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Abstract: Turbidity is one of the crucial parameters of water quality. Even though many commercial
devices, low-cost sensors, and remote sensing data can efficiently quantify turbidity, they are not
valid tools for the classification it. In this paper, we design, calibrate, and test a novel optical low-cost
sensor for turbidity quantification and classification. The sensor is based on an RGB light source and
a light detector. The analyzed samples are characterized by turbidity values from 0.02 to 60 NTUs,
and have four different sources. These samples were generated to represent natural turbidity sources
and leaves in the marine areas close to agricultural lands. The data are gathered using 64 different
combinations of light, generating complex matrix data. Machine learning models are compared to
analyze this data, including training, validation, and test datasets. Moreover, different alternatives
for data preprocessing and feature selection are assessed. Concerning the quantification of turbidity,
the best results were obtained using averaged data and principal components analyses in conjunction
with exponential gaussian process regression, achieving an R2 of 0.979. Regarding the classification
of the turbidity, an accuracy of 91.23% is obtained with the fine K-Nearest-Neighbor classifier. The
cases in which data were misclassified are characterized by turbidity values lower than 5 NTUs.
The obtained results represent an improvement over the current solutions in terms of turbidity
quantification and a completely novel approach to turbidity classification.

Keywords: optical sensor; marine areas; low turbidity; regression model; multiclass classification
model

1. Introduction

Water has a vital role in both ecosystems and the economy, and its quality drastically
affects its possible uses. Among water quality, turbidity stands as a critical parameter
influencing the health of aquatic ecosystems, water management, and human well-being.
Turbidity, defined as the presence of suspended particles which diminish water clarity,
is one of the most evaluated parameters in water quality monitoring [1]. It stems from
a myriad of sources, ranging from natural processes (such as runoff, sedimentation, or
microorganism growth) to anthropogenic activities (such as effluents of industry, water
treatment plants, electric power plants, and agricultural residues), each contributing to
the complex tapestry of the suspended particles clouding the waters [2]. Each source,
composed of a combination of living organisms, organic matter, and inorganic matter,
presents unique challenges for water administration and should be identified for correct
water management. Turbidity has great variability among different water bodies, with
extremely low values in oceans and marine areas [3]. The consequences of high turbidity
values are serious, and might vary according to the origin and affected ecosystem [4–6].
These consequences include impacting aquatic ecosystems by reducing sunlight penetra-
tion, disrupting photosynthesis and prey capture, and disturbing the delicate balance of
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ecosystems. Moreover, suspended particles may serve as carriers for contaminants [7] and
benefit the survival of pathogen microorganisms [8], thus amplifying the risk of waterborne
diseases. To correctly manage water turbidity requires not only quantifying its presence,
but also identifying the specific nature and origin of the suspended particles. This is a
task that conventional measurement methods and new technologies have struggled to
accomplish comprehensively.

The classic method for turbidity measurement uses the Secchi disk [9]. Currently, the
predominant methods for turbidity measurement hinge on physical principles, particularly
the scattering of light [10,11] and sound [12,13]. Techniques such as nephelometry and
turbidimetry quantify turbidity, expressed in nephelometric turbidity units (NTUs), by
assessing the intensity of light scattered by suspended particles in water [14]. Concerning
the use of light, most of the methods are based on the use of near infrared (NIR) light from
850 to 860 nm [15]. While the scattering and backscattering of light methods have been piv-
otal in monitoring turbidity, they exhibit inherent limitations that hinder a comprehensive
understanding of turbidity dynamics; these methods can only quantify turbidity. Relying
solely on scattered light poses challenges in distinguishing between various particle types
and sources. The inadequacies of the aforementioned approaches underscore the pressing
need for alternative methodologies which are able to not only quantify turbidity, but also
identify its origins. This problem has been partially solved, thanks to the remote sensing.
Using multispectral images gathered by satellites, it has been feasible to quantify turbidity
and identify some origins, or at least quantify the amount of a certain group, such as the
phytoplankton or organic matter [16]. This methodology is based on the spectral signature
of different substances [17]. Nevertheless, the use of remote sensing has new limitations,
including the temporal resolution, which neglects real-time monitoring. Moreover, given
the spatial resolution of current satellites, it might be challenging to monitor coastal areas.
Finally, the dependence on meteorological conditions limits the disposal of images.

In recent years, LED-based optical sensors, leveraging the measurement of absorbed
or transmitted light as opposed to solely relying on scattered light, present a versatile
approach to turbidity assessment [18]. Following the same approach as in remote sensing,
optical sensors transcend mere quantification, offering the capability to discern not only the
quantity, but also the composition of suspended particles combining different lights [19].
The utilization of absorbance or transmittance as a metric enables the identification of
specific substances which contribute to turbidity. These methods pose a great advantage to
both classic or nephelometric methods and remote sensing by surpassing their limitations.
Nevertheless, LED-based sensors have always been used at high turbidity concentrations.
The monitoring of marine areas requires devices capable of measuring turbidity values at
low levels. Recent studies in the Mediterranean Sea show that turbidity values range from
0.1 to 28.7 NTUs, with most of the values being below 5 NTUs [20].

The use of artificial intelligence (AI), particularly machine learning (ML), has led
to enhanced regression models. These AI-based regression models are able to combine
sensed data to achieve better performances in terms of a lower mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE), and a greater coefficient of
determination (R2). ML algorithms have been applied in remote sensing in order to derive
water turbidity [20]. Moreover, ML can also be applied to classify the gathered data among
different classes. These methods have been applied with remote sensing data to classify the
turbidity values [21,22]. Nonetheless, these ML techniques have a powerful alternative use,
which is to classify the gathered data among different turbidity sources. As far as we are
concerned, these techniques are not yet applied to classify sources of turbidity. Examples
of the use of ML combined with sensors to identify the origin of a given substance are well
reported in the use of gas sensors [23,24].

In this paper, we propose a solution to quantify and classify the turbidity, focused
on low turbidity levels to provide a tool suitable for monitoring marine areas. To
generate different levels of turbidity, four turbidity sources have been used considering
the different residues that might appear in the sea from agricultural areas. The generated
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samples had turbidity values from 0.2 to 60 NTUs. An RGB LED is used as a light
source, and a light dependent resistor (LDR) has been selected as a light detector. Both
elements are placed at 180◦ to measure the light transmittance. As ML techniques, a
total of 24 different algorithms are used for the regression, and 31 are used for the
classification problem. Different data preprocessing techniques have been evaluated.
The main contribution of this paper is the new operation principle used to generate the
different lights with the RGB sensor from the node, the evaluation of the most suitable
conditioning circuit for the LDR, and the inclusion of ML for quantifying and classifying
the turbidity values. The classification of turbidity, also indicated as the characterization
of turbidity, consists of identifying the origin of the turbidity.

The rest of the paper is structured as follows. Section 2 outlines the state-of-the-art
methodology utilized within this study. The proposal, including the algorithms embedded
in the node to power the LED, is described in detail in Section 3. Then, Section 4 explains
the test bench, identifying the used materials, generated samples, and data processing. The
results are presented and discussed in Section 5. Finally, Section 6 summarizes the main
conclusions and possible future work.

2. Related Work

An overview of the previous research endeavors focusing on the non-destructive
monitoring of water quality is presented in this section. Following a critical examination of
the constraints inherent in extant scientific investigations, a compelling rationale is posited
for exploring the efficacy of a low-cost optical sensor as a prospective system for monitoring
of water quality. This endeavor aims to surmount and ameliorate certain challenges which
are inherent to existing methodologies, and aims to do so via proposing an efficient sensor
system for short-term discrete monitoring (STDM).

Presently, an extensive array of sensors, encompassing electrochemical sensors, optical
sensors, and biosensors, is employed for the surveillance of water quality, as shown in
research by Huang [25]. Among these, optical sensors can be categorized based on their
operational principles into fluorescence-based optical sensors, absorbance-based optical
sensors, and other variants, such as colorimetric sensors and surface plasmon resonance
(SPR) sensors [26].

In a recent study, higher algae concentrations in an algal cultivation pond were moni-
tored, utilizing a microbial potentiometric sensor (MPS) [27]. The MPS system facilitated
the real-time collection of data, revealing a robust linear correlation (R2 = 0.87) between
mixed liquor suspended solids and the composite signals obtained from MPS within the al-
gal cultivation pond. The authors noted that by employing machine learning (ML) tools on
the combined MPS signals, they successfully predicted various parameters of canal surface
water, including turbidity, conductivity, chlorophyll, blue-green algae (BGA), dissolved
oxygen (DO), and pH. The normalized root mean square error (NRMSE) between the
predicted and measured values was generally below 6.5%, except for DO, which exhibited
a NRMSE of 10.45%. This finding highlights a NRMSE of 10.45% specifically for dissolved
oxygen, indicating potential limitations or challenges in accurately forecasting this particu-
lar parameter. Another similar study demonstrated a stronger correlation between MPS
signals and the DO signal (phase-adjusted R2 ≈ 0.13; p < 5.53 × 10−66) when compared
to the correlation between DO and oxidation-reduction potential (ORP) sensor-derived
signals (phase-adjusted R2 ≈ 0.17; p < 3.0 × 10−58), attributed to slower kinetics involving
redox species [28]. Nonetheless, despite the anticipated correlation between the ORP and
dissolved oxygen (DO) signals, their patterns did not align, possibly due to the unreliability
of ORP measurements in the non-equilibrium conditions and operational challenges associ-
ated with long-term ORP sensor deployment in natural aquatic matrices. Rocher et al. [29]
introduced a novel approach for monitoring eutrophication by employing two light sources
(infrared and RGB LED) and two photoreceptors, positioned at 90◦ and 180◦, relatively
to the light sources. The study covered concentrations ranging from 0 to 200 mg/L and
various mixtures of sediment and algae. Through the utilization of a neural network, the



Chemosensors 2024, 12, 34 4 of 29

authors achieved a precision of 89.3% in classifying the percentage of algae in mixtures.
The findings suggested the efficacy of infrared light for determining turbidity, albeit with
errors of 7.45% and 11.40% in NTU readings higher than 2.73 NTUs at 90◦ and 180◦, re-
spectively. However, a notable error of 17.95% was reported in determining the mg/L of
algae in water. Despite providing accuracy metrics, the study falls short in detailing the
practical application and robustness of the sensor in real-world, dynamic environments.
Furthermore, the performance of the proposed system in the presence of diverse water pol-
lutants was not addressed in this investigation. A study investigated the development of an
optical sensor which was capable of monitoring turbidity by utilizing both transmitted and
orthogonal scattered light [30]. The sensor exhibited high accuracy, with a 10% deviation
compared to a reference instrument within the 0–200 NTU turbidity range. It provided
dual functionalities, offering high-resolution and accurate sensing within the 0–200 NTU
range and lower resolution in the 0–1000 NTU range. However, environmental variables,
such as temperature, light, and pH, along with operational conditions, posed limitations.
Another portable LED fluorescence lidar system, based on AZTEC Spirulina concentrations’
excitation–emission matrix, was proposed for assessing chlorophyll-a levels in algal growth
and water quality monitoring [31]. The system demonstrated significant correlations with
established methods, but its application in natural waters remains unexplored, requiring
refinement in calibration and seasonal applicability exploration.

Wang et al. [32] evaluated three optical instruments for measuring the suspended
sediment concentration (SSC) and in situ turbidity, identifying OBS-3A and RBRsolo3Tu as
suitable for the continuous SSC measurements. A positive correlation between turbidity
and SSC (up to 40 kg/m3) was observed for AQUAlogger 310TY (Aquatec Group Ltd.,
Basingstoke (UK)), making it applicable in high-SSC environments. However, variability
among turbidimeters poses challenges the in the standardizing of measurements. Bright
et al. [33] investigated the impact of particle size on SSC, particulate organic matter (POM),
particle size distribution (PSD), and turbidity in alpine rivers. Results indicated increased
variability in specific turbidity at the ultra fine particulate matter boundary (<6 µm),
potentially introducing inaccuracies. Turbidity–SSC slopes approaching 2 suggested a POM
fraction <10% of the total suspended load. Nonetheless, the study did not explicitly address
challenges inherent in field-based investigations and laboratory experiments. Furthermore,
while the implications for turbidity–SSC ratings were discussed, the authors did not delve
into the practical implications or specify scenarios where these effects are most pronounced.

Zhang et al. [34] introduced an image recognition approach for correlating pollutant
concentrations with color variations, achieving a no Table 95.9% enhancement in the co-
efficient of determination when compared to principal component analysis. However,
the study only evaluated specific pollutant concentrations and their applicability to ex-
tremely low target concentrations, thereby requiring further investigation. Another study
reported that the paired emitter-detector diode (PEDD) technique outperformed conven-
tional photodiode-LED arrangements in turbidity sensing, achieving high R2 values of
0.9923 (facing) and 0.9971 (orthogonal) for PD detector, whereas it was 0.9996 (facing) and
0.987 (orthogonal) for the LED detector [18]. Nevertheless, specific considerations for LED
intensity and discharge time require further investigation for real-world deployment.

In a similar manner, Huang et al. [35] applied Bayesian modeling to predict water tur-
bidity with high levels of efficiency, incorporating a multi-color background for enhanced
performance. However, the model exhibited larger fluctuations and an increasing trend
during the validation period as the dataset expanded. Duarte et al. [36] engineered an
economical in-line color sensor with promising methodologies (regression models, EMGM,
and ANN) for turbidity assessment, emphasizing the need for comprehensive validation in
real-world scenarios.

Various studies have explored the application of the speckle pattern imaging method
for turbidity studies. Yan et al. [37] conducted an experiment, correlating dispersoid
size and concentration by employing a coherent He-Ne laser to irradiate suspensions and
capture transmissive speckle patterns with a lenseless camera. The authors utilized machine
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learning, achieving a high accuracy of 99% in identifying food suspensions; however, the
study’s limitation to micrometer-sized particles restricts its applicability to similar-sized
liquids. Héran et al. [38] utilized a combination of speckle pattern analysis, polarization
parameters, and chemometric tools to predict scattering (µs) and absorbing (µa) coefficients,
obtaining moderate R2 values of 0.62 and 0.8, respectively, for both scattering and absorbing
media. Despite successful predictions, the study acknowledged inherent uncertainties
in the models. Loutfi et al. [39] used calibrated polystyrene microsphere suspensions
to produce polarized laser speckle images, detecting helicity flipping as an indicator of
transitioning from simple to multiple scattering with changing scatterer concentrations.
The study suggested that speckle grain size is a more effective parameter than the degree
of light polarization for tracking changes in the scattering regime for transmitted scattered
photons. Additionally, Bello et al. [40] reported the use of a laser diode and a PC-interfaced
digital CMOS camera to acquire speckle patterns, extracting statistical parameters for the
easy differentiation of various fluids based on the concentration of scattering elements.
Nonetheless, these methods did not attain flawless predictions, suggesting the presence of
a certain degree of uncertainty inherent in these approaches.

Consequently, it can be deduced that the previously proposed sensor systems for
water quality monitoring elucidate the challenges associated with standardizing mea-
surements across instruments, underscoring the inherent variability observed among
turbidimeters. Similarly, the examination of image recognition for pollutant correlation
neglects to explore extremely low target concentrations, and does not adequately address
the diverse challenges arising from varying water quality parameters and pollutants.
Collectively, these investigations accentuate the imperative of addressing environmental
conditions, ensuring practical applicability, and discerning potential sources of error to
establish a robust and reliable framework for water quality monitoring. Building upon
the aforementioned systems, the integration of an RGB sensor emerges as a promising
avenue to alleviate the concerns related to environmental variables, scalability, and
practical application in real-world scenarios. In contrast to certain specialized sensors
susceptible to challenges in diverse contexts, the inherent versatility of an RGB sensor
positions it as a prospective candidate for water quality monitoring across diverse agri-
cultural settings. The pursuit of a cost-effective RGB sensor is motivated by the aim
to provide an economically viable and easily accessible solution for identifying water
contamination, with the potential for validation across varying environmental conditions
and pollutant compositions. Operating within visible light wavelengths, the RGB sen-
sor, characterized by its simplicity and affordability, strategically addresses challenges
associated with specific frequency ranges, thereby augmenting the practicability of the
system for widespread deployment in real-world applications.

3. Proposed Sensing Device

This section describes the components used to create the sensing element as well as
the operation, including the code and the main assumptions.

3.1. Operation Principle

The operation principle of this sensor is based on previous prototypes developed
in [19,41]. As in the previous cases, the turbidity is estimated by the means of the changes
in the light absorption and scattering from the light source to the light detector. So far, all
the options use the light source with its maximum intensity, generally 255, according to
the instructions in the code. Nevertheless, for low turbidities, having the light source at
is maximum intensity may not be a good solution. Moreover, most of the examples use
predefined light colors. Thus, in this paper, we will adapt the code of the light source in
order to generate more light intensities and different light colors with a broader combination
of lights.
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3.2. Sensing Elements

The sensing element comprises the light source RGB LED, particularly the KY-016
module [42], that has been chosen and the light detector. These LEDs are generally
characterized as operating at 20 mA, having less than 1 Watt of power at their maximum
light intensity, and can generate light from 460 to 625 nm. In this case, an LDR NSL-
19M51 [43] has been selected instead of a module. The resistance of the LED is indirectly
related to the amount of incident light. The reason for selecting an LDR is that this option
allows us more flexibility to adapt the generated signal. The commercial modules already
include a resistance which can reduce the voltage. The scheme of the light detector is as
follows (Figure 1), where the R1 is adjusted in the initial test to maximize the signal’s
variability. There are two possible configurations for the sensor. The difference between
these configurations is the relation between transmitted light and output voltage. In the
first configuration, the greater the resistance of the LDR, the greater the output voltage.
Considering the relation between the light and resistance of the LDR, the output voltage
will be maximized when light is absent. When turbidity increases, the light the LDR
receives decreases, allowing the resistance to increase, meaning a greater output voltage
will be received. In the second configuration, the greater the LDR’s resistance, the lower
the analogue voltage. Thus, when turbidity increases, the analogue voltage decreases. In
order to make the data easy to read, we have selected the first configuration, which will
provide a direct relation between received light and output voltage.
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Figure 1. Possible assembly of LDR conditioning circuit.

3.3. Node

In order to select the node for this system, we have considered the following re-
quirements: the number of analogue and digital pins, node dimensions, the expected
requirements in terms of memory and computation, and communication capabilities. Con-
sidering that the number of pins required to power and read the sensing element is not
elevated, the most limiting factor is the fact that the LDR requires an analogue pin. The
node dimensions must be small in order to allow for the embedding of the system in a
small device. Since it is expected to use edge computing in the node, as well as to store
part of the information, a node with good computation capabilities and a large memory is
required. Moreover, Wi-Fi communication technology is required in order to communicate
with the devices. For those reasons, the ESP32 node [44] has been selected.

3.4. Sensor Assembly

The sensor is placed in a box with the dimensions 15 × 11 × 6.3 cm, as can be seen
in Figure 2. A crystal tube to allow the water flow is placed according to the shape of
Figure 2a, with a diameter of 3 cm. The structure to hold the LDR and the RGB sensor and
to guide the light is placed covering the tube (see black U-shaped part in the diagram). The
RGB LED is placed on the left side, and the LDR is located on the right side, indicated by a
yellow circle. Both the emitter and the receiver are located at 180◦, ensuring a direct light
between them. The light path length between the emitter and the receiver is equal to 5 cm,
with the sample present in 3 cm, as shown in Figure 2b. In the figure, it is also possible to
see the different effects, such as absorption and scattering, which affect the received light.
Two small rectangular structures are situated in the other extreme of the box to allocate the
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node and the battery. The electric circuit of the proposed sensor can be seen in Figure 3.
The resistances of the LED are equal to 220 Ω. The resistance for the conditioning circuit of
the LDR sensor will be defined in the subsequent sections.
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3.5. Sensor Operation

The code for the sensor operation is described in this subsection. To generate the
lights, a three-dimensional matrix has been selected; see Figure 4a. First of all, the code
used to generate the different lights is presented in Algorithm 1. For each point of the
matrix, the set value is calculated as the summation of the number of rows as, shown by
myArray[d1][d2][d3] = (d1 + d2 + d3). This is used later to generate the light intensity of e
each one of the three pins of the RGB LED. It is assumed that the d1 corresponds to the red
light, d2 to the green light, and d3 to the blue light. The algorithms for this part of the code
are present in Algorithm 1; all the algorithms are in C++.
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The value of rows can take values from 3 to 256. If the value is 255, the code will gen-
erate all the possible combinations for the RGB LED, having a total of 16,777,216.00 values.
Assuming at least 500 ms for gathering the data for each light it results, the time required to
sense data for this amount of colors is not acceptable for measuring dynamic environments
such as water surfaces. In Table 1, we show different values for the parameter rows and the
minimum required time for data gathering. In this preliminary assumption, we consider
just 500 ms per light for the measurement and just one gathered value per measurement.
It is not possible to require more than 1 min for a complete measurement, due to the data
temporal variability. Thus, 64 light combinations are selected.

Algorithm 1: Allocate and Initialize the Array.

int myArray[rows][rows][rows];
for (int d1 = 0; d1 < rows; d1++) {

for (int d2 = 0; d2 < rows; d2++) {
for (int d3 = 0; d3 < rows; d3++) {

myArray[d1][d2][d3] = (d1 + d2 + d3);
}

}
}
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Table 1. Required minimum time for measuring the different light combinations.

Rows (nº) Total Light Combinations (nº) Required Time for Complete Measurement (s)

3 27 13.5
4 64 32
5 125 62.5
6 216 108
7 343 171.5
8 512 256
9 729 364.5
10 1000 500

Once the matrix generates the different light combinations, the node should read the
values of the matrix and use them to feed the RGB LED; see Algorithm 2. In this example,
the information is shown in the serial monitor. For each value of the array, a color is
generated using the combination of the values in the array (myArray[i][j][k]) and the same
value when the selected light is 0; the example for red light is myArray[0][j][k]. The cor value
is used to extend the number of possible values (0 to 3 in this case) among the 255 possible
values of each LED. Table 2 shows the different values for a given row’s values. Then, the
node informs the serial monitor which light is being emitted. Finally, a delay of 500 ms
after generating the color is used to allow the LDR to adapt their signal to the new light
before measuring its value. Note that the end of the for loops are not yet closed in this
algorithm. The node still has to measure before finishing the for loop.

Algorithm 2: Using the Array to Power the RGB LED.

for (int i = 0; i < rows; i++) {
for (int j = 0; j < rows; j++) {

for (int k = 0; k < rows; k++) {
// Value from 0 to 255 for the R, G, and B component
int valueRed = cor * (myArray[i][j][k] − myArray[0][j][k]);
int valueGreen = cor * (myArray[i][j][k] − myArray[i][0][k]);
int valueBlue = cor * (myArray[i][j][k] − myArray[i][j][0]);
//Emmited light colour
analogWrite(pinRed, valueRed);
analogWrite(pinGreen, valueGreen);
analogWrite(pinBlue, valueBlue);
cont++;
Serial.print(“Colnº:”); Serial.print(cont);Serial.print(“de”); Seri-al.print(maxcol);
Serial.print(“RGB:”); Serial.print(valueRed); Serial.print(vaueGreen); Serial.println(valueBlue);
delay(500);

Table 2. Values to be used to power each LED, according to the different matrix sizes.

Rows (nº) Cor Value (nº) Values

3 84 0 84 168
4 63 0 63 126 189
5 50 0 50 100 150 200
6 42 0 42 84 126 168 210
7 35 0 35 70 105 140 175 210
8 31 0 31 62 93 124 155 186 217
9 27 0 27 54 81 108 135 162 189 216

10 25 0 25 50 75 100 125 150 175 200 225

The last step is to measure the amount of light reaching the LDR; see Algorithm 3.
Since the circuit of the LDR generates an analogic signal, it is necessary to use the adc.h
library. In order to have three data per light, the following code is used, which has a
delay of 100 ms between reading the LDR value. This small portion of time is included to
diminish the number of abnormal data, due to the temporary presence of large particles
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during their sedimentation process. Having three data will allow us to evaluate the data
variability in order to estimate the reliability of the measurements. If variability, as the
standard deviation of the data, is low, it indicates that the water is homogeneous, and the
sensor is operating properly. After measuring, the RGB LED turns off for a given period of
time, an operation named delaydark. This delay allows the LDR to recover their standard
value before receiving any new light. The delay is particularly important when light with a
low intensity is emitted after a light with a high intensity. Two different delays are tested:
delay = 1000 ms and delay = 0 ms. Since this delay will affect the measuring time, it is
important to evaluate its necessity. The entire process lasts 51 s if delaydark is equal to
0 ms, and 97 s if delaydark is equal to 1000 ms. The flow chart of the sensor operation is
summarized in Figure 4b.

Algorithm 3: Measuring the LDR Voltage.

for (int i = 0; i < 3; i++) {
delay(100);
Read = adc1_get_voltage(ADC1_CHANNEL_7); //get the val of channel0
Serial.println(Read);

}
//delay for the LDR
analogWrite(pinRede, 0);
analogWrite(pinGreen, 0);
analogWrite(pinGreen, 0);
delay(delaydark);

}
}

}

4. Test Bench

This section describes the sample generation, the equipment used to measure the
water turbidity, and the procedure used to measure the data.

4.1. Sample Generation

In order to have a wide variety of cases for the calibration of our sensor, four natural
turbidity sources are used. For each turbidity source, five turbidity levels are generated,
ranging from 60 to 1.39 NTUs, with at least two levels below 10 NTUs for each source. In
addition to these samples, a blank is used with water without any turbidity source. Thus, a
total of 21 different turbidity levels are generated.

The turbidity sources used in this experiment simulate the following possible effluents
of rivers: (a) fresh green vegetal organic matter from a local horticulturist, (b) decaying
vegetal organic matter from a local horticulturist, (c) soil and ashes from a recent forest
wildfire, and (d) soil from agricultural fields. From each source, 3 g of solids are used and
grounded in 200 mL of water for 1 min. Then, 300 mL of water is added and grounded
for one more minute. Five dilutions are conducted from this sample in order to generate
samples to be measured. Dilutions vary from source to source, since the generated sample
has different turbidity values of 85, 625, 647, and 644 NTUs, with standard deviations of
1.15, 5.29, 13.05, and 3.05 NTUs for samples a–d. Sample a has significantly lower turbidity
since the grounded solid has a high percentage of water. The samples used to calibrate the
sensor are summarized in Table 3. Aliquots of 10 mL are used to measure the turbidity. The
turbidity values of the samples are measured twice, first after agitating the sample, and
then after 1 min of quietness. The second is the value used for the calibration curves. The
reason for waiting 1 min is to allow both the sedimentation of the particulate matter and
the removal of air bubbles. The turbidity value at 2 and 3 min is gathered to ensure that
small variation occurs in this portion of time, which is more or less the time required by the
sensor to gather the data.
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Table 3. Details and turbidity values of the generated samples.

Id Label Added Solid Dilution Turbidity in t = 0 min (NTUs) Turbidity in t = 1 min (NTUs)

1 a fresh
green

vegetal
organic
matter

60 53 38.66
2 a 33.33 25.66 19.1
3 a 20 11.37 10.53
4 a 11.11 5.25 4.23
5 a 3.45 1.99 1.62
6 b

decaying
vegetal
organic
matter

15 53 54
7 b 10 26.69 24.37
8 b 5 11.72 11.36
9 b 2.5 8.45 7.62

10 b 0.72 2.62 1.9
11 c

soil
and

ashes

10 50 48.51
12 c 8 25.86 25.44
13 c 5 16.98 16.46
14 c 2.5 4.59 3.73
15 c 0.84 2.65 1.97
16 d

soil

15 66 60
17 d 10 37.25 33.5
18 d 5 18.39 17.94
19 d 2.5 6.21 3.56
20 d 1.25 1.83 2.51
21 - - - 0.74 0.02

4.2. Measuring Equipment

The turbidity of the generated samples was assessed using a commercial turbidimeter,
specifically the TU-2016 model [45]. The device has been previously calibrated using two
standard samples with turbidity values of 0 and 100 NTUs, provided by the manufacturer.
The measurements were carried out with 10 mL of the sample, utilizing the provided
glassware that accompanied the turbidimeter.

The solids added to the samples were weighted using an analytical balance. A labora-
tory watch glass was used in order to weigh the solids after taring the balance [46]. The
balance has a precision of 0.01 g; nevertheless, a precision of 0.1 g was used for weighing
the solids.

4.3. Conducted Tests

First of all, it is necessary to evaluate both aspects of the sensor operation. This is a
preliminary step which must be conducted before data gathering. Those aspects are the
most appropriate resistance levels for the conditioning circuit of the LDR and the necessity
of delaydark.

4.3.1. Test to Select the Resistance

In order to select the most appropriate resistance, it is necessary to evaluate the
performance of the sensor with the different resistances. For that purpose, 13 different
resistances, ranging from 0.560 kΩ to 82 kΩ, are used. Resistances below 0.560 kΩ do
not provide average values different to 0, regardless of the amount of received light. The
tests consist of running the code with no sample in the tube to allow the maximum light
transmittance. Then, the gathered analogic values for the different light intensities are
compared. The resistance which maximizes the range of analogic values, excluding the
value for dark conditions, is selected. The objective is to have a wider range to allow for
the use of this range for the characterization of the samples.

4.3.2. Test to Select the Delaydark

This test is performed to evaluate if it is necessary to include a period of dark conditions
to avoid the effect of precedent light in the LDRs measure. The tests consist of gathering
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data with no sample in the tube for the conditions or resistance where the values of the
LDRs are maximum both with and without delay. This data gathering is conducted three
times. Then, the difference between data with and without the delay is analyzed. As a
metric, the difference in the percentage between data with and data without the delay is
used. As long as the maximum differences are below 5% and the average differences are
below 1%, the delay will be avoided.

4.3.3. Calibration Test

For the calibration test, data are gathered for each generated sample. For the data
gathering, the samples are mixed, and an aliquot of 60 mL is introduced in the sensing
tube. The sample rests in the tube for 60 s before starting the data gathering. Once
the sensor operation is finished, the aliquot is mixed by extracting and introducing
20 mL three times. After 60 s, the sensor starts the data-gathering process again. Data
from each data-gathering process are stored in different folders with a code to identify
the sample. The tube is cleaned between water samples, and the specific equipment is
cleaned between materials.

4.4. Data Processing and Performed Analyses

In this subsection, we describe all the analyses conducted with the data gathered
from the sensor for the calibration test. First of all, two approaches are followed. The first
approach is to use the three values gathered for each light as individual data or individual
parameters. This is based on the theory that the response of the LDR might take more than
500 ms, and, thus, the values of LDR gathered at 500, 600, and 700 ms might be different.
Thus, the differences in the gathered values are caused by different exposure times and
the variability of the sense media. Following this approach, all the data are included in
the ML algorithms. The second approach is based on the theory that the response time
of the LDR, the time until it gets a stable value with the given conditions, is lower than
500 ms. Therefore, the data gathered from the LDR at 500, 600, and 700 ms must be equal,
and the differences between data are only explained by the variability of the measured
media. Following this approach, the three values obtained for each light are combined, and
the average of these values is used as the input for the ML models.

Concerning the different objectives in this paper, as well as the quantification and the
characterization of the turbidity, the ML-based regression models and ML-based classi-
fication modules of Matlab R2022b [47] are used. With regard to the regression learner,
the included models of regression are summarized in Table 4. A total of 26 models are
compared. The configuration for the models was set using 10-fold cross-validation, setting
aside 10% of the data for the tests. The models are run in four different configurations. First
of all, the 192 features (all the gathered data) are used as input. Secondly, the Maximum
Relevance − Minimum Redundancy (MRMR) algorithm is used to select the nine most
relevant variables, and these variables are used as input. The operation is repeated, but
includes only four features. The number of features was selected according to their values
in the MRMR algorithm. Finally, the 192 features are used with the PCA, and the number
of components that ensure retaining 95% of the variability are used as input. Therefore,
four different data selection techniques were used. The same selection techniques were
conducted for the averaged data. In this case, the highest number of included features is
64. A total of 208 ML-based regression models were calculated. The tested models include
linear regression (LR), summation vector machine (SVM), gaussian process regression
(GPR), and neural networks (NN), among others.

Regarding the classification problem, the feature selection process is the same as the
previous one. Nevertheless, in this case, third input data are used. In aiming to enhance
the accuracy of the generated models. through the utilization of the regression models,
the turbidity value is known, and this value will be used as input with all and average
data. When sensed values are used without turbidity data, the feature selection is the
same as in the regression models. On the contrary, when turbidity values are included
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as input data, only the 192 or 64 features and the PCA results are selected. No MRMR
algorithm is used in this case since turbidity was not ranked among the top nine features.
A total of 372 models were calculated, including 248 models for data without turbidity
values and 124 models for data including turbidity values. The tested models include the
K-nearest neighbor (KNN), Naïve Bayes, and discriminant analyses, among others; see
Table 5 for more information. A summary of the data process, including the regression and
classification models, is represented in Figure 5.

Table 4. Type of models to be used in the regression.

Id Type of Model Preset Id Type of Model Preset

1 LR Linear 14 Ensemble Boosted Trees
2 LR Interactions Linear 15 Ensemble Bagged Trees
3 LR Robust Linear 16 GPR Squared Exponential GPR
4 Stepwise LR Stepwise Linear 17 GPR Matern 5/2 GPR
5 Tree Fine Tree 18 GPR Exponential GPR
6 Tree Medium Tree 19 GPR Rational Quadratic GPR
7 Tree Coarse Tree 20 NN Narrow Neural Network
8 SVM Linear SVM 21 NN Medium Neural Network
9 SVM Quadratic SVM 22 NN Wide Neural Network
10 SVM Cubic SVM 23 NN Bilayered Neural Network
11 SVM Fine Gaussian SVM 24 NN Trilayered Neural Network
12 SVM Medium Gaussian SVM 25 Kernel SVM Kernel
13 SVM Coarse Gaussian SVM 26 Kernel Least Squares Regression Kernel

Table 5. Type of models to be used in the classification.

Id Type of Model Preset Id Type of Model Preset

1 Tree Fine Tree 17 KNN Cosine KNN
2 Tree Medium Tree 18 KNN Cubic KNN
3 Tree Coarse Tree 19 KNN Weighted KNN
4 Discriminant Linear Discriminant 20 Ensemble Boosted Trees
5 Discriminant Quadratic Discriminant 21 Ensemble Bagged Trees
6 Naive Bayes Gaussian Naive Bayes 22 Ensemble Subspace Discriminant
7 Naive Bayes Kernel Naive Bayes 23 Ensemble Subspace KNN
8 SVM Linear SVM 24 Ensemble RUSBoosted Trees
9 SVM Quadratic SVM 25 NN Narrow Neural Network
10 SVM Cubic SVM 26 NN Medium Neural Network
11 SVM Fine Gaussian SVM 27 NN Wide Neural Network
12 SVM Medium Gaussian SVM 28 NN Bilayered Neural Network
13 SVM Coarse Gaussian SVM 29 NN Trilayered Neural Network
14 KNN Fine KNN 30 Kernel SVM Kernel
15 KNN Medium KNN 31 Kernel Logistic Regression Kernel
16 KNN Coarse KNN

To evaluate the performance of the generated models, the following metrics are
used for the regression models: MAE Validation/Test, MSE Validation/Test, RMSE Val-
idation/Test, and R2 Validation/Test. For the classification models, the accuracy of the
validation/test is the most important metric. Other metrics used ad hoc for this case are the
training time and the maximum value of turbidity in the misclassified case. These metrics
are detailed in Equations (1)–(5).

MAE =
1
N

N

∑
i=1

|yi − ŷi| (1)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2)



Chemosensors 2024, 12, 34 14 of 29

RMSE =

√√√√ N

∑
i=1

(yi − ŷi)
2 (3)

R2 =
MSE (model)

MSE (baseline)
(4)

Accuracy =
Number o f correct Preditions
Total number o f Predictions

(5)
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5. Results and Discussion

In this section, we present the results obtained from the different tests conducted with
the proposed sensor. First of all, the results of the preliminary tests are presented. Then,
the calibration results are analyzed to evaluate if the proposed sensor can quantify and
characterize the turbidity source.

5.1. Results of Preliminary Test

In this subsection, we detail the results of the preliminary tests, including the results
to select the best resistance and to evaluate the delay’s necessity.

A summary of the results with the different resistances can be found in Figure 6. The
best results were attained with a resistance of 22 kΩ, with a dynamic range of 2203 in the
analogue input, ranging from 3314.50 to 1111.33. The dynamic range is quite similar with
resistances between 27 and 18 kΩ (with a minimum of 1275 and 957.50 and a maximum
values of 3449 and 3153), which drastically reduces when the resistance is below 8 kΩ or
above 47 kΩ. In the case of 0.560 and 3 kΩ, the minimum values are equal to 0, which
might make it difficult to identify low turbidity values. Considering the obtained values,
the resistance of 22 kΩ is selected for the tests.

The results are then analysed to evaluate the need for the delay between different
lights. The data obtained in the different tests are summarized in Figure 7. We have
represented the differences between the tests conducted with delays between lights equal
to 0 in squares, and the differences between the tests conducted without a delay between
lights equal to 1 in crosses labelled as intragroup variation. Meanwhile, the differences
between the average values both with and without delays are represented in Figure 7
as grey dots and are named intergroup variation. It is possible to see that there are no
differences between the intragroup variations of both groups, with or without delay. The
average difference in tests with no delay is −0.004%, while for groups with a delay equal to
1, the average difference is 0.043%. The maximum difference is 1.16 and 0.79% for both the
groups with and without delay. The results for the differences between the tests with and
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without delay indicate average differences of 0.65% and maximum differences of 4.18%.
The maximum differences are linked to specific lights, such as light number 5.
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Figure 7. Data gathered with no sample and different delay settings between lights.

According to these data, average differences of less than 1% and maximum differences
below 5%, and considering the extra time requested in the sample analyses when the delays
are included, we conclude that tests will be conducted with no delay between lights.

5.2. Calibration Results: Quantify Turbidity

In this subsection, we are going to present and analyze the results obtained in the
calibration test. We differentiate the results when all gathered data are analyzed, and when
the average values are calculated for each measure and light.

First of all, a summary of the performance of the generated models can be seen in
Figures 8 and 9. It must be noted that data are used in four different configurations to
generate the regression models. The first option was to use the 192 features, and then, using
the MRMR algorithm, the nine most relevant features were included. The third option was
to select only the three most important features. Finally, PCA was applied as the fourth
option. Thus, a total of 104 models were trained, validated, and tested.

On the one hand, among the 104 generated models with all data, 37 models are
characterized by an R2 above 0.9 in the validation test, corresponding 11 to the use of
192 features, 11 to the use of 9 features, 10 to the use of 3 features, and 5 to the results with
PCA with 2 features. Among the models characterized by an R2 greater than 0.9, 25 models
are above 0.95, and 4 are above 0.99. These four models are models 18 and 19 when PCA is
used, and models 16 and 17 when the 192 features are used.
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Figure 8. Summary of the performance of generated models, including all gathered data in
calibration tests.
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Figure 9. Summary of the performance of generated models, including the average data in
calibration tests.

On the other hand, among the 104 generated models obtained with the average data,
34 models are characterized by an R2 above 0.9 in the validation test, corresponding 9 to
the use of 64 features, 9 to the use of 9 features, 9 to the use of 3 features, and 7 to the results
with PCA with two features. We can see that in cases where no PCA is used, the number of
models with high scores in the R2 decreases slightly when compared with the previous
case. Nevertheless, when PCA is used, the number of models with good performances
increases from five to seven. Among the models characterized by an R2 greater than 0.9, 20
of them are above 0.95, and 7 are above 0.98, but none reached values of 0.99. From the
models characterized by an R2 of 0.98, the top four (those characterized by R2 above 0.983)
are analyzed in depth. These four models are models 16, 18, and 19, used with all data, and
model 18, using the data from the PCA.

Models 16 to 19, which are the ones that offered the best results in both cases, com-
bined with the maximum number of features, 192 or 64 features, and with PCA correspond
to the GPR using squared exponential GPR, Matern 5/2 GPR, Exponential GPR, or Ra-
tional Quadratic GPR as a subset. The result of these models, in terms of the predicted
vs. observed values of the validation test, can be seen in Figure 10 for the analyses with all
data and Figure 11 for the analyses with averaged data.

It can be seen that the four models fit well along the analyzed turbidity range. In
all cases, there is one predicted value that is far from the observed value. This value
corresponds to the second measurement of sample 7. In general terms, all the predicted
values are similar. Since the objective of this paper is to propose a system capable of quanti-
fying turbidity at low turbidity values, we focus on the values below 10 NTUs. Model 18
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with PCA (Figure 10d) is the one that better fits in the lower range of the analyzed data.
Although this model is not characterized by the best results in the rest of the considered
metrics for both validation and testing, as can be seen in Table 6, the better fitting in the low
turbidity values makes it the best candidate for the proposed sensor among the models
with all data.
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Figure 10. The predicted vs. observed results of the validation of the regression models with an R2
above 0.99 for all data. (a) data for 192 features with Matern 5/2 GPR, (b) data for PCA with Rational
Quadratic GPR, (c) data for 192 features with Squared Exponential GPR, and (d) data for PCA with
Exponential GPR.

Table 6. The rest of the metrics are for the validation and testing of selected models of regression
models with all data.

Model Id Used
Features

Label in
Figure 10

RMSE
Validation

MSE
Validation

MAE
Validation RMSE Test MSE Test MAE Test

17 192 (a) 1.92 3.68 1.20 0.70 0.50 0.47
19 PCA (b) 1.97 3.86 1.03 0.81 0.66 0.61
16 192 (c) 2.18 4.76 1.35 1.44 2.09 1.20
18 PCA (d) 2.21 4.89 1.07 1.33 1.78 0.90
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Figure 11. The predicted vs. observed results of the validation of the regression models with R2
above 0.98 for averaged data. (a) data for 192 features with Matern 5/2 GPR, (b) data for PCA with
Rational Quadratic GPR, (c) data for 192 features with Squared Exponential GPR, and (d) data for
PCA with Exponential GPR.

Regarding the modules with the mean values of gathered data, similar fitting can be
seen in the observed vs. predicted values. In this case, we do not see the same value, with
a big difference between the predicted and observed values, as shown in Figure 10. This
indicates that possible outlier values, which can appear when all data are used, are strongly
minimized using the average data. These outlier values can be explained by the passing of a
particulated matter, which can temporarily interrupt the light path between the emitter and
receptor. This is a powerful reason to prefer the use of averaged data in real-life scenarios,
in which particulated matter can cause abnormal lectures. This explanation is confirmed by
the predicted response being higher than the observed value. Again, considering that this
paper aims to propose a system capable of quantifying turbidity at low turbidity values,
we have to focus on values below 10 NTUs. As in the previous results, model 18 with PCA
(Figure 11d) is the one that better fits in the lower range of the analyzed data. The rest
of the metrics from validation and testing can be seen in Table 7. Although, as in Table 6,
this model is not characterized by the best results in the rest of the considered metrics for
both validation and testing, the better fitting in the low turbidity values makes it the best
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candidate for the proposed sensor among the models using mean data. Bearing in mind
that when the mean values are used, the possibility of abnormal data is reduced, therefore,
model 18 with mean data is selected as the model for the proposed sensor.

Table 7. The rest of the metrics are for the validation and testing of selected models of regression
models with averaged data.

Model Id Used
Features

Label in
Figure 11

RMSE
Validation

MSE
Validation

MAE
Validation RMSE Test MSE Test MAE Test

17 192 (a) 2.29 5.25 1.34 0.70 0.75 0.86
19 PCA (b) 2.30 5.30 1.48 0.90 1.02 1.01
16 192 (c) 2.35 5.51 1.34 0.63 0.68 0.83
18 PCA (d) 2.49 6.19 1.31 0.55 0.47 0.68

5.3. Calibration Results: Characterise Turbidity

In this subsection, we will compare the results obtained in the classification test with
the calibration samples. As in the previous subsection, we differentiate the results when all
gathered data are analyzed and when the average values are calculated for each measure
and light. Nonetheless, in this case, we will also compare the results when the value of
turbidity is known as an additional feature for both the averaged and non-averaged data.

First of all, a summary of the performance of the generated models with all data and
without the turbidity values as a feature can be seen in Figure 12. It must be noted that,
as for regression models, data are used in four different configurations to generate the
regression models. The first option was to use the 192 features, and then, using the MRMR
algorithm, the nine most relevant features were included. The third option was to select
only the three most important ones, and finally, PCA was applied as the fourth option.
Thus, a total of 124 models were trained, validated, and tested.
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Figure 12. Summary of the performance of the generated models, including all gathered data in
calibration tests.

Concerning the models generated without the data of turbidity, on the one hand,
among the 124 generated models with all data, only 7 models are characterized by an
accuracy above 90% in the validation, ranging from 91.23 to 94.74%. Among the models
characterized by the better accuracies, five of them corresponded to models based on KNN
(model 14 with 192 features with and without PCA and with 4 features, and model 19 with
192 and 4 features) and two of them corresponded to models based on Ensemble (model
23 with 192 and 4 features). The model with the highest accuracy, Fine KNN with PCA, is
evaluated in detail below.

On the other hand, among the 124 generated models with all data, none is character-
ized by accuracies greater than 90%; twenty-four models have accuracies ranging from 80
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to 90%, from which four modules range from 85.97 to 87.82%. Among the four models
characterized by better accuracy, three of them correspond to models based on Ensemble
(model 21 with three features and with 64 features, using the PCA and not using it) and one
of them to the SVM model (model 10 with 64 features). The ones with the best accuracy,
both of them having the same accuracy, are obtained with the Ensemble Bagged Trees using
PCA and using four features. Those are the models that will be analyzed in depth, see
Figure 13.
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Figure 13. Summary of the performance of the generated models, including the average data in
calibration tests.

Regarding the models generated with the turbidity data, since the turbidity was not
positioned among the top nine features according to the MRMR algorithm, we provided
the results only for all features and PCA. Thus, 62 models are generated, see Figure 14.
Among the models generated with all data, only four models are characterized by an
accuracy above 90%, ranging from 91.23 to 92.98%. Among the models characterized by
the better accuracies, two of them corresponded to models based on KNN (model 14 used
with 64 features with and without PCA), and one of them to a model based on Ensemble
(model 23 with the 64 features) as in the validation without turbidity values. The three
modules with high accuracy will be analyzed in depth.
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Figure 14. Summary of the performance of the generated models, including all gathered data and
turbidity values in calibration tests.

Finally, for those models generated with averaged data and turbidity values, among
the sixty-two generated models with all data, two of them are characterized by accuracies
greater than 90%, see Figure 15. Those accuracies correspond to models based on Fine
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KNN (model 14 with PCA), and one of them to wide neural network (model 27 without
PCA). These models will be studied in depth in the subsequent paragraphs.
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Figure 15. Summary of the performance of the generated models, including average gathered data
and turbidity values in calibration tests.

It can be seen in the confusion matrix of Figure 16 that, when all values are used, the
number of misclassified data is very low. Only three cases are misclassified, and all the
misclassified data correspond to confusion between class 1 (fresh green vegetal organic
matter) and class 4 (soil). Those classes have very little in common, but considering that
all misclassified cases are characterized by NTUs lower than five, this type of error can be
assumed. Figure 17 shows the results of the classification of averaged data for model 21
with four features (a) and sixty-four features using the PCA (b). In both models, seven
cases were misclassified. Even though this is a small percentage, the misclassified cases
correspond to a very varied turbidity range, having errors in turbidity values of almost
50 NTUs. It is not admissible to have misclassified cases at higher NTUs. Therefore, none
of these models can be selected for the sensor’s operation.
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Figure 16. Confusion matrix of validation with model Fine KNN with all gathered data without
the turbidity value. Class values indicate the different turbidity sources: 0: no solids; 1: fresh green
vegetal organic matter; 2: decaying vegetal organic matter; 3: soil; 4: soil and ashes.
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Figure 17. Confusion matrix of validation with model Ensemble Bagged Trees with mean gathered
data without the turbidity value using the top three features, according to MRMR algorithm
(a) and with the top two parameters of the PCA (b). Class values indicate the different turbidity
sources: 0: no solids; 1: fresh green vegetal organic matter; 2: decaying vegetal organic matter;
3: soil; 4: soil and ashes.

Regarding the models when the turbidity is used as a known parameter, results can be
seen in Figures 18 and 19. The confusion matrix of Figure 18 illustrates the classification
when all values are used with model 14 using all the features (a) with PCA, (c) and using
model 21 with all features. In this case, as in Figure 16, the number of misclassified data
is low, being equal to 4 in all the models. Again, all the misclassified data correspond to
turbidity values lower than 5 NTUs. In this case, the most common error is to classify
samples of class 4 as other classes. Nonetheless, as in Figure 16, it is an acceptable error, since
the misclassified cases occurred in samples with very low turbidity. To finish the confusion
matrix analyses, Figure 18 summarizes the results for the classification of averaged data for
the wide neural network using 65 features (a) and with Fine KNN with PCA (b). In both
models, five cases were misclassified. In the first case, (a) some of the misclassified cases
have turbidity values close to 12 NTUs, which is not assumable. In the other case, all the
misclassified cases are below 5 NTUs.

A summary of the validation results and the details of the test results of the selected
models can be seen in Table 8. According to the accuracy of the tests and the turbidity
values of the misclassified cases, there are four options with similar results. Nevertheless,
considering that, for the regression, we have chosen a model using the PCA and the possible
problems with abnormal data when no averaged data are used, the most suitable model
is model 14, using averaged data and with the PCA values. Moreover, this is one of the
models that required less time to be trained.

Table 8. The rest of the metrics are for the validation and testing of selected models of classifica-
tion models.

Model Id Averaged or
All Data

Used
Turbidity

Used
Features

Turbidity of Misclassified Data
Validation (NTUs)

Figure and
Label

Accuracy
Test (%)

Training
Time (s)

14 All No 192 <5 Figure 16 83.33 1.6975015
21 Averaged No 3 <50 Figure 17a 100 2.545574
21 Averaged No 64 PCA <50 Figure 17b 100 3.1462531
14 All Yes 192 4.62 Figure 18a 100 2.6324913
23 All Yes 192 4.62 Figure 18b 100 5.2588926
14 All Yes 192 PCA 4.62 Figure 18c 100 1.9605995
27 Averaged Yes 65 11.36 Figure 19a 83.33 1.8494421
14 Averaged Yes 65 PCA 4.62 Figure 19b 100 1.1472791



Chemosensors 2024, 12, 34 23 of 29

(a)

 

(b)

 
(c)

 

 

Figure 18. Confusion matrix of validation with mean gathered data with the turbidity value using the
193 features with Fine KNN (a), the 192 features with the Ensemble Subspace KNN (b), and the two top
parameters of the PCA with Fine KNN (c). Class values indicate the different turbidity sources: 0: no
solids; 1: fresh green vegetal organic matter; 2: decaying vegetal organic matter; 3: soil; 4: soil and ashes.

(a) 

 

(b) 

 

Figure 19. Confusion matrix of validation with mean gathered data without the turbidity value using
the 65 features with the wide neural network (a), and the two top parameters of the PCA with Fine
KNN (b). Class values indicate the different turbidity sources: 0: no solids; 1: fresh green vegetal
organic matter; 2: decaying vegetal organic matter; 3: soil; 4: soil and ashes.
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5.4. Discussion

After presenting the results, in this subsection, we will discuss them. This will include
highlighting the general findings, comparing the results with state-of-the-art models, and
identifying the main limitations and contributions of the proposed prototype.

5.4.1. General Findings

We have proposed a sensor based on simple electronic components, designed the
measurement box, optimized the conditioning circuit of the sensor, and provided the code
for light emission. In general terms, we can confirm that the proposed sensor accomplishes
the expected terms. It is capable of quantifying turbidity values, even at low turbidity
(below 5 NTUs) with low errors RMSE of 0.55, MSE of 0.47, and MAE of 0.68, according
to the test data using Exponential GPR. Meanwhile, to characterize the turbidity, a model
using Fine KNN is obtained with an accuracy of 91.23% in the validation dataset and 100%
in the test dataset. Moreover, this model only misclassifies data with a turbidity lower than
5 NTUs. In both cases, the output of PCA for 64 features (65 in the characterization since
turbidity is added) is used as input. This allows the reduction in the requested information
by the server in which ML models are applied. The reduction from 192 features gathered
by the sensor to the two values of the PCA supposes saving energy in the node when data
are transmitted. All this information is obtained from data gathered in less than 1 min.

Our results indicate that using averaged data makes it possible to correct some ab-
normal values gathered during the calibration. The error encountered in the regression
models related to the second measurement of sample 7 has been studied. In the following
graphic, Figure 20, we can see the gathered data of sample 7 among the three measurements
in detail. It is possible to see that the data gathered in measurement 2 is lower than the
data gathered for the same light in measurements 1 and 3. This effect is solely related to
the starting point of the measurement, mainly in lights 2 to 6. After light number 17, no
differences between repetitions can be seen. This might indicate that some particles have
altered the lecture during the initial period of the second measurement.
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Figure 20. Details of the data gathering of sample 7 with the abnormal data.

5.4.2. Comparison with Existing Proposals

In order to demonstrate the advance beyond the state-of-the-art methodology that
supposes the proposed sensor, a comparison with existing solutions is performed. Given
the two functionalities of the sensors, two different comparisons will be conducted. In the
first comparison, the performance of the sensors will be compared with that of the other
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sensors to quantify the turbidity. Meanwhile, current solutions to characterize the turbidity
will be included in the second comparison.

Regarding the quantification of turbidity, multiple papers proposed turbidity meters.
Nevertheless, very few of them offered precise data that allowed for a comparison of the
performance of sensors. In Table 9, the proposals that provided information about metrics
are included. It must be noted that more than twenty papers have been checked, and only
seven of them provide the required data to compare the performance. Since it is an updated
issue, we can find proposals in 2016 [48], 2018 [30], 2019 [49,50], 2020 [25], 2022 [51], and
2023 [29]. In general terms, most of the proposals do not analyze the turbidity at low
concentrations (below 5 NTUs). There are only two papers in which multiple samples with
turbidity values below 5 NTUs are included [29,49]. The range or analyzed turbidity values
are extremely variable among papers. In most cases, maximum values are extremely far
from natural turbidity in oceans. There is only one paper [45] which provides a maximum
value lower than the one proposed in this paper. Considering the conditioning circuit, there
are only two papers in which the effect of changing the resistor value in the conditioning
circuit is studied [25,29].

Table 9. Comparison of the proposed sensor with the state-of-the-art models (I): Quantify
the turbidity.

Year Used Lights Min. Max.
Values (NTUS) Samples < 5 NTU Adjust

Resistances Regression Model R2 MAE
(NTU)

MSE
(%)

RMSE
(%) Ref.

2016 Red LED 10–85 No Simple Regression 0.959 8.02 [48]
2018 IR LED 0–200 No Simple Regression 10 [30]
2019 Cubert UHD 285 0–4 * Yes SVM + PCA 0.902 0.2 [49]
2019 IR LED 0–80 * No Simple Regression 0.943 [50]
2020 Visible IR light 0–4000 No Yes EMG [25]
2022 IR 20–4000 No Simple Regression 10 10 [51]
2023 IR + RGB LED 2.73–176.7 Yes Yes NN 0.983 2.85 7.45 [29]
2024 RGB LED 0.2–60 Yes Yes Exponential GPR + PCA 0.979 0.68 0.47 0.55 Proposed

Among the regression models, few papers have included ML. Simple regression
models are used in most cases [30,48,50,51]. Focusing on papers that used ML, the models
are based on SVM [45], expectation maximization gaussian (EMG) [25], and NN [29]. Our
proposal used Exponential GPR, which is a method not included in the previous papers.
Concerning the performance of the regression models, the obtained R2 in our proposal
(0.979) is similar to the maximum achieved R2 [29] (0.983). Nevertheless, in [29], the MSE is
much higher (7.45%) than the one obtained in this proposal (0.47%). There is one paper [49]
which obtained a better RMSE (0.2) than our proposal (0.55). As in our proposal in [49,51],
PCA is used. Nevertheless, these data are obtained with a commercial sensor, which means
that the cost of the devices is higher than the proposed sensor. If we balance the extra cost
that supposes a commercial sensor compared to the reduction in RMSE, there is no point in
acquiring the commercial sensor.

Concerning the second comparison, the same problem as in the previous one stands
out. Very few papers provide the necessary information to compare the performance. In
addition, in this case, fewer papers have analyzed the problem of the origin of turbidity
classification. Therefore, in Table 10, we have also included solutions based on remote
sensing. In some cases, classification is used to quantify the turbidity [52–55], which is
an imperfect solution compared with regression models. Of these papers, two of them
use satellite images [52,53], and two of them use proximal sensing images gathered in the
laboratory [54,55]. Among the papers that used the classification of turbidity to identify
its source, the number of papers that used optical sensors is extremely limited. Only three
papers have been found. Two of them classify the turbidity sources based on different linear
regression models and algorithms [19,56]. These papers do not provide information about
accuracy. Finally, the sole paper that proposes an approach similar to the one presented
is [29]. In [29], the authors identify the turbidity sources among two different sources,
sediment and algae, using NN, achieving an accuracy of 90.9%. Our proposal supposes



Chemosensors 2024, 12, 34 26 of 29

an improvement, given the higher achieved accuracy (92.23%) and the broader scope of
turbidity sources. While in [29], only algae and sediments are included, in our case, four
different origins are used, including different types or organic matter. It must be noted
that no paper has studied the relation between turbidity and misclassified cases, as was
conducted in this paper to determine the best ML-based model.

Table 10. Comparison of the proposed sensor with the state-of-the-art models (II): Characterise
the turbidity.

Year Used Lights Nº of Classes Classification Model Accuracy (%) Maximum Values
Misclassified Ref.

2018 IR + RGB 4 Turbidity sources Based on regression
models and algorithms - [19]

2021 IR + RGB 2 Turbidity sources Based on regression
models and algorithms - [56]

2023 IR + RGB 2 Turbidity sources NN 90.9 - [29]
2022 Landsat 8 5 Levels of turbidity Random Forest 85 - [52]
2023 Sentinel 2 2 Levels of turbidity Isolated Forest 89.58 [53]
2023 Image in Laboratory 5 Levels of turbidity Deep Learning 97.5 [54]

2022 Image in laboratory with
different lights 9 Levels or turbidity CNN 100 [55]

2024 64 visible lights 4 Turbidity sources Fine KNN 91.23 <5 NTUs Proposal

5.4.3. Limitations of Presented Tests

The main limitation of the conducted test is the lack of samples whose origin is
algae in order to have a broader view of turbidity origins. Nevertheless, the use of
grounded fresh vegetal matter might offer an alternative source of chlorophyll, which
can be comparable with the algae samples. Another found limitation is that the error in
regression models is greater in samples with low turbidity in many models. This is usual
even with commercial devices, which offer high standard deviation when measures
are conduced with low turbidity. This effect might be explained by the extremely low
presence of suspended solids in water. In these scenarios, the homogeneity of the sample
is challenging. In fact, some papers indicated problems in measuring turbidity at low
and ultra-low turbidity levels [57,58]. A possible solution is to include an additional
sensor to measure the backscattered light. The last limitation of this work is the lack of
research focusing on the effect of temperature on the sensing element. Nevertheless, a
recent study about the multiparametric probe, which includes a similar turbidity sensor,
demonstrated that there is no effect of temperature or salinity in the measurement of
this type of sensor. Even though the turbidity measurement range is not the same, we
assumed that the effect of the temperature is not present in this sensor. In future work,
the effect of temperature at low turbidity values will be studied.

6. Conclusions

Turbidity is one of the key parameters for the monitoring of water quality. It is
generally measured by using IR light scattering. Even with the good performance of
current sensors in quantifying the turbidity, no sensor is able to characterize the turbidity,
indicating their origin or composition. Turbidity caused by different origins requires
specific water treatments, and might indicate the pollution sources.

In this paper, we proposed, assembled, calibrated, and tested a turbidity sensor, based
on the transmittance of visible light. This sensor has been optimized considering the
conditioning circuit and the code for generating different lights while considering the
environmental restrictions. Moreover, the proposed sensor is specially designed for marine
areas with low turbidity values, and considers the main natural turbidity sources from
agricultural lands. ML has been included in order to have an enhanced regression model
and to be able to classify data according to the origin of turbidity. A total of 21 samples were
generated and analyzed. Different data preprocessing and feature selection algorithms
are compared. For regression models, up to 26 different models are included, while
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31 classification models are used to characterize the turbidity. The selected regression
model was characterized by an R2 of 0.979, and the accuracy of the classification model
was 91.23%. It must be noted that only samples with a turbidity lower than 5 NTUs have
been misclassified. These results were achieved using the averaged data and PCA in the
feature selection algorithm.

In future work, we will add an additional LDR for backscattering to improve the
regression and classification models for low NTU values, and we study the relationship
between the wavelength-dependent reflectivity of light from different sources of turbidity.
In addition, the inclusion of the remaining parts of the sensor node to ensure its operation
in a sensor network will be conducted, as in [41]. Finally, we will add IR and UV emitters
and received modules in order to enhance the spectral resolution of the gathered data.
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