GN as an
antenna was dissolved in a polystyrene matrix, and the resulting oxygen sensor membrane
was coated onto glass inserts. These were fitted into the front window of an incubation box
to study the spatiotemporal dynamics of the reaction of manure solids with soil. Phosphorus
release, oxygen consumption, and greenhouse gas emissions were recorded after the
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addition of organic fertilizers to soil [129]. The experimental set up of the incubation box is
shown in Figure 17. Planar optrodes of the same composition were utilized to map the O2
micro-distribution around Vallisneria spiralis roots. The availability of O2 in the sediment–
root interface is critical for the survival of macrophytes. Long-term imaging results were
gathered during a 36-day period [130]. The O2 dynamics under different environmental
conditions were also mapped in the rhizosphere of L. hexandra. The results obtained with
planar optrodes were compared to DGT-LA-ICP-MS (laser ablation inductively coupled
plasma mass spectrometry) to investigate the mobilization mechanisms of trace metals
triggered by radial oxygen loss and rhizosphere acidification. It was demonstrated that,
with an increasing light intensity, air humidity, or atmospheric CO2 concentrations, the
O2 concentrations and oxidized areas in the rhizosphere were significantly reduced [131].
Li et al. investigated the O2 distribution and dynamics in the rhizosphere of Phragmites
australis, and their impact on nutrient removal in sediments [132].

Chemosensors 2024, 12, x FOR PEER REVIEW 25 of 48 
 

 

4.1.1. Oxygen Sensors 

Studying the impact of temperature and irradiance on benthic microalgal communi-

ties is one specific aspect of major interest. For this purpose, the effects of temperature and 

light on oxygen production and photosynthesis were studied by the 2D imaging of O2 and 

recording chlorophyll A fluorescence [128]. It was shown that irradiance increased pore-

water O2 concentration, sediment net O2 production, and gross photosynthesis. Increasing 

temperatures stimulated the consumption of O2 more than photosynthesis. Thus, the com-

munity becomes more heterotrophic at elevated temperatures. The authors concluded that 

the imaging approach demonstrates a great potential for studying environmental effects 

on photosynthetic activity and O2 turnover in complex phototrophic benthic communities. 

The optrode was prepared from an iridium(III) complex (Ir(CS)2acac) with polystyrene as 

a polymer binder. The sensors were integrated in a flume with two fiber optic faceplates 

as windows containing sediments and a read out with a CCD camera. 

PtTFPP combined with a coumarin dye Macrolex® fluorescent yellow 10GN as an 

antenna was dissolved in a polystyrene matrix, and the resulting oxygen sensor mem-

brane was coated onto glass inserts. These were fitted into the front window of an incuba-

tion box to study the spatiotemporal dynamics of the reaction of manure solids with soil. 

Phosphorus release, oxygen consumption, and greenhouse gas emissions were recorded 

after the addition of organic fertilizers to soil [129]. The experimental set up of the incu-

bation box is shown in Figure 17. Planar optrodes of the same composition were utilized 

to map the O2 micro-distribution around Vallisneria spiralis roots. The availability of O2 in 

the sediment–root interface is critical for the survival of macrophytes. Long-term imaging 

results were gathered during a 36-day period [130]. The O2 dynamics under different en-

vironmental conditions were also mapped in the rhizosphere of L. hexandra. The results 

obtained with planar optrodes were compared to DGT-LA-ICP-MS (laser ablation induc-

tively coupled plasma mass spectrometry) to investigate the mobilization mechanisms of 

trace metals triggered by radial oxygen loss and rhizosphere acidification. It was demon-

strated that, with an increasing light intensity, air humidity, or atmospheric CO2 concen-

trations, the O2 concentrations and oxidized areas in the rhizosphere were significantly 

reduced [131]. Li et al. investigated the O2 distribution and dynamics in the rhizosphere 

of Phragmites australis, and their impact on nutrient removal in sediments [132]. 

 

Figure 17. Experimental set up of the soil incubation box. Excitation filter: 470 nm short-pass filter; 

emission filter: 530 nm long-pass filter. (a) Filter membrane, ~10 µm thick, (b) DGT gel, ~100 µm 

thick, and (c) planar oxygen optode, ~30 µm thick. Copyright © 2016 Wibke et al. [129]. Published 

by Elsevier Ltd. 

Figure 17. Experimental set up of the soil incubation box. Excitation filter: 470 nm short-pass filter;
emission filter: 530 nm long-pass filter. (a) Filter membrane, ~10 µm thick, (b) DGT gel, ~100 µm
thick, and (c) planar oxygen optode, ~30 µm thick. Copyright © 2016 Wibke et al. [129]. Published by
Elsevier Ltd.

The results from chemical imaging were compared with nitrogen porewater mea-
surements to assess the extent of plant-induced changes in soil redox dynamics. These
determine the spatio-temporal patterns in porewater O2 and pH, which influence nitrogen
biogeochemical cycling during dosed applications of nitrogen-rich artificial wastewater.
Imaging using planar optrodes revealed O2 fluxes to anoxic sediments via radial oxygen
loss from Typha latifolia roots [133].

Commercial oxygen optrodes were used to study the spatial organization of bacterial
populations. This is of importance, because the activity of microbes in soil is spatially
inhomogenous, which influences biogeochemical processes. The sensors were placed in
pore networks in soil and at a peripheral port. The generation of oxygen gradients was
verified by the means of fluorescence imaging using the VisiSens system [134].

4.1.2. Sensors for pH

A sensor system for 2D pH imaging in alkaline sediments and water was presented
by Han et al. They prepared a dual luminophore sensor with the pH sensitive dye
chlorophenyliminopropenyl aniline, which can be excited at 550 nm and emits red light
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with a maximum of 590 nm, and Macrolex® fluorescence yellow 10 GN (emission at 502 nm)
as a reference, embedded in PVC [135]. Referenced imaging was performed with an RGB
camera. The dynamic range of the sensor was between pH 7.5 and 10.5. Images were
recorded in natural freshwater sediments and water associated with the photosynthesis of
Vallisneria spiral species (Figure 18).

Chemosensors 2024, 12, x FOR PEER REVIEW 26 of 48 
 

 

The results from chemical imaging were compared with nitrogen porewater meas-

urements to assess the extent of plant-induced changes in soil redox dynamics. These de-

termine the spatio-temporal patterns in porewater O2 and pH, which influence nitrogen 

biogeochemical cycling during dosed applications of nitrogen-rich artificial wastewater. 

Imaging using planar optrodes revealed O2 fluxes to anoxic sediments via radial oxygen 

loss from Typha latifolia roots [133].  

Commercial oxygen optrodes were used to study the spatial organization of bacterial 

populations. This is of importance, because the activity of microbes in soil is spatially in-

homogenous, which influences biogeochemical processes. The sensors were placed in 

pore networks in soil and at a peripheral port. The generation of oxygen gradients was 

verified by the means of fluorescence imaging using the VisiSens system [134].  

4.1.2. Sensors for pH  

A sensor system for 2D pH imaging in alkaline sediments and water was presented 

by Han et al. They prepared a dual luminophore sensor with the pH sensitive dye chloro-

phenyliminopropenyl aniline, which can be excited at 550 nm and emits red light with a 

maximum of 590 nm, and Macrolex® fluorescence yellow 10 GN (emission at 502 nm) as a 

reference, embedded in PVC [135]. Referenced imaging was performed with an RGB cam-

era. The dynamic range of the sensor was between pH 7.5 and 10.5. Images were recorded 

in natural freshwater sediments and water associated with the photosynthesis of Vallis-

neria spiral species (Figure 18). 

 

Figure 18. pH distribution obtained by RGB imaging of a planar pH-sensitive optrode patterns in 

the rhizopshere of Vallisneria spiralsv. (A) Photo of roots of Vallisneria spiralsv through the side of a 

rhizobox. The three white dashed lines (a,b,c) represent the positions of the extracted profiles, pre-

sented in (C,D). (B) Two-dimensional pH distribution around the roots fromVallisneria spiralsv taken 

after 4 h in the light. The images size is 20 mm × 56 mm. (C) Two profiles (a,b) of pH distribution 

across the sediment and water interface represented by the horizontal dashed line (D) pH distribu-

tion across two single roots from one profile (c), with the rhizosphere zones indicated as shade areas 

[135]. Copyright © 2018, Springer Nature, Han et al., Sci. Rep. 2016, 6, 26417. https://creativecom-

mons.org/licenses/by/4.0/ (accessed on 2 February 2024). 

Chemical imaging techniques can be also used to study dynamic pH and CO2 distri-

butions in the area of plant roots. These are the main drivers of processes in the rhizo-

sphere. Planar optrodes were used in different set ups to monitor plant-root–soil interac-

tions. Continuous and real-time measurements of the pH and CO2 dynamics around roots 

Figure 18. pH distribution obtained by RGB imaging of a planar pH-sensitive optrode patterns in
the rhizopshere of Vallisneria spiralsv. (A) Photo of roots of Vallisneria spiralsv through the side of
a rhizobox. The three white dashed lines (a,b,c) represent the positions of the extracted profiles,
presented in (C,D). (B) Two-dimensional pH distribution around the roots from Vallisneria spiralsv
taken after 4 h in the light. The images size is 20 mm × 56 mm. (C) Two profiles (a,b) of pH
distribution across the sediment and water interface represented by the horizontal dashed line (D)
pH distribution across two single roots from one profile (c), with the rhizosphere zones indicated
as shade areas [135]. Copyright © 2018, Springer Nature, Han et al., Sci. Rep. 2016, 6, 26417.
https://creativecommons.org/licenses/by/4.0/ (accessed on 2 February 2024).

Chemical imaging techniques can be also used to study dynamic pH and CO2 distribu-
tions in the area of plant roots. These are the main drivers of processes in the rhizosphere.
Planar optrodes were used in different set ups to monitor plant-root–soil interactions.
Continuous and real-time measurements of the pH and CO2 dynamics around roots and
nodules of different plants were carried out. Again, the commercially available VisiSens
system was used (see above) in combination with commercially available planar optodes
for pH and CO2 [136].

4.1.3. Multiple Sensor Systems

A multilayer planar optrode system for oxygen and pH imaging was built by embed-
ding Platinum(II)octaethylporphyrin as an oxygen indicator and quantum dots as a refer-
ence in polystyrene, with a second layer consisting of the pH indicator 5-hexadecanoylamino-
fluorescein in a Hydromed D4 matrix. An optical isolation layer containing carbon black in
Hydromed D4 was coated on the top. All indicator and reference dyes could be excited by
a 405 nm LED, while their emissions matched the red, green, and blue channels of a 3CCD
camera. The set up was used to analyze the pH and oxygen dynamics of the seawater
under the influence of rain drops [137].

https://creativecommons.org/licenses/by/4.0/
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The spatial O2 and CO2 distribution around the roots of Lobelia under light and dark
conditions was studied by integrating the commercially available VisiSens sensor foils for
both parameters inside the walls of a rhizobox [138]. Koop-Jakobsen et al. used the same
system for taking high-resolution 2D-images of the O2, pH, and CO2 distributions around
roots of the intertidal salt-marsh plant Spartina anglica during alternating light–dark cycles
by ratiometric fluorescence imaging. They demonstrated that the roots affected O2, pH, and
CO2 dynamics, resulting in distinct gradients of these parameters in the rhizosphere [139].
The sensor foils were placed in direct contact with the roots and sediment.

The most important chemical parameters associated with emissions from soil, NH3,
O2, and pH microenvironments were analyzed with a triple optrode approach. A newly
developed optrode for NH3 with a limit of detection of 2.11 ppm and a large dynamic
range up was fabricated by the immobilization of the fluorescent pH indicator Oxazine
170 perchlorate and an inert reference dye (Macrolex yellow) in a polyurethane hydrogel
(Figure 19) [140]. The NH3 optrode can be excited with a 470 nm LED, and fluorescence
images were obtained using a 530 nm longpass filter. All three optrodes were integrated
into an experimental set up within a thin soil layer which was sandwiched between two
glass plates equipped with optrodes (Figure 20). Two NH3 optrodes were placed on one
side and the O2 and pH optrodes on the other side, with a read out with ratiometric
fluorescence imaging.
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Figure 19. (A) Composition of a planar NH3 optrode and the chemical reaction with ammonia that
leads to a changed emission of the indicator dye Oxazoline 170 perchlorate due to deprotonation.
Makrolex yellow is added as reference. (B) Ratiometric calibration curve of the NH3 and a close up of
the linear range. Copyright © 2020 Merl et al. [140]. Published by Elsevier Ltd.

A new dual sensor system for the simultaneous imaging of O2 and pH with low
cross-talk was developed by Moßhammer et al. They combined an O2-sensitive europium
complex [30] with a near-infrared emitting pH indicator based on BODIPY and an inert
reference coumarin dye for ratiometric imaging. The sensor foil also contained diamant
powder as a signal enhancer. The sensors were calibrated in transparent flow chambers
and tested in photosynthetic microbial mats [141].

The simultaneous sensing of pH and O2 was used for the evaluation of bioactive
cement [142]. It contains bacteria which are capable of inducing CaCO3 precipitation for the
self-healing of cracks in concrete structures before leaking occurs. The pH is an important
parameter determining the biocompatibility of concretes and cements. A ratiometric imag-
ing system using pH-sensitive optrodes was developed to characterize the pH of porewater
within the cracks of submerged hydrated oil and gas well cement. Again, the ratiometric
optode for oxygen sensing consisted of PtTFPP and Macrolex fluorescence yellow as a
reference dye, dispersed in polystyrene. The pH-sensitive optrode was composed of an
aza-BODIPY dye with NIR emission and a high pKa suited for measurements in highly al-
kaline concrete, and a green-emitting coumarin derivative as a reference dye in Hydromed
D4 polymer. The authors showed that the pH was significantly reduced from pH > 11 to
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below 10 with an increasing fly ash content as well as hydration time. The bacterial activity
was measured using the oxygen optrodes.
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Figure 20. Experimental set up for combined NH3, pH, and O2 visualization. Two transparent
glass plates form a soil sandwich. Optrodes (one O2, one pH, and two NH3) were attached to the
insides as shown. Soil is filled in between the slides and the optrodes leave a headspace. Two
single-lens reflex cameras as well as a blue LED and a UV LED are positioned at the respective sides
of the soil sandwich. This enables simultaneous imaging of the three parameters. Copyright © 2020
Merl et al. [140]. Published by Elsevier Ltd.

Similar to medical applications, the use of planar optrodes is restricted to very specific
problems and conditions, e.g., for measurements in sediments or in the rhizosphere. Imag-
ing systems have been designed that can be used on-site in marine environments or under
laboratory conditions integrated in small basins or incubation boxes.

4.2. Micro- and Nanoparticles

Koren et al. developed an approach to overcome the typical limitations of op-
trodes [143]. They studied the O2 dynamics on the surface of living corals by sensor
nanoparticles that were spray-painted on the corals by a conventional airbrush. The
nanosensors consisted of PtTFPP in a styrene-maleic anhydride copolymer. The dye
Macrolex® fluorescence yellow 10GN was integrated as a reference. Imaging was per-
formed with a ratiometric RGB camera set up, using the red channel for oxygen sensing
and the green channel as a reference. Ratiometric images at different oxygen levels and the
resulting calibration plot are displayed in Figure 21. The same type of particles was applied
to visualize the O2 dynamics around the roots of seagrasses. In the experimental set up, the
below-ground tissue of the seagrass was embedded in an artificial sediment containing the
O2-sensitive nanoparticles. Images were recorded with a digital SLR camera and a 405 nm
multichip LED, which was mounted perpendicular to the transparent chamber wall [144].

The spatio-temporal distribution and dynamics of O2 at biologically active surfaces
with complex surface topography were quantified with oxygen-sensitive magnetic mi-
croparticles with a diameter of around 100 µm. These were prepared from a styrene-maleic
acid anhydride copolymer containing the NIR-emitting luminophore platinum (II) meso-
tetra(4-fluorophenyl)-tetrabenzoporphyrin [145]. The particles were magnetized by the
addition of lipophilic magnetite nanoparticles and titanium dioxide nanoparticles. The par-
ticles were distributed across the surface tissue of the scleractinian coral Caulastrea furcata
and fixed with a magnet. Their luminescence response was recorded with a fluorescence
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lifetime imaging system. Thus, the lateral surface heterogeneity of the O2 microenviron-
ment across coral polyps exposed to flow could be mapped. Studying the steady-state
O2 concentrations under constant light and O2 dynamics during experimental light–dark
shifts enabled the identification of zones of different photosynthetic activities.

Chemosensors 2024, 12, x FOR PEER REVIEW 29 of 48 
 

 

channel as a reference. Ratiometric images at different oxygen levels and the resulting 

calibration plot are displayed in Figure 21. The same type of particles was applied to vis-

ualize the O2 dynamics around the roots of seagrasses. In the experimental set up, the 

below-ground tissue of the seagrass was embedded in an artificial sediment containing 

the O2-sensitive nanoparticles. Images were recorded with a digital SLR camera and a 405 

nm multichip LED, which was mounted perpendicular to the transparent chamber wall 

[144]. 

The spatio-temporal distribution and dynamics of O2 at biologically active surfaces 

with complex surface topography were quantified with oxygen-sensitive magnetic micro-

particles with a diameter of around 100 µm. These were prepared from a styrene-maleic 

acid anhydride copolymer containing the NIR-emitting luminophore platinum (II) meso-

tetra(4-fluorophenyl)-tetrabenzoporphyrin [145]. The particles were magnetized by the 

addition of lipophilic magnetite nanoparticles and titanium dioxide nanoparticles. The 

particles were distributed across the surface tissue of the scleractinian coral Caulastrea 

furcata and fixed with a magnet. Their luminescence response was recorded with a fluo-

rescence lifetime imaging system. Thus, the lateral surface heterogeneity of the O2 micro-

environment across coral polyps exposed to flow could be mapped. Studying the steady-

state O2 concentrations under constant light and O2 dynamics during experimental light–

dark shifts enabled the identification of zones of different photosynthetic activities. 

 

Figure 21. (A) False color images showing the ratio between the red and green channel from RGB 

images of a spray-painted coral skeleton at various defined O2 levels in the surrounding seawater. 

(B) Calibration curve calculated by fitting an exponential decay function to the red-to-green ratio 

values vs. O2 concentration data. Copyright © 2016 Koren et al. [143]. Published by Elsevier Ltd. 

5. Aerodynamics 

Quantitative measurements of surface pressure and temperature are essential tforo 

studying the aerodynamics and heat transfer processes of vehicles, airplanes, or turbines 

and rotors in wind tunnel tests. Pressure data are required to determine the distribution 

of aerodynamic loads for the design of flight vehicles, while temperature data are used to 

estimate the heat transfer on the surface. Pressure and temperature measurements pro-

vide important information on flow phenomena such as shock, flow separation, and tur-

bulent–laminar boundary-layer transitions. Accurate pressure and temperature data play 

a key role in the validation and verification of computational fluid dynamics (CFD) codes. 

Fluorescent sensors for measuring surface pressure and temperature follow luminescence 

quenching mechanisms. 

Pressure-sensitive paints (PSP) and temperature-sensitive paints (TSP) offer, com-

pared with conventional techniques, an unsurpassed capability for non-contact, full-field 

measurements of surface pressure and temperature on complex aerodynamic models by 

imaging methods. They provide a high spatial resolution and lower costs, and are, there-

fore, a powerful tool for experimental aerodynamicists. The luminescent probes (often 

called “active dyes”) in PSPs or TSPs are incorporated into a suitable polymer binder and 

coated on model surfaces. Fluorescent probes and polymer binder are dissolved in a 

Figure 21. (A) False color images showing the ratio between the red and green channel from RGB
images of a spray-painted coral skeleton at various defined O2 levels in the surrounding seawater.
(B) Calibration curve calculated by fitting an exponential decay function to the red-to-green ratio
values vs. O2 concentration data. Copyright © 2016 Koren et al. [143]. Published by Elsevier Ltd.

5. Aerodynamics

Quantitative measurements of surface pressure and temperature are essential tforo
studying the aerodynamics and heat transfer processes of vehicles, airplanes, or turbines
and rotors in wind tunnel tests. Pressure data are required to determine the distribution
of aerodynamic loads for the design of flight vehicles, while temperature data are used to
estimate the heat transfer on the surface. Pressure and temperature measurements provide
important information on flow phenomena such as shock, flow separation, and turbulent–
laminar boundary-layer transitions. Accurate pressure and temperature data play a key
role in the validation and verification of computational fluid dynamics (CFD) codes. Flu-
orescent sensors for measuring surface pressure and temperature follow luminescence
quenching mechanisms.

Pressure-sensitive paints (PSP) and temperature-sensitive paints (TSP) offer, compared
with conventional techniques, an unsurpassed capability for non-contact, full-field measure-
ments of surface pressure and temperature on complex aerodynamic models by imaging
methods. They provide a high spatial resolution and lower costs, and are, therefore, a
powerful tool for experimental aerodynamicists. The luminescent probes (often called
“active dyes”) in PSPs or TSPs are incorporated into a suitable polymer binder and coated
on model surfaces. Fluorescent probes and polymer binder are dissolved in a solvent and
the resulting paint is sprayed or brushed on the model surface. After the evaporation of
the solvent, a solid polymer coating hardens on the surface [146].

5.1. Pressure-Sensitive Paints

A typical PSP consists of luminescent molecules which are quenched by oxygen and
are embedded in an oxygen-permeable polymer coating. For the selection of the polymer
binder for the formation of the PSP, physical and mechanical properties such as oxygen
permeability, temperature effects, humidity effects, adhesion to the substrate, mechani-
cal stability, photodegradation, and glass transition temperature have to be considered.
Porphyrins, ruthenium complexes, and organic molecules like pyrene derivatives are
commonly used as active dyes for pressure sensors.

Since 2000, PtTFPP has been the most widely used luminescent dye for the prepa-
ration of PSP for various measurement methods [147]. PtTFPP as the luminophore af-
fords a high frequency response and pressure sensitivity, but has a long lifetime [148].
Kameda et al. [149] developed a PSP to measure the time-varying surface pressure in aero-
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dynamic testing. They applied PtTFPP adsorbed on silica nanoparticles in a dispersion
which led to a porous sensor layer with a good pressure sensitivity, photostability, and
response time less than 0.1 ms, although it exhibited substantial temperature sensitivity
(ca. 1.5%/◦C).

PtTFPP was also adopted as a pressure-sensitive luminophore for the development of
a pressure-sensitive channel chip for micro gas flows [150]. Micro channels were fabricated
by a poly(dimethyl siloxane) (PDMS) micro-molding technique. Based on polytetraflu-
orethylene (PTFE) particles and PtTFPP, a super-hydrophobic porous pressure-sensitive
paint (hydrophobic PSP) was developed [151]. PtTFPP in a silicate sol–gel polymer [152]
was used for the investigation of a Scramjet Inlet-Isolator.

Obata et al. [153,154] synthesized three poly(methyl methacrylates) substituted with
CF3 groups and studied their oxygen permeability for application to PSPs. They found that
PSPs composed of a fluorinated polymer and PtTFPP had similar characteristics to FIB as a
polymer binder (FIB = poly(1,1,1,3,3,3-hexafluoroisopropyl-co-2,2,3,3,4,4,4-heptafluorobutyl
methacrylate)). Huang et al. applied PtTFPP in PDMS for the quantitative visualization of
asymmetric gas flow in constricted microchannels [155]. Some research groups developed
polymerizable PSPs, in which Pt-porphyrin was covalently bound to different types of
polymers [156–158]. Usually, the porphyrin is linked to a monomer, e.g., a methacrylate,
and then copolymerized with a second monomer.

Polymer-ceramic (PC)-PSPs in combination with PtTFPP have been intensively studied
in the last 10 years. PC-PSP is a sprayable form of an unsteady (time-resolved) PSP that
can be applied on an aerodynamic model before testing. It consists of a polymer/ceramic
basecoat (SiO2, TiO2), which is first applied on the model as a thin layer and subsequently
used to host the luminophore molecules [159–170]. Since PC-PSPs usually consist of TiO2
particles which show photocatalytic activity, the luminescent intensity will decrease over
time. Matsuda et al. [171] fabricated a PSP in which polystyrene particles with a diameter
of 1 µm replaced TiO2 particles. They investigated the pressure and temperature sensitivity,
response time, and photostability of the paint. A novel formulation of sprayable fast-
responding PSPs was developed by Peng et al. They used mesoporous, hollow SiO2
particles as hosts for PtTFPP. These were formed from nano-scale particles by Van der
Waals forces and chemical bonds, providing a favorable environment for luminophore
deposition. The resulting highly porous structures enable fast oxygen diffusion within the
PSP binder, which leads to a response time of 50 µs [165,172]. The enhancement of the
luminescent output of PSPs was achieved by adding silver nanostructures into a standard
formulation by taking advantage of the metal-enhanced fluorescent effect [173,174].

Furthermore, PtTFPP, in combination with the highly O2-permeable polymer poly[1-
(trimethylsilyl)-1-propyne] (PTMSP), is an excellent luminescent sensor for measurements
under cryogenic conditions, which enable testing models at near-full-scale Reynolds num-
bers. With such paints, pressure distributions due to complex shock structures can be
visualized near the leading edge region (Figure 22) [175–178]. Ruthenium-based PSPs have
a shorter lifetime compared to PtTFPP-based PSPs, and both are suitable for intensity- and
lifetime-based measurements using digital cameras. This is why tris-(4,7′- diphenyl-1,10-
phenanthroline) ruthenium (II) is often applied in a porous binder like anodised aluminium
(AA) [179–181], ceramic polymers [182–185], or other highly porous substrates such as
thin-layer chromatography plates [186] to achieve fast-response PSPs required, e.g., for the
measurement of transient shock phenomena.

In recent years, pyrene derivatives such as pyrene sulfonic acid have also been used
for fast-response measurements on anodized aluminium. They were used as luminophores
to describe the temperature-cancellation methods of pressure-sensitive paints [187]. Sakaue
et al. [188] compared the response time scales of two groups of AA-PSPs, one with or-
ganic luminophores (all of them are pyrene acids) and the other one including metal
complex luminophores. Yomo et al. investigated different formulations of pyrene-based
AA pressure-sensitive paints for supersonic phenomena [189].
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An ultrafast PSP for shock compression spectroscopy was developed by Banishev et al. [190].
This consists of rhodamine 6G (R6G) in PMMA and was studied during nanosecond GPa
shock compressions. The response times of the sensor were in the range of 10 ns. The effect
of pressure on the luminescence of a series of trifluoromethyl substituted europium(III)
complexes was also studied [191]. The complexes included pyridine derivatives as auxiliary
ligands and showed the highest sensitivity to pressure when they were incorporated
into a silicone polymer matrix containing toluene. The sensitivity was around 50%/bar
at atmospheric pressure, which is comparable to the sensitivity of a PtOEP sensor in a
similar silicone polymer. For pressure sensing in liquids, a pressure sensor based on
highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red
molecules was proposed [192].

A self-referenced PSP was prepared from siloxane precursors by the copolymerization
of silane-functionalized carbon dots (acting as a reference) with a silane-modified ruthenium
complex as the sensitive probe forming a dual-luminophore paint [193].

It is evident that PtTFPP is the most frequently used dye for PSP formulations because
of its superior photochemical stability, followed by PtOEP and ruthenium complexes. All
newly developed and tested PSP formulations are summarized in Table 2.

Table 2. Summary of newly developed and tested oxygen-sensitive probes in PSP applications and
their spectroscopic properties.

Dye λex [nm] λem [nm] Binding Matrix Application Refs.

Pyrene sulfonic acid 350 395, 455–465 AA Fast PSP [187–189]

Rhodamine 6G 527 580 PMMA Fast PSP [190]

EuTTA
complexes 336–342 613–616 Copolymer BA-DEGDA

Silicone elastomer Anaerobic PSP [191]

Nile Red 460 570 PDMS PSP in liquid [192]

Ru-Silane 365 630 SiCD, silicone Fast PSP [193]

SiCD—Silicon-carbon dot; BA-DEGDA—butyl acrylate-diethylene glycol diacrylate.

It should be mentioned that many research works use commercially available sensors
for pressure sensing and imaging, even for glucose sensing [194–198], which are not
discussed here further.
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5.2. Temperature-Sensitive Paints

TSPs are polymer-based coatings in which temperature-sensitive luminescent molecules
are immobilized. The quantum efficiency of luminescence decreases with an increasing
temperature due to thermal quenching. The relation between luminescent intensity and
absolute temperature can be written as an Arrhenius-type equation [146]. Accuracies of
0.2–0.8 K can be achieved with TSPs, depending on the temperature sensitivity of dyes. The
TSP technique provides a non-contact thermal imaging method with a high spatial, tempo-
ral, and temperature resolution. TSP materials developed along with PSPs are relatively
new compared to thermographic phosphors and thermochromic liquid crystals.

Since the 1980s, when Kolodner and Tyson [199–201] used a europium complex in a
polymer binder to measure the surface temperature distribution of an operating integrated
circuit, many different metal–organic molecules have been tested as temperature-sensitive
dyes. Hasegawa and Kitagawa summarized the characteristic emissions of lanthanide
ions and the temperature dependency of the luminescence of lanthanide complexes, co-
ordination polymers (and metal–organic frameworks (MOFs), and detection systems for
thermo-sensing [202].

Tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanediono)europium(III) (EuTTA) is one of the
most employed temperature-sensitive luminescent molecules. It was used for a patternable
temperature-sensitive paint (PTSP) by its integration in a photoresist as matrix, which
can be photolithographically patterned [203]. The dye was also applied for surface and
fluid temperature measurements of a microchannel [204], for thermal imaging microdevice
evaluation [205], and for the determination of the relationship between skin friction and the
surface optical flow (SOF) in viscous flows [206]. Egami et al. systematically studied the
effects of different structures of acrylic polymers on the temperature and pressure sensitivity
and luminescent intensity of EuTTA-based TSPs [207], while Wang et al. investigated the
thermal quenching behavior of TSPs composed of (EuTTA) and Eu-phenanthrene complex
(Eu-2) in polystyrene (PS), polymethylmethacrylate (PMMA), and epoxy resin (EP) [208].

Ondrus et al. presented a series Eu complexes with 1,3-di(thienyl)-propane-1,3-diones
as ligands and measured their luminescence properties in different polymers. These
TSPs exhibited an exceptionally high temperature sensitivity in a range from −35 ◦C to
100 ◦C, low pressure sensitivity, and good photostability [209]. This luminescent lanthanide
complex was thereupon used for the detection of boundary layer transitions [210–214], for
skin-friction-based measurements [215,216], and for experiments under water [217,218].

The next important group of luminescent molecules for temperature sensing consists
of ruthenium complexes. They can be used for measurements under ambient temperature,
for measurements under cryogenic conditions, or for preparing of transient TSPs. The
latter is the drawback of europium-complex-based probes, because their long luminescence
lifetimes of several hundred microseconds are not appropriate for recording and resolving
fast-changing flow phenomena. Ozawa et al. developed a fast-response TSP for studying
unsteady aerothermodynamic phenomena on a shock-tube wall, based on (Ru(phen)3,
which has a short luminescence lifetime of less than 1 µs [219–221]. Bitter et al. demon-
strated the application of a modified Ru(phen)-based ultra-fast TSP on a CNT heating layer
for unsteady temperature and heat flux measurements in subsonic flows [222]. Ruthenium
terpyridine chloride (Ru(trpy)Cl2) is used very often for measurements under cryogenic
conditions [223]. Klein et al. tested TSPs based on ruthenium complexes with different
terpyridine ligands in several polymers, which can be used in cryogenic wind tunnels [224].
They found that the temperature sensitivity of these compounds depended on the structure
of the ligands and the character of the counter ion, and could be increased to 2–4%/K at
130 K. The temperature sensitivities of the complexes at cryogenic conditions are displayed
in Figure 23.
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Egami et al. [225] extended the measurement range of a TSP from cryogenic tem-
perature to room temperature by combining Ru(trpy) with europium complexes. This
two-component cryogenic TSP enabled a dynamic temperature range from 100 to 320 K.
The two luminophores required two different illumination sources, which is difficult to
implement in a facility with limited optical access. Nevertheless, the 2C-cryoTSP was
validated in a cryogenic Ludwieg tube (DNW-KRG) and the influence of surface roughness
on crossflow instability was demonstrated. Figure 24 shows the detection of a boundary
layer transition. The light and dark parts on the model surface represent the turbulent and
laminar regions, respectively. The upper part with the smoothest surface has the largest
laminar area and the lower part with the roughest surface has the smallest laminar area.

For the same purpose, an alternative formulation was prepared using the two ruthe-
nium complexes Ru(trpy)2 and Ru(bpy)3 [226]. The ruthenium terpyridine complex
Ru(trpy) showed good temperature sensitivity down to 100 K, but its luminescence was
highly quenched at ambient temperatures. This was countervailed by the addition of
Ru(bpy), which showed a strong temperature response under ambient conditions. The two
dyes had the same excitation and emission wavelengths and could be embedded in the
same polymer. This combination yielded a working range of 173–313 K. Claucherty and
Sakaue developed three different AA systems (AA-TSP) for optical temperature sensing. A
CdSe/ZnS quantum-dot (QD) based AA-TSP [227], a rhodamine-B-based sensor for surface
temperature measurement from 150 to 500 K [228], and a phenol-formaldehyde resin which
showed an intrinsic fluorescence around 550 nm when excited at 468 nm [229].

A luminescent Tb(III) complex with a hexafluoro acetylacetone (hfa) ligand showed
a characteristic back energy transfer, which led to a high temperature sensitivity and
potential application as a thermosensitive paint [230]. Tb(hfa)3(tppo)2 was coated on an
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aluminum surface using silicon grease/n-hexane as a matrix to visualize the icing processes
of supercooled water [231].
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It can be concluded that europium-di(thienyl)-propane-1,3-dione complexes represent
probes with the highest temperature sensitivities under ambient conditions, showing sharp
emission bands around 615 nm, whereas ruthenium complexes such as Ru(trpy)2 are ap-
plied under cryogenic conditions, also showing red emission. Quantum dots, rhodamine B,
terbium complexes, and polymers with intrinsic fluorescence are also promising candidates
for TSPs.

5.3. Dual Paints

Dual two color (or “binary”) PSP/TSPs are usually prepared by combining a pressure-
and a temperature-sensitive dye in one polymer matrix. The dyes can be additionally encap-
sulated in polymer nano- or microparticles to reduce interference and improve stability. The
signals can be separated spectrally by optical filters or by time-resolved luminescence detec-
tion [1]. Iijima and Sakaue [232] applied PtTFPP as a pressure-sensitive probe for the prepa-
ration of a two-color PSP using the luminescent polymer poly[1-(trimethylsilyl)phenyl-2-
phenylacetylene] as the temperature-sensitive component and a binder simultaneously.
A novel dual luminescent sensor, which consists of discrete dot arrays of pressure- and
temperature-sensitive parts, was developed for precise pressure measurements on solid
surfaces. The dual sensor array was fabricated by inkjet-printing with PtTFPP as a PSP and
ZnS–AgInS2 as a TSP [233].

PtTFPP can be used—depending on the polymer binder—as a pressure and temper-
ature sensor simultaneously. Klein et al. [234] measured the pressure distribution on the
surface of a high-speed rotating propeller using luminescence lifetime imaging (Figure 25).
The pressure sensor consisted of PtTFPP in an O2-permeable polystyrene binder, and the
temperature sensor was also PtTFPP anchored in an O2-non-permeable polyurethane finish.

Research work is also focused on read out techniques. Fischer et al. presented a fluo-
rescent material for the simultaneous RGB imaging of pressure and temperature [235]. The
emission of PtTFPP as an oxygen indicator matches the red channel of an RGB color camera,
while the emission of a platinum complex as a temperature indicator matches the green
channel. 9,10-diphenylanthracene was integrated as a reference dye which emits in the blue



Chemosensors 2024, 12, 31 35 of 47

channel. A combined PSP/TSP system was developed for simultaneous measurements
using a monochrome camera. The patterned system consisted of an array of PSP dots
(PtTFPP in polymer-ceramic binder) on top of a TSP layer (Ru(dpp)3 in clearcoat) [236].
For temperature compensation, which is required for accurate pressure measurements,
Ru(phen)3, whose lifetime is in the order of µs, was added as a temperature indicator to
a PSP composed of PtTFPP in poly(TMSP). The luminescence lifetime of the porphyrin
is about one order of magnitude larger than that of Ru(phen)3, thus, simultaneous mea-
surements can be carried out using lifetime-based methods [237]. PtTFPP in a porous
polymer/ceramic binder served also as a PSP for unsteady measurement on a helicopter
blade. The temperature correction was made by coating a second rotor blade with a TSP
based on Ru(bpy)3 [238].
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http://creativecommons.org/licenses/by/4.0/ (accessed on 2 February 2024).

6. Conclusions and Outlook

This overview on imaging with the help of chemical sensors cannot claim to be com-
plete and it is not intended to be. Rather, the aim was to convey an impression on the
versatility of materials, sensor designs and mechanisms, and signal processing methods
which are used for fluorescence imaging and their highly different fields of application.
The development of sensor materials and read out techniques is an interdisciplinary chal-
lenge, combining organic and inorganic chemistry, material science, spectroscopy, and the
implementation of advanced methods for signal separation, computing, data and image
analysis, and device engineering. On the other hand, only a small selection of fluorescent
probes has actually been deployed to date in optical sensors. Examples are confined to
transition metal and lanthanide complexes for oxygen (Table 3) and temperature sensing,
fluorescent indicators for pH (Table 4), and some fluoroionophores for the detection of
metal ions (Ca2+, Mg2+, K+, and Na+), although the literature is full of newly synthesized
and tested molecular probes for the recognition of chemical species.

http://creativecommons.org/licenses/by/4.0/
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Generally, optical sensors for imaging purposes have distinct advantages, as light
propagates through air and transparent materials. This paves the way for the design of
remote sensors which can be placed inside (bio)reactors, interfaces, microfluidic systems,
cells, or biological tissues. In combination with imaging methods, a high density of sensor
spots can be achieved, leading to a microscopic resolution. Monitoring the local and
temporal changes in chemical species in a complex sample matrix gives new insights into
dynamic processes, e.g., in biological systems, industrial processes, or flows on surfaces.

Table 3. Novel developed and tested materials for oxygen optrodes and applications.

Sensitive Dye λex [nm] λem [nm] Reference Binder Application Refs.

Eu-hydroxyphenalenone 460 615 Coumarin PS Trace oxygen sensing [30]

Gd-hydroxyphenalenone 460 540, 600 Coumarin PS Trace oxygen sensing [30]

PtTFPP 392, 507, 540 650 NCCPN Not specified In vivo imaging of
skin oxygenation [32]

PtTFPP FLIM PS scaffold Cell culture
O2 gradients [34]

PtTFPP Macrolex
Fluorescent Yellow PS O2 dynamics in soil,

rhizosphere, cement [129,130,142]

PtOEP 382, 536 647 Coumarin PET Dental biofilm [35]

PtOEP Quantum Dot PS O2 dynamics
in seawater [137]

Ir(CS)2 acac 445, 475 564 FLIM PS Benthic microalgal
community [128]

Eu(HPhN)3dpp 400–470 617 Bu3Coum PS O2 dynamics in
microbial mats [141]

NCCPN: N-(5-carboxy-pentyl)-4-piperidino-1,8-naphthalimide.

Table 4. Novel developed and tested materials for pH, CO2, and NH3 optrodes and applications.

Sensitive Dye λex [nm] λem [nm] Reference Binder Application/Dynamic
Range Ref.

Neutral Red/UCNP 980 550, 660 UCNP emission PU Human serum
pH 6–7.5 [42]

Diazaoxatriangulenium 560 590 FLIM PU pH 4–7 [43]

Flourescein/Aminoethylcellulose * 507 542 Ru(dpp)3/PAN * Traumasept
wound gel Wound imaging, pH 4–9 [44]

Fluorescein Diphenylanthracene PU pH gradient in
tumor models [47]

Phenolic BODIPY series 495 530 PU/test stripe Sensor array pH 1–13 [48]

Aza-BODIPY series 506–667 516–680
Lumogen
Red/Fluorescent
pigment green

EC CO2 sensor, LOD 0.009 hPa [50]

Aza-Bodipy 694 720 Bu3Coum PU pH 8–11 in cement [142]

1,4-Diketopyrrolo-[3,4-c]pyrroles

509, 543/575, 606 580 Macrolex
Fluorescence Yellow PU Microfluidic system,

pH 6–9 [51]

496–550 564–587 Dual emission EC CO2 sensor
LOD 0.07 kPa [52]

501, 572 524, 605 Dual emission EC CO2 sensor [53]

Chlorophenyliminopropenyl-anailine 550 590 Macrolex
Fluorescence Yellow Sediment dynamics [135]

5-Hexadecanoyl-aminofluorescein 495 520 Quantum Dot PU pH 6–8, dynamics
in seawater [137]

Oxazine 170 perchlorate 624 645 Macrolex
Fluorescence Yellow PU/fluoropolymer NH3 sensor in soil, LOD

2.11 ppm [140]

* microparticles; EC = Ethyl cellulose.

Particularly, the visualization of dynamic processes is a distinguished feature of
fluorescent sensors. However, it has to be admitted that the use of optrodes in medical,
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environmental, or marine research and analysis is only feasible at or across interfaces
such as skin or sediments. The administration of nanoprobes which can permeate into
cells, tissues, or organs clearly provides a broader range of applications. As visible light is
strongly absorbed by biological tissue, the development of NIR probes is of high interest and
importance. This provides the opportunity to apply such nanoprobes to in vivo imaging
and further progress can be expected in this field.

A successful implementation in sensor systems requires the selectivity and reliability
of the signal response, insensitivity to interferences, and reversibility in real samples.
Thus, optrodes or nanoprobes have to be designed to work in situ, i.e., in the field, in
seawater and sediments, in the hospital, under the harsh conditions in wind tunnels, and
not only in the lab. which is often darkened to achieve highly sensitive imaging results.
Otherwise, these techniques will remain restricted to very specific tasks and experimental
conditions. Application in the field is often a major problem, although measurements
in marine sediments in deep sea have been successfully carried out using sensor foils
and an imaging set up integrated in lander systems [1]. Nevertheless, planar optrode
measurements in rhizospheres have to be conducted ex situ and require the transplantation
of plant samples into rhizoboxes for experimental studies [138].

On the other hand, sensitive coatings used for the imaging of pressure and temperature
distributions on surfaces for aerodynamic tests in wind tunnels have become indispensable
tools in aerodynamic research and fluid mechanics. Permanent progress has been made
regarding instationary fast-responding cryogenic or binary paints.

The mapping of analytes with optrodes can be combined with other analytical meth-
ods, e.g., with localized methods giving additional information on their distribution or
for multianalyte determination, which is often important to understand the interactions
in biological systems [5]. Therefore, it is still worth searching for improved molecular
probes, nanoprobes, and materials that are suitable for fluorescence sensing in real-world
conditions. Particularly interesting for biomedical sensing and imaging would be reversible
and specific probes for H2O2, biophosphates such as ATP, or glucose and its metabolites.
Accordingly, there is a high interest in the design and synthesis of probes for the imaging
of ATP [239], glucose and other carbohydrates [240,241], and reactive oxygen species such
as H2O2 or peroxynitrite [242–246]. Dyes, nanoprobes, and fluorescent proteins for the
imaging of intracellular temperature [247,248] or multifunctional probes for the detection
of reactive oxygen species, reactive sulfur species, and harmful ions [249] are also in focus.
Finally, metal–organic frameworks (MOFs) represent another sensor material type which
is promising for optical imaging [250–253], and due to their porous structure, have a high
potential for the sensing of gas molecules and volatile organic compounds. Lanthanide or
transition metal complexes act as luminescent building blocks.
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