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Abstract: China is a large consumer of meat and meat products. People’s daily diets include a
variety of meat, but meat food adulteration problems are common. This paper discusses the research
progress of the electronic nose and near-infrared spectroscopy in the field of meat adulteration
detection. Through the study of dozens of related papers in recent years, it has been found that the
use of the electronic nose and near-infrared spectroscopy for meat detection has the advantages of
speed, a nondestructive nature, high sensitivity, strong quantitative analysis, high automation, a
wide applicability, an improved product quality, and cost reduction over the traditional detection,
but it may be limited in detecting the adulteration of a specific meat, and there are issues with the
life and stability of the sensors of the electronic nose in the process of detection, along with the
problems of the high requirements for the modeling of the data of near-infrared spectroscopy. This
paper takes adulterated meat as the research object and briefly summarizes the detection principles
of the electronic nose and near-infrared spectroscopy, as well as the types of sensors applied in the
electronic nose. The research progress of the electronic nose and near-infrared detection technology in
meat adulteration assessment is reviewed, the advantages and disadvantages of the two in practical
application are analyzed, the classification of pattern recognition methods and their applications in
meat identification are described, and the feasibility and practical significance of the joint application
of the two in meat adulteration detection are envisioned. Meanwhile, the challenges faced by the two
in meat detection are pointed out.
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1. Introduction

With the rapid growth in meat consumption, the problem of adulteration occurs from
time to time. The study of techniques for identifying the adulteration of meat and meat
products has been a hot research topic in the field of food safety [1]. However, due to
the variety and complexity of meat products, the appearance, composition, and nature of
most meats are relatively close to each other, and the meat in the food loses its original
morphological characteristics and texture after processing and cooking, such as chopping,
mixing, steaming, etc., which increases the difficulty in identifying the species of meat
contained in the food [2]. The adulteration of meat and its processed products not only
harms the interests of consumers and disrupts the market order but also may jeopardize
the health of consumers; therefore, it is of great significance to adopt accurate, efficient, and
sensitive identification techniques to identify adulterated meat products.

Traditional meat adulteration detection methods include sensory, chemical, and molec-
ular biology tests. Sensory testing is used to determine whether meat is adulterated by
observing its color, odor, texture, and other indicators; chemical testing is used to deter-
mine whether meat is adulterated by analyzing the chemical components in the meat; and
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molecular biology testing is used to determine whether meat is adulterated by analyzing
molecular markers, such as DNA or RNA, in the meat. However, sensory testing is suscep-
tible to personal preferences, experience, judgment, and other factors. The results have a
certain degree of subjectivity and cannot be qualitatively and quantitatively analyzed. The
chemical testing and molecular biology testing detection time is long, and the testing meth-
ods require professional personnel to operate them, need expensive equipment, and have a
complex operation. Therefore, choosing the electronic nose and near-infrared spectroscopy
to detect meat adulteration can help people better understand the quality, nutrient content,
and safety of meat, as well as improve the accuracy and reliability of detection.

Nowadays, sensor technology is constantly developing and maturing, and in the field
of food safety inspection it has gradually popularized and deepened the intelligent sensory
instrument that imitates the human sense of smell—the electronic nose [3]. Because of its
fast detection speed, simple operation, good repeatability, and other advantages, it has
become a well-established meat inspection tool. It has been widely used in the fields of
meat freshness detection [4–7], quality judgment [8–10], and adulteration detection [11–13].
It can identify the authenticity and freshness of meat by analyzing the odor released from
the meat. In the field of meat inspection, the electronic nose is widely used to detect the
freshness, authenticity, and adulteration of meat. For example, an electronic nose can
determine whether meat is fresh, spoiled, or adulterated by analyzing the odor released
from the meat.

Near-infrared spectroscopy (NIRS) can be used to achieve the rapid and nondestructive
detection of adulterated meat by obtaining the NIR spectral information of the meat being
tested and using chemometrics to establish the qualitative and quantitative relationship
between adulteration and the spectral information of the meat samples being tested [14]. In
the field of meat testing, substances such as additives and leptin in meat can be detected by
analyzing the chemical composition and structure of the substance, as well as determining
the variety and origin of the meat. Near-infrared (NIR) technology has been applied to grain
inspection [15–18], fruit and vegetable processing [19–21], and meat processing [22–24] and
achieved good results.

In recent years, in the adulteration of meat and meat products and quality testing and
other aspects of the application of a single instrument for detection, in order to improve
the accuracy of single-instrument detection, two or more pieces of testing equipment have
been jointly used in food quality assessment as part of a new development trend. For
example, electronic noses and electronic tongues, electronic noses and mass spectrometers,
and the combined use of near-infrared and hyperspectral spectroscopy have been fully
developed and widely used [25]. The combined use of the electronic nose and infrared
spectroscopy can give full play to the advantages of both and improve the accuracy and
reliability of the identification of the authenticity and adulteration of meat. For example,
in the meat industry, an electronic nose can analyze the odors released from meat, while
infrared spectroscopy can analyze the chemical composition of the meat to make a more
accurate determination of its authenticity and place of origin. In addition, the combined
use of the electronic nose and infrared spectroscopy in meat testing can improve the ef-
ficiency of detecting meat freshness and adulteration, providing consumers with more
reliable product information. Many of the articles related to meat adulteration detection
are summaries of single-instrument tests, and such summaries of single-instrument tests
can provide information about the relevance of a particular instrument in meat adulter-
ation detection and help to assess its applicability, strengths, and weaknesses in different
situations. However, meat adulteration detection is a complex field, and relying on a single
instrument for detection may not meet all the needs in practical applications. In actual meat
adulteration detection, it is often necessary to combine multiple methods and instruments
for more comprehensive and accurate detection. For example, spectroscopic techniques
(e.g., near-infrared spectroscopy), image analysis techniques (e.g., machine vision), and sen-
sor techniques can be combined to comprehensively analyze and process multiple aspects
of meat products. This can make up for the shortcomings of single-instrument detection
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and improve the accuracy and reliability of meat adulteration detection. In addition, data
fusion technology can also play an important role in meat adulteration detection. By fusing
data from different sensors or data sources, more comprehensive and accurate information
can be obtained for better discrimination in adulteration detection. For example, data
from multiple sensors can be fused together, or results obtained from different pattern
recognition methods can be fused to obtain a more comprehensive and accurate analysis.

This paper describes in detail the application of the electronic nose and near-infrared
(NIR) technology in the determination of meat adulteration and the application of the
combination of the two in the detection of meat and also discusses the problems and
challenges in their application. The pattern recognition algorithm applied in the re-detection
and recognition is expounded.

2. Method

To compile this paper, our primary search engine was CNKI.com; however, we also
used Web of Science. Only papers with full access were included. Because the nature of
this paper is to discuss the role of the electronic nose and near-infrared spectroscopy in
analyzing adulteration detection in meat and meat products, we did not set an exclusion
date range so that we could provide a broad overview of adulteration detection.

The search terms begin with electronic nose or NIR with the AND Boolean operator
followed by one or more of the following: meat, meat products, beef, chicken, lamb,
adulteration, pattern recognition, sensors, and hybrid.

3. Electronic Nose and Near-Infrared Detection Technology
3.1. Composition and Working Principle of Electronic Nose System

The electronic nose, also known as the odor scanner, is an instrument that analyzes
the odor of a sample by using sensors to mimic the human/animal olfactory organ’s
perception of odor [26]. It is based on a combination of different gas sensors with different
sensitivities and/or specialties to provide a characteristic fingerprint of odors or aromas in
concentrations of parts per million (ppm) [27]. In the electronic nose system, the gas sensor
array is equivalent to a large number of olfactory receptor cells in the biological olfactory
system, the computer is equivalent to the brain, and the pattern recognition system is
equivalent to the neural signal transmission system [28]. When the biological olfactory
system has been in a certain odor environment for a long time, fatigue will occur, which
will affect the accuracy of odor analysis, but the electronic nose as a biomimetic olfactory
system can be used for a long time to detect the sample odor, which greatly makes up
for this defect. Figure 1 shows a comparison between the electronic nose system and the
human olfactory system.

The electronic nose system uses specific sensors and pattern recognition systems to
quickly provide holistic information about the sample under test, indicating hidden char-
acteristics of the sample [29]. It consists of gas sensors, signal processing, and pattern
recognition components [30]. A workflow diagram of the electronic nose system is shown
in Figure 2. The system includes two parts, hardware and software, which can realize
the detection of unknown samples and the output of detection results [31]. The working
principle of an electronic nose system can be summarized as follows: sensor array—signal
prepossessing—neural networks and various algorithms—computer recognition (qualita-
tive and quantitative gas analysis).
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Figure 2. Flow diagram of the electronic nose system.

3.2. Gas Sensors Used in Electronic Noses

Electronic nose systems typically use various types of gas sensors, which vary in
operating principle, sensitivity, selectivity, response time, energy consumption, reversibility,
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and manufacturing costs [32]. For example, a volatile substance has a high response in
some sensors and a low response in others [33]. The gas sensor in the electronic nose is
divided into a metal oxide sensor, electrochemical sensors, a conductive polymer sensor, a
mass sensor, and other types according to the principle [34]. The metal oxide sensor has the
advantages of a low cost and wide application range, and it is the most widely used in the
electronic nose system. Different materials of the conductive polymer sensor have specific
responses to different gases. The work does not require heating, and the application has
its own advantages. The quality of the FET sensor is stable, but there is reference value
drift. The fiber optic sensor has a strong anti-noise ability and extremely high sensitivity,
but it has a high cost and short life. As shown in Table 1, which lists the advantages and
disadvantages of different sensor arrays in electronic noses.

Table 1. Advantages and disadvantages of sensor arrays applied in electronic noses.

Sensor Types Advantages Disadvantages

Metal oxide type Low cost, high sensitivity,
selectivity, and stability

Poor stability, high power
consumption, limited use, and

not easily fixed

Electrochemical type

Large operating temperature
range, many measurement

ranges, high sensitivity, linear
output, and good selectivity

Short service life, prone to
interference, poor linearity,

and humidity affects accuracy

Conductive polymer type High stability and security Prone to drift and sensitive
to humidity

Quality-sensitive type
Good sensitivity, high

resolution, lower cost, and
low power consumption

High individual variability,
prone to aging, and poor

repeatability

Field effect tube type
High degree of integration,
mass production, suitable
price, and stable quality

Chips are not easy to
sub-assemble and integrate,

monotonous types, and
benchmark drift

Fiber optic type Noise shielding, adaptability,
and sensitivity

Expensive, limited lifetime,
and complex control systems

3.2.1. Metal Oxide-Type Sensor

The metal oxide gas sensor cause changes in conductivity, mainly through the chemical
or biological effects of gas molecular adsorption or physical adsorption changes [35].
After the gas adsorption, due to the charge transfer between the gas and the metal oxide
semiconductor, the metal oxide semiconductor will bend, and its resistance value will
change. When the sensor is in contact with the relevant gas molecules, the affinity energy
of the gas molecules is greater than the work function of the semiconductor material, so
that its resistance value increases to produce a high response, which can judge the type of
gas. The German PEN2 portable electronic nose and the Fox 3000 and Fox 4000 electronic
noses use this type of sensor.

With the in-depth study of this type of sensor, its application in meat freshness and
quality detection is more mature, and it can accurately identify the gas produced in the
storage and transportation of meat. Bonah et al. [36] used an electronic nose composed of
ten metal oxide sensors to detect Salmonella contamination levels in fresh pork samples
with 99.99% identification accuracy via principal component analysis. Liu et al. [37] used an
electronic nose based on a metal oxide semiconductor (MOS) sensor to monitor the freshness
of fish, beef, and chicken, and the results showed that the electronic nose combined with the
HMM algorithm could well identify the freshness of meat. The sensitivity and specificity
values for fish, beef, and chicken samples were 96.32% ± 2.83% and 99.07% ± 0.69%;
99.09% ± 2.40% and 99.82% ± 0.48%; and 99.35% ± 0.27% and 98.31% ± 0.71%, respectively.
It also has a good application for flavor detection for meat products. For example, the PEN3
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electronic nose was used to conduct grade analysis and detection of three batches of pork
breast samples from 12 brands, with an accuracy rate of 89.81%. The identification of pork
breast quality based on electronic nose technology is feasible to a certain extent [38].

3.2.2. Electrochemical Sensor

Electrochemical sensors detect the concentration of specific gases by means of electro-
chemical principles. The detected ambient gas diffuses into the electrolyte of the sensor
through the film at the lower end of the sensor. There is a measuring electrode, a reverse
electrode, and a reference electrode in the electrolyte. By selecting the appropriate voltage,
electrolyte, and electrode material, the detected gas will undergo a chemical reaction on
the measuring electrode and generate a small current. This current is proportional to
the concentration of the detected gas [39]. The output current of the sensor can be am-
plified, temperature compensation and parameter correction can be used to obtain the
concentration of the specific gas, and the detection of the measured object can be realized.
Wojnowski et al. [40] used the electronic nose of an electrochemical sensor array to predict
the biogenic amine in fresh chicken samples during refrigeration based on headspace
analysis technology. The verification results showed that the coefficient of determination
was 0.954 (p < 0.01), and the root mean square error (RMSE) was 1.65. Also, the shelf life of
different meat products is different. The detection of fish, chicken breast, and pork stored at
room temperature for 0 days, 1 day, and 2 days is carried out using electrochemical sensors,
and classification with 100% accuracy can be achieved using the SVM algorithm [41]. It is
proved to be fast and reliable in evaluating the freshness of meat.

3.2.3. Conductive Polymer Gas Sensor

In conductive polymer sensors, the active materials in contact with the VOC are gener-
ally conductive polymers composed of thiophene, indole, furan, and other components.
When the gas molecules are in contact with the above-mentioned polymer materials, ion-
ization or co-valence will occur. This interaction affects the transmission of electrons along
the polymer chain; that is, it changes the conductivity. The gas molecules adsorbed on the
surface of the conductive polymer can change the resistance of the conductive polymer
through a variety of mechanisms to achieve the sensing function [42]. Simanjuntak et al. [43]
applied the electronic nose based on a conductive polymer gas sensor to distinguish fresh,
unqualified, and rotten beef and mutton, and the success rate of using an artificial neural
network and Kohonen algorithm to identify beef and mutton was 90%. To demonstrate
whether conductive polymer gas sensors can be used to detect meat contamination, TVC
measurements were performed on fresh and frozen beef and sausages inoculated with
Escherichia coli, Salmonella, Staphylococcus aureus, and Pseudomonas aeruginosa. The
results showed that the system was able to detect microorganisms in beef and sausage
samples. Moreover, the gas concentrations before and after the contamination of beef and
sausage with pathogenic bacteria were significantly correlated (p < 0.005) [44], indicating
that it has a relatively good application in meat freshness detection.

3.2.4. Mass-Sensitive Gas Sensor

Mass-sensitive sensors generate acoustic signals by acting on piezoelectric materials
with alternating electric fields and obtain the information of detected objects by measur-
ing changes in acoustic parameters (amplitude, frequency, wave speed, etc.) [45]. Mass-
sensitive gas sensors are divided into the surface acoustic wave gas sensor (SAW) [46] and
quartz crystal microbalance gas sensor (QCM) [47]. The QCM sensor is a disk coated with
a polymer material with a diameter of a few millimeters. When the gas molecules are
absorbed into the polymer coating surface, the mass of the disk changes and the resonance
frequency changes. The resonance frequency is inversely proportional to the absorbed gas
molecular mass [48]. A surface acoustic wave (SAW) sensor means that after the crystal
adsorbs gas molecules, the frequency, amplitude, and phase velocity of the surface acoustic
wave will change [49]. Fulgione et al. [50] detected Salmonella typhoid in chicken based
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on the QCM, and the experimental results showed that the detected frequency (115 Hz)
when only Salmonella infected chicken samples was comparable to the results reported on
the dose–response curve. Kim et al. [51] used a surface acoustic wave sensor to evaluate
the freshness of chicken, and the results showed that the phase of the response signal
linearly decreased with increases in the reference gas concentration and the storage time of
chicken samples. The coefficient of determination of the reference gas and storage time is
above 0.9. Also, to prove the application of the electronic nose in meat variety differentia-
tion, Zhang et al. [52] used an electronic nose to identify four varieties of raw and cooked
chicken samples. The results showed that the prediction set recognition rate of raw meat
was 93.94%, that of Beijing oil chicken was 96.97%, and that of cooked meat was 95.45%.
The recognition rate of Beijing oil chicken was 98.48%, which provided some technical
support for meat adulteration.

3.2.5. Field Effect Tube-Type Gas Sensor

The field effect tube-type gas sensor is composed of a semiconductor layer, an insu-
lating layer, and three electrodes [53]. It is based on the mechanism that the drain-source
current changes when the sensitive film interacts with the gas. When the drain-source cur-
rent changes, the performance of the sensor changes with it, and a sensitive film is coated
on the gate during preparation, covering different sensitive films to form a gas sensor with
different selectivities. For example, the odor fingerprint analysis of chicken shows that the
freshness of chicken at different storage times at 0 ◦C and 10 ◦C can be distinguished via
electronic nose PCA and DFA [54]. In order to prove the accuracy of meat flavor detection,
the electronic nose was used to detect the volatile odors of frozen and chilled chicken at
different storage periods, all of which could achieve obvious differentiation, and the flavor
detection of chilled chicken at the early storage stage was the best [55], providing technical
support for the meat storage process.

3.2.6. Fiber Optic Sensor

Different from the principle of traditional gas sensors to measure electrical signals such
as voltage, resistance, potential, or frequency, fiber optic gas sensors are realized by using
the interaction between the gas to be measured and the transmitted light in the fiber. Their
sensing mechanism depends on the detection of absorbance changes in a specific frequency
range, with strong specificity, such as strong sensitivity and selectivity for CO2 gas, but they
are almost insensitive to other low-concentration gases. In addition, the detection method
of the optical gas sensor can also use color as an indicator, such as metal porphyrins, and
when interacting with the target gas, the absorbance of the target gas is detected with
LED. Antonio et al. [56] tested mutton fed with a pomegranate by-product diet through
the electronic nose, and the results showed that the accuracy of PCA in recognizing the
flavor of mutton reached 97.7%, providing a basis for the detection of meat flavors. In
order to distinguish different types of meat, Li Xiu et al. [57] used a vapor phase electronic
nose to conduct qualitative and quantitative detection of volatile flavor substances in the
leg meat of four livestock species, namely donkeys, pigs, cows and sheep, and obtained a
contribution accuracy of 99.8795% through DFA, indicating that it has a high application
prospect in meat type analysis.

In the practical application of the electronic nose, the selection and configuration of the
gas sensor is crucial, and the application of different types of gas sensors in the detection
of meat can realize the quality distinction of meat. Different gas sensors have different
sensitivities and selectivities for different gases, so we need to select a suitable sensor array
according to the practical application requirements. At the same time, the service life and
stability of the gas sensors also need to be considered to ensure the reliability and accuracy
of the electronic nose.



Chemosensors 2024, 12, 35 8 of 23

3.3. The Working Principle of Near-Infrared Spectroscopy

In recent years, spectroscopy has been one of the fastest growing analytical tools.
In particular, near-infrared (NIR) spectroscopy has attracted a lot of attention as a fast
and versatile detection method. The NIR spectrometer consists of a light source, a beam
splitter system (wavelength selector), a sample detector, an optical detector, and a data
processing/analysis system. The principle of near-infrared spectroscopy detection is shown
in Figure 3.
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Near-infrared light is an electromagnetic wave between visible light and mid-infrared
light (wavelength in the range of 780~2500 nm). Near-infrared spectroscopy can determine
almost all of the organic matter and part of the inorganic matter in material molecules,
and the chemical bonding of the various groups of expansion, vibration, and bending
have their fixed frequency; when these molecules are irradiated by infrared light, part
of the energy of the light is absorbed. You can obtain a very complex picture, as each
component in the near-infrared region has specific absorption characteristics, and because
to this feature, the original material can be analyzed [58]. The NIR region (780 to 2500 nm)
contains information related to the relative proportions of C-H, O-H, N-H, and S-H bonds
(the major structural components of organic molecules), mainly due to overtone vibrations
and rotational leaps in these molecular bonds. According to the location and absorption
intensity of the near-infrared spectrum of these chemical bonds, combined with chemo-
metrics, qualitative or quantitative analysis of one or more components of the detected
object can be achieved [59,60]. In addition, near-infrared light has a greater penetration
ability than infrared light, so that information deep in the sample can be detected [61].
Near-infrared spectroscopy (NIRS) is a widely used, convenient, rapid, and nondestructive
technique that requires minimal sample processing prior to analysis [62].

In meat quality testing, NIR spectroscopy has been shown to be capable of simulta-
neously determining multiple quality parameters, such as the protein, fat, moisture, and
carbohydrate content for a wide range of meat types [63]. Near-infrared spectroscopy
has the advantages of no sample pretreatment, a high efficiency, a low cost, good test
reproducibility, environmental protection, no pollution, etc. According to the absorption of
different compounds at specific infrared wavelengths, it can be used directly on the sample
for qualitative analysis. It has been widely used in the agriculture [64–67], food [68–71],
petrochemical [72–75], and medical [76–80] fields, among others.
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4. Application and Problems of Electronic Nose and Near-Infrared Spectroscopy in Meat
Adulteration Detection
4.1. Application of Electronic Nose in Meat Adulteration Detection

Nowadays, there are many varieties of meat, and the phenomenon of low-priced meat
being used as high-priced meat is becoming more and more common. Typical cases of
intentional adulteration are inter-species meat mixes, designed to deceive consumers by
substituting cheaper meat for more expensive meat, such as beef adulterated with pork [81],
with pork, duck, and other low-priced meat pretending to be beef, lamb, donkey meat,
and other high-priced meat, with some spices added, so that consumers cannot identify
the real attributes of the meat. This is the main means of adulteration in the market. At
present, the adulteration of meat products is mainly manifested in the (1) adulteration of
raw meat; (2) substitution of other animal tissues (fat, etc.) for muscle tissue components;
and (3) addition of nonmeat components, such as water or vegetable proteins [82]. Some
examples are the incident of adding ‘lean meat extract’ to mutton in Qingxian County in
2021 [83] and the incident of passing off lard and sheep tail oil as mutton in 2019 [84]. The
electronic nose provides effective and accurate identification of meat at different storage
times/temperatures. And the electronic nose detection technology has been widely used
in meat product inspection. The electronic nose is capable of detecting and recognizing
characteristics such as the different types of meat and the freshness of the meat through
its unique array of sensors. However, specific use cases, including the type and amount
of meat tested, may vary depending on the study, application scenario, and region. The
following Figure 4 shows the statistics of the number of articles published in recent years
on the detection of meat adulteration using electronic noses.
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Beef adulteration is the main part of fresh meat adulteration in the market. For beef
adulterated with different kinds of meat or different ratios of meat, the electronic nose
can detect and analyze the odor emitted by the beef so as to make effective distinctions.
Han et al. [85] used a low-cost electronic nose with a colorimetric sensor to detect beef
adulterated with duck meat, and the root mean square error (RMSE) and the correlation
coefficient (r) of predicting the degree of adulteration were 1.28% and 0.841, respectively,
which could effectively achieve the detection of beef adulterated with duck meat. Similarly,
the electronic nose was able to differentiate between different proportions of pork fore-
quarter, chicken breast, and chicken skin in beef brisket, with accuracies of 87.82%, 99.04%,
and 98.57%, respectively [86]. The recognition accuracy of fake beef rolls adulterated with
different proportions of pork and duck can reach more than 95% [87], and that of beef
samples adulterated with different proportions of pork can be as accurate as 97.4% to
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99.99% [88–90]. It can be seen that, although beef adulteration means are complex and
diverse, the electronic nose can still be used on the beef according to the unique volatile
substances emitted by the different meats to distinguish them effectively to detect the
adulteration of different types and different quantities of other meats to provide technical
support. In order to explore the feasibility of the electronic nose for the identification of
adulteration in different parts of meat, Jia et al. [91] analyzed beef and pork samples using
an electronic nose. They accurately identified yak meat and common beef in different parts
of the meat and also identified the beef stuffing when it was adulterated with pork stuffing
in different proportions.

Similarly, mutton is one of the most adulterated meat varieties on the market. Wang et al. [92]
used an electronic nose to differentiate roasted lamb adulterated with roasted duck meat
samples of different proportions (0%, 25%, 50%, 75%, and 100%). The principal component
analysis (PCA) model R2

X was 0.986, and the Q2 was 0.849, indicating that the model
accurately identified the adulterated duck meat samples. Wang et al. [93] used an electronic
nose to detect the adulteration of Ningxia small-tailed cold sheep meat with different ratios
of cooked duck meat, and the accuracy of identification reached 98.2%. Wang et al. [94]
used an electronic nose to identify the adulterated duck meat in fresh lamb meat, and the
accuracy reached more than 96%.

The common market after the smoking, curing, hot and cold processing, canning, and
other processing of sausage, bacon, and canned meat products such as ham is the most
easily adulterated. For example, the raw materials of Jinhua ham and the mixed Jinhua ham
flavor are differentiated. It was observed from the PCA results that the aroma profile of the
blended Jinhua ham flavor could be clearly distinguished from the raw Jinhua ham [95].
Zhang et al. [96] used an electronic nose to examine the changes in odor of four different
manufacturers’ corn flavors used in ham sausages and ham sausages with added flavors
during storage, and the results showed that even though there was little difference in the
sensory evaluation, there were significant differences between the same flavors produced
by different manufacturers. Table 2 provides a more intuitive look at the types of meat used
in meat adulteration detection, the types of sensors, and the accuracy of model predictions.

Table 2. Detection accuracy of meat adulteration using electronic nose (detection method: electronic nose).

Detection
Method

Adulteration
Category Sensor Type

Pattern
Recognition
Algorithm

Accuracy Reference

Electronic
nose

Beef–pork MQ sensors

SVM 94.57%

[97]
ANN 93.41%
DTC 91.14%
LR 93.42%

Lamb–duck MOS sensors
LDA 94.7%

[94]FLDA 98.2%
MLPN 96.5%

Beef–pork MQ sensors

SVM 98.10%

[98]
ANN 95.48%
KNN 93.10%
LDA 96.67%

Beef–pork MQ sensors
PCA 99.97%

[99]SVM 98.10%

Beef–pork Colorimetric
sensors Fisher LDA 91.27% [100]

Gel–fat MOS sensors PCA 96.00% [101]

The above results show that in the detection of adulteration of beef, mutton, and other
meat products, the electronic nose, based on the information of odor fingerprints of different
meats, can detect the differences in the odor of adulterated meats and thus identify the
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adulteration behavior. The data were processed and analyzed by combining chemometrics
methods to improve the accuracy and reliability of the detection. The data obtained from
electronic nose detection were processed and analyzed using principal component analysis
(PCA) and linear discriminant analysis (LDA), and the model prediction accuracy was good,
showing that it can realize fast, accurate, and nondestructive meat adulteration detection.
It is a kind of analytical method with good development prospects, which provides a fast
and cheap evaluation method for the determination of odor composition difference.

4.2. Problems of Electronic Nose in Meat Adulteration Detection

In recent years, the electronic nose technology in software and hardware has made
breakthroughs, and it has become widely applied in meat testing. The adulteration of
different meat ingredients can be more accurately differentiated, but due to the rise of
artificial science and technology of adulteration in a variety of ways, the addition of flavors
and so on may affect the accuracy of the test. The electronic nose can still be used on volatile
substances, but it cannot be used for qualitative and quantitative detection, as the long time
use of the sensor is prone to baseline drift problems, it is easily affected by the environment
during the detection process, etc. At present, the electronic nose equipment is a large-scale,
experimental type of equipment that exists in colleges, universities, and research institutes,
and it is not suitable to move, which has a certain impact on the immediate detection
of meat. Therefore, it is necessary to find a relatively stable instrument to be used in
combination and to find a new breakthrough in information fusion. Near-infrared (NIR)
detection technology is simple and stable, and it is suitable to be applied to food quality
assessment in combination with electronic nose technology.

4.3. Application of Near-Infrared Spectroscopy in the Detection of Meat Adulteration

In the context of meat adulteration, NIR technology can be used to rapidly detect
and identify other meat or nonmeat components adulterated in meat samples. Since the
chemical composition of meat is related to the composition of organic matter, such as
moisture, fat, and protein, NIR technology can be used to identify different types of meat
by detecting the spectral characteristics of these organic matter [102]. Bai et al. [103] used
near-infrared spectroscopy to determine the proportion of adulteration in lamb meat rolls
with different pork fat percentages, with a correlation coefficient between the predicted
value and the true value of 0.9138, to more accurately identify different proportions of
adulterated lamb. Effective identification can also be achieved for mutton adulterated
with different fractions of duck meat. Zheng et al. added duck meat to mutton in 5%
increments with a coefficient of determination (R2

P) of 0.98 [104]. They also provided
an efficient detection technique for the qualitative and quantitative detection of lamb
adulteration. Kamruzzaman et al. [105] admixed chopped lamb samples with chopped
pork in the range of 2–40% (w/w) in increments of about 2%. Similarly, for beef adulterated
with different portions of horse and chicken meat, rapid screening was achieved with
coefficients of determination, R2

P, of 0.98 and 0.97, respectively [106,107]. Weng et al. [108]
tested beef adulterated with different proportions of pork, beef heart, and tallow adulterants
with 99% accuracy. And the feasibility of homologous adulterants in beef was verified.
Zhao et al. [109] achieved rapid nondestructive quantitative detection of the adulteration
of spoiled beef using near-infrared spectroscopy in fresh beef adulterated with spoiled
beef, with calibrated and predicted root mean square error (RMSE) values of 7.23% and
6.54%, respectively. In addition to identifying adulterated meat, NIR spectroscopy can
also detect nonmeat components added to meat and meat products, such as water, soy
protein, and meat additives, such as carrageenin and nitrite [110]. Yang et al. [111] used
near-infrared spectroscopy combined with principal component analysis and the Fisher’s
two-class discrimination method to establish a discrimination model for raw meat and
adulterated meat, and the model was 100% correct in the discrimination of adulterated
meat, but there were five misjudgments of raw meat, making the correct rate 86.1%. The
addition of carrageenin to meat will make the meat taste good, but the excessive addition
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of carrageenin will affect the rights of consumers. He et al. [112] used PLS combined with
the SPA modeling method for the rapid nondestructive testing of injected meat. The root
mean square error (RMSEP) was 3.51%, and the prediction deviation was 2.66, which
showed they were able to distinguish the injected meat effectively. Similarly, for fake
pork adulterated with carrageenin and sodium chloride, a more accurate distinction could
still be realized, with an identification accuracy of 94.2% [113]. In Table 3, it can also
be observed that the accuracy prediction when choosing different pattern recognition
methods varies for different meats and meat products. The following Figure 5 shows the
statistics of the number of articles published on the detection of meat adulteration using
near-infrared spectroscopy.

Table 3. Detection accuracy of meat adulteration using electronic nose (detection method: NIR
sepctroscopy).

Detection
Method

Adulteration
Category Pattern Recognition Algorithm Accuracy Reference

NIR
spectroscopy

Beef–soy
products

PCA 98.90%
[114]SVM 84.00%

Beef–turkey PCA 87.70%
[115]LDA 88.30%

Beef–pork RF 96.67%
[108]SVM 89.00%

Lamb–fat
SG-PCA 97.00%

[116]2Class-LDA 100.00%
5Class-LDA 92.31%

Beef
burgers–offal

PLS1-DA (fresh) 95.5%

[117]

PLS1-DA (frozen then thawed) 91.3%
PLS1-DA (fresh or frozen

then thawed) 88.9%

SIMCA (sensitivity values of fresh) 1
SIMCA (sensitivity values of frozen

then thawed) 0.88

SIMCA (sensitivity values of fresh
or frozen then thawed) 0.97

Chemosensors 2024, 12, x FOR PEER REVIEW  12  of  24 
 

 

of determination, R2P, of 0.98 and 0.97, respectively [106,107]. Weng et al. [108] tested beef 

adulterated with different proportions of pork, beef heart, and tallow adulterants with 99% 

accuracy. And the feasibility of homologous adulterants in beef was verified. Zhao et al. 

[109] achieved rapid nondestructive quantitative detection of the adulteration of spoiled 

beef using near-infrared spectroscopy  in  fresh beef adulterated with spoiled beef, with 

calibrated and predicted root mean square error (RMSE) values of 7.23% and 6.54%, re-

spectively. In addition to identifying adulterated meat, NIR spectroscopy can also detect 

nonmeat components added to meat and meat products, such as water, soy protein, and 

meat additives, such as carrageenin and nitrite [110]. Yang et al. [111] used near-infrared 

spectroscopy combined with principal component analysis and the Fisher’s two-class dis-

crimination method  to establish a discrimination model  for  raw meat and adulterated 

meat, and the model was 100% correct in the discrimination of adulterated meat, but there 

were five misjudgments of raw meat, making the correct rate 86.1%. The addition of car-

rageenin to meat will make the meat taste good, but the excessive addition of carrageenin 

will affect the rights of consumers. He et al. [112] used PLS combined with the SPA mod-

eling method for the rapid nondestructive testing of injected meat. The root mean square 

error (RMSEP) was 3.51%, and the prediction deviation was 2.66, which showed they were 

able to distinguish the injected meat effectively. Similarly, for fake pork adulterated with 

carrageenin and sodium chloride, a more accurate distinction could still be realized, with 

an identification accuracy of 94.2% [113]. In Table 3, it can also be observed that the accu-

racy prediction when choosing different pattern recognition methods varies for different 

meats and meat products. The following Figure 5 shows the statistics of the number of 

articles published on the detection of meat adulteration using near-infrared spectroscopy. 

 

Figure 5. Statistics on the number of articles published on the detection of meat adulteration using 

near-infrared spectroscopy. 

The above results show that, in the detection of meat and meat product adulteration, 

NIR spectroscopy can detect  the chemical composition and structural characteristics of 

meat, and based on the spectral fingerprint information of different meats, it can identify 

whether the meat is authentic or not and can also detect whether the meat is adulterated 

with other meats or not. Near-infrared spectroscopy can not only qualitatively determine 

whether meat is doped but also quantitatively determine the amount of meat doping. The 

accurate prediction and calculation of the doping amount can be performed by establish-

ing the corresponding mathematical model. At the same time, the technique also needs to 

be  combined with  other detection methods  and  chemometrics methods  for data  pro-

cessing and analysis in order to improve the accuracy and reliability of detection. 

   

Figure 5. Statistics on the number of articles published on the detection of meat adulteration using
near-infrared spectroscopy.



Chemosensors 2024, 12, 35 13 of 23

The above results show that, in the detection of meat and meat product adulteration,
NIR spectroscopy can detect the chemical composition and structural characteristics of
meat, and based on the spectral fingerprint information of different meats, it can identify
whether the meat is authentic or not and can also detect whether the meat is adulterated
with other meats or not. Near-infrared spectroscopy can not only qualitatively determine
whether meat is doped but also quantitatively determine the amount of meat doping. The
accurate prediction and calculation of the doping amount can be performed by establishing
the corresponding mathematical model. At the same time, the technique also needs to be
combined with other detection methods and chemometrics methods for data processing
and analysis in order to improve the accuracy and reliability of detection.

4.4. Problems of Near-Infrared Spectroscopy in the Detection of Meat Adulteration

Near-infrared spectroscopy technology has been gradually applied to the detection of
agricultural products because it can realize the simultaneous detection of multiple items
with a fast speed and no pollution. It is mostly used in meat testing for quality and
freshness testing, and its application in the detection of meat adulteration is still relatively
small. Although infrared testing can simultaneously predict different items, such as the fat,
moisture, and protein in meat, modeling of each item is required, which is time-consuming,
and different modeling methods can lead to over-adaptation or under-adaptation of the
model. Due to its limited detection range, the number of samples to be tested cannot be
small, and the accuracy of the test is not as good as that of chemical methods; therefore,
there is also a need to find a complementary technique that can be used in conjunction with
NIR detection in the detection of meat adulteration.

5. Combined Application of Electronic Nose and Near-Infrared Spectroscopy in
Detection of Meat Adulteration

Electronic noses and near-infrared spectroscopy are both sensor technologies used
to detect and identify different odors or chemical components. These technologies have
a wide range of applications in the food industry, medical industry, and environmental
monitoring. The fusion of electronic nose and near-infrared spectroscopy data can fur-
ther improve the accuracy of odor and ingredient identification. The quality and safety
of food products are detected using the electronic nose and near-infrared spectroscopy.
An electronic nose can detect volatile organic compounds in food, while near-infrared
spectroscopy can detect ingredients in food. At present, there are few research results
on the joint application of electronic nose and near-infrared (NIR) detection technology
in food, and its application value and prospects need to be explored. Evaluation results
derived from a technical method have a high probability of error, relatively low reliability,
and often do not accurately reflect the real situation of the product. The electronic nose
can realize the effective differentiation of meat adulteration, but in the process of detecting
meat adulteration, the electronic nose can only obtain the odor description of the volatile
components by consulting the literature and choose an appropriate sensor model for the
detection of the volatile gases emitted, while near-infrared spectroscopy can differentiate
according to the different characteristics of the meat itself. Studies have shown that for
synthetic and reactive beef flavors, the electronic nose is not only able to detect adulterated
beef and real beef but also able to detect different adulteration ratios more effectively, but
for blended beef flavors, the electronic nose can only detect adulterated beef and real beef,
not different adulteration ratios [118]. In order to better realize meat detection, data fusion
can be carried out using the electronic nose combined with near-infrared spectroscopy
equipment and other instruments to improve the accuracy of detection.

The fusion of data from these two technologies can improve the quality and safety
of food by more accurately detecting harmful substances in food or categorizing and
identifying food products. The three different levels of fusion methods in data fusion are
data layer fusion, feature layer fusion, and decision layer fusion. Among them, data layer
fusion is performed at the raw data level, and it extracts the complementary and redundant
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information from raw data from multiple sensors through comprehensive analysis and
processing and then optimally combines them to obtain a more comprehensive and accu-
rate characterization or estimation. Feature layer fusion extracts representative features
from the raw observation data provided by each sensor, which are fused to form a single
feature vector and then processed using pattern recognition methods as a basis for further
decision making. Decision layer fusion is the highest level of fusion, where first each sensor
performs a recognition decision on the target and then the recognition results from each
sensor are fused to make an optimal decision according to certain criteria. Each of these
three levels of convergence methods has its own characteristics, and the appropriate conver-
gence method can be selected according to specific application scenarios and requirements.
Data fusion in meat inspection can be applied to food safety and quality control, etc. In
meat inspection, data fusion technology can combine data from multiple sensors, such
as freshness, nutrient content, and other indicators. Li et al. [119] used an electronic nose
combined with an electronic tongue to qualitatively and quantitatively analyze minced
chicken meat doped with different proportions of soy protein or starch, and the results
of the assay showed that the combined assay of the two has a good differentiation ability
for minced chicken meat. Liu et al. [120] combined surface-enhanced Raman spectroscopy
with electronic nose technology to compare three different data fusion strategies with
multiple machine learning methods to achieve the detection of the peanut oil oxidation
degree. The results show that the data fusion strategy effectively improves the prediction
performance of the model. Li et al. [121] proposed a novel efficient back-propagation
adaptive enhancement (BP-AdaBoost) algorithm for data fusion and modeling for the
nondestructive detection of the total volatile saline nitrogen (TVSN) content in pork using
a combination of hyperspectral imaging and colorimetric sensors, which confirmed that
the model of data fusion was superior to that of a single-sensor technique. Data fusion
technology applied to meat adulteration detection can improve the accuracy and reliability
of meat adulteration detection by comprehensively analyzing and processing data from
multiple sources. For example, the color, texture, shape, and other characteristics of meat
products can be comprehensively analyzed using spectral technology, image analysis tech-
nology, etc., and data fusion can be carried out by combining information from a variety of
data sources, so as to more accurately determine whether meat products are adulterated.
In addition, near-infrared spectroscopy can be utilized to quickly and accurately detect
fat, protein, and other components of meat products, and data fusion can be performed
in conjunction with information from other data sources, thereby improving the accuracy
and reliability of meat adulteration detection. Zhang et al. [122] used an electronic nose
combined with near-infrared spectroscopy technology to qualitatively and quantitatively
detect pork, chicken, and duck samples mixed with different proportions (0%, 20%, 40%,
60%, 80%, 100%) in mutton, and the overall discrimination accuracy was over 96%. Han
et al. [85] used an electronic nose and near-infrared spectroscopy to identify independent
samples of raw beef, a beef and duck mixture, and raw duck meat. Both the near-infrared
spectroscopy and electronic nose could distinguish samples well when used alone, but the
correlation coefficient of detection with the combination of the two was increased from
0.913 to 0.972, and the combination more accurately distinguished adulterated duck meat
in beef.

The above studies have shown that the electronic nose can sensitively detect changes
in volatiles in meat due to changes in tissue composition and that near-infrared (NIR) spec-
troscopy can be used to validate the changes detected by the electronic nose by reflecting
the internal changes in the meat at a deeper level. The use of the electronic nose combined
with visible/near-infrared spectroscopy can be applied to food authenticity identification.
This combined detection method can improve the accuracy and reliability of detection,
make up for the deficiency of single-instrument detection, and provide a more reliable
decision-making basis for the food industry. However, the amount of research on the
joint detection of the electronic nose combined with near-infrared (NIR) spectroscopy in
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meat adulteration and other aspects of this study is relatively small, and further in-depth
research is needed.

6. Pattern Recognition Algorithm

The detection data of the electronic nose and near-infrared spectroscopy are generally
processed using multivariate statistics and the stoichiometric method. At present, the
K-nearest neighbor method, support vector machine (SVM), and artificial neural network
are common pattern recognition algorithms in electronic nose signal classification and
near-infrared spectroscopy. Pattern recognition refers to the processing and analysis of
various forms of information that represent things or phenomena using computers and
mathematical methods [123]. The process of pattern recognition includes several steps,
such as signal preprocessing, pattern segmentation, feature extraction, pattern classification,
and context post-processing [124].

When analyzing the electronic nose and NIR spectral data, the required pattern identi-
fication method can be flexibly selected according to the model and the actual situation.
All of the pattern recognition methods have their own advantages and disadvantages, as
shown in Table 4.

Table 4. Commonly used pattern recognition algorithms and their advantages and disadvantages.

Pattern Recognition Algorithm Advantages Disadvantages References

PCA

It makes the data set easier to use,
reduces the calculation cost of the
algorithm, removes noise, makes the
results easy to understand, and has no
parameter restrictions at all.

Eigenvalue decomposition has
limitations, the transformation matrix
must be a square matrix, and in the
case of non-Gaussian distribution, the
principal elements obtained via PCA
may not be optimal.

[125,126]

SVM

It can solve high-dimensional and
local extreme value problems, and the
local optimal solution is also the
global optimal solution.

It is sensitive to isolated points and
noise points, and the operation cost
is high.

[127,128]

K-means It has a fast convergence speed, and
the clustering effect is better.

It has sensitivity to noise and outlier
comparisons. The selection of the K
value is not easy to grasp. It is difficult
to converge for data sets that are
not convex.

[129,130]

KNN

It can be used for numerical data and
discrete data, has no data input
assumption, and is insensitive
to outliers.

It has a high computational
complexity and high spatial
complexity. It is impossible to give the
underlying meaning of the data.

[131,132]

ANN
It can handle large amounts of data,
coordinate multiple nonlinear factors,
and improve the output speed.

When there are many layers in the
network, it is easy for it to fall into the
local optimal solution and also easy
to overfit.

[133,134]

BPNN It has a strong nonlinear mapping
ability and flexible network structure.

The learning speed is slow, it is easy to
fall into the local minimum, and the
network promotion ability is limited.

[135,136]

CNN

The topology structure of the input
image and the network is in good
agreement. Feature extraction and
classification are carried out at the
same time, which is more adaptable.

Deep convolutional networks extract
more local information, and deep
convolutional networks have large
computational requirements and fixed
input image sizes, which have
limitations on embedded devices.

[137,138]

RF
It has more features, a tolerance of
high data noise, and a high prediction
accuracy and it is not easy to overfit.

The efficiency of high-dimensional
feature screening and selection is low,
and the generalization error
estimation of dynamic data clustering
is large.

[139,140]

Most of the traditional algorithms, such as principal component analysis, linear dis-
criminant analysis, and functional discriminant analysis, are still used in electronic nose
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systems [141]. Some other machine learning algorithms have also been used in e-nose
systems, such as artificial neural networks (ANNs), support vector machines (SVMs), and
decision trees. These algorithms can be used in conjunction with PCA or LDA to further
improve the performance of the electronic nose system. Commonly used algorithms in
NIR spectral analysis include principal component analysis (PCA), partial least squares
(PLSs), support vector machines (SVMs), and neural network algorithms. While principal
component analysis (PCA) is one of the most used algorithms for the fusion of data from
instruments such as the electronic nose and near-infrared spectroscopy, it can fuse data
from different instruments and environments with uniform coordinate transformations and
weighted averages and at the same time extract the eigenvectors of the data, in addition to
being combined with other machine learning algorithms in order to further improve the ac-
curacy and reliability of the data. Different types of data contain different information and
exist in different dimensions; spectral data usually contain continuous spectral information,
while electronic nose data usually contain discrete chemical sensor responses. Therefore,
for both types of data characteristics, algorithms need to be selected that can effectively
handle the corresponding data types. Different classification algorithms have different
characteristics, such as sensitivity to noise, the need for a number of training samples,
and control of model complexity. When selecting an algorithm, the extent to which these
properties match the characteristics of the data needs to be considered. An initial selection
of potentially suitable algorithms is then made based on the degree of match between
the data and the algorithm. The performance of the initially selected algorithms is also
evaluated using cross-validation methods, while for each algorithm, its parameters are
adjusted to optimize the performance. Based on the results of cross-validation and tuning
parameters, the best-performing algorithm is selected as the final model, and the final
selected model is evaluated with an independent test set and compared with other algo-
rithms to ensure that the selected model has the best performance. Wiedemair et al. [142]
used different techniques to preprocess the raw data and find out the difference between
pure and adulterated meat using the principal component analysis technique and then
analyzed the preprocessed sample data using partial least squares discriminant analysis
and found that effective identification can be achieved when the degree of adulteration
is higher than 2% in pure beef or mutton. Leng et al. [143] used 1H NMR spectroscopy
combined with chemometrics to identify adulterated pork and duck meat in beef, where
PCA was used to visualize the difference between beef and binary adulterated beef but
could not identify the unknown samples, and the PLS model accurately predicted the level
of beef adulteration, with an R2 value of greater than 0.90 and RMSEE and RMSEP values
close to zero. And using the OPLS-DA model, both binary and ternary adulterated beef
can be effectively distinguished. In addition to traditional machine learning algorithms,
some novel pattern recognition algorithms are also being developed. Huang et al. [144]
proposed a novel framework, 1DCNN-RFR, consisting of a 1DCNN skeleton and RFR in
the quantitative detection of beef doped with pork via an MOS sensor-based electronic
nose system. This framework obtained the best results on the test set compared to four
models, SVR, RFR, BPNN, and 1DCNN, with an R2 of 0.9977, RMSE of 0.9491%, and MSE
of 0.4619%. Similarly, the optimization of the algorithm can improve the accuracy and
reliability of the model for better food safety. Ren et al. [145] investigated the use of minia-
ture near-infrared spectroscopy and electronic tongues based on gray wolf optimization,
ant colony optimization, particle swarm optimization, nondominant classification, and
genetic algorithm II data optimization, which were used as modeling features, combining
support vector machines, extreme learning machines, and K-nearest neighbor algorithms
in order to construct a classification model for prediction. They found that the ant colony
optimization–support vector machines model had the highest classification accuracies of
3.42 mg/100 g; 0.74 and 3.21 mg/100 g; 0.73 and 3.32 mg/100 g; 0.79 and 3.17 mg/100 g;
and 0.73 and 3.28 mg/100 g, respectively, whereas the model prediction sets’ RP

2 and
RMSEP values from the fusion of the two sets of data were 0.75 and 2.62 mg/100 g; 0.85 and
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2.39 mg/100 g; and 0.83 and 2.42 mg/100 g, which were better than the models constructed
with their corresponding data [146].

7. Conclusions

Electronic nose technology is now more widely used. It has been used in food,
pharmaceutical, tobacco, chemical, environmental, and medical diagnosis fields, among
others. In the food industry, the electronic nose is used to detect and analyze the smell
and flavor of food to ensure the quality and safety of products. Through the electronic
nose detection technology, food enterprises can detect and analyze the quality and safety
of food more quickly and accurately, thus improving the quality and reliability of products.
Near-infrared spectroscopy technology currently has a wide range of applications and
potential in many fields. It can be used for the quality and safety testing of food, such as
fruits, vegetables, meat, dairy products, etc.; for the identification and quality control of
drugs, such as the authenticity identification of Chinese medicinal materials and validity
period testing of drugs; and in biomedical fields, such as human tissue composition analysis
and medical diagnosis.

The indicators reflecting meat are multifaceted, including color, texture, flavor, nutri-
tion, and so on. The evaluation results obtained by a single technical method often have
the problems of error and a relatively low reliability, which cannot accurately reflect the
real situation of the product. In order to more comprehensively and accurately assess the
quality and safety of meat, various technical methods are needed for comprehensive analy-
sis. When its quality changes, one of the most visible indicators is the changes in sexual
substances, and the electronic nose is the ideal tool for sensing such changes. In order to
improve the accuracy and reliability of the evaluation results, the meat characteristics can
be deeply verified, and the data verification and analysis can be conducted. In addition,
new technical methods and indicators need to be constantly explored to better reflect
the real situation of meat. The research and application of electronic nose–near-infrared
spectroscopy combined technology in the adulteration detection of meat products has great
economic potential value and social benefits.

8. Challenge and Future Trend

Scholars at home and abroad have accumulated a large number of methods and
practical experience in gas sensor technology and near-infrared spectroscopy detection,
which fully reflects the implementation of modern nondestructive testing technology for
meat adulteration detection. Nondestructive testing, such as the electronic nose and near-
infrared spectroscopy, have been increasingly used in the detection of adulterated meat
and meat products in recent years, but the future development still faces certain challenges.
The electronic nose has the advantages of safety, rapidity, convenience, and accuracy in the
application of meat and meat product testing, which makes up for the subjectivity, ambi-
guity, and repeatability of human testing. However, there are limitations in the detection
accuracy and use of the sensor: the commercial electronic nose is larger, more expensive,
and has other issues. Although the electronic nose detection system has had breakthroughs
in recent years in the software and hardware parts of the technology, the single use of
electronic nose detection is affected by environmental factors (temperature, humidity) and
other gases in the air, as well as interference before and after the collection of gas. The
sampling device and the chamber face cleaning difficulties, and the response signal of the
gas-sensitive sensor array is susceptible to influencing the problem. Therefore, in order
to improve the accuracy of electronic nose detection, it can be used in the selection of
characterization feature vectors, and the establishment of the data model should be fully
considered through data preprocessing, pattern recognition algorithms, and other data
processing means to eliminate these interference in the hardware to ensure the accuracy
of detection and enhance the sensitivity and service life of the sensor, gas phase, and MS
instruments to find new breakthroughs in information fusion; expand the amount of data
of the electronic nose; and seek algorithmic innovations to the problem of baseline drift.
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Near-infrared spectroscopy detection has problems such as cumbersome data processing,
difficult modeling, and insufficient supporting facilities. Particularly, the selection of data
processing and modeling methods is a large amount of work, and the current near-infrared
spectroscopy analysis technology is still limited to laboratory research. Therefore, improv-
ing the performance of the spectrometer to increase the spectral resolution, optimizing the
spectral preprocessing method to improve the accuracy of the subsequent analysis, and
developing the multimodal fusion technique award the combination the advantages of
different techniques. Thus, the development of a near-infrared spectrometer with a low
production cost, good versatility, and consistent supporting facilities is needed to realize
the near-infrared rapid detection technology. Therefore, how to effectively give full play
to the characteristics of different detection technologies and improve the integrity and
reliability of nondestructive testing to achieve high-precision, rapid, and comprehensive
detection is still worth further study.

With the development of modern instrumental analytical techniques and the mutual
integration of chemometrics and various disciplinary fields, the study of near-infrared
spectroscopy and electronic nose detection of meat adulteration has led to their popular
application, and the safety of meat has been improved, but these two techniques still have
certain limitations, and the combinations of the two are still relatively few, so exploring more
accurate, rapid, economical, and comprehensive detection technology for meat adulteration
is one of the directions of our efforts in the future.
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