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Abstract: Transition metallic binary alloys have attracted enormous attention in regard to the non-
enzymatic detection of glucose due to their high electrocatalytic activities induced by the synergistic
effect between the individual metallic species. However, the easy aggregation of the bimetallic
particles has limited their performance. Herein, a facile metal–organic framework (MOF)-derived
strategy is developed to synthesize a hybrid containing binary Co–Ni nanoparticles decorated on
an N-doped porous carbon matrix (CoxNiy/N-C) for the non-enzymatic detection of glucose. The
Co/Ni ratio in the hybrid is investigated to regulate its electrocatalytic behaviors for glucose sensing.
A hybrid with the optimal Co/Ni ratio of 1:1 displays two linear detection ranges (0.5 µM to 1 mM
and 1 mM to 10 mM) with a detection limit of 0.11 µM for glucose. The feasibility of using this
hybrid-modified SPE for glucose detection in real serum samples has also been validated.

Keywords: cobalt–nickel alloy; metal–organic framework-derived hybrid; glucose; biosensors; elec-
trochemical detection

1. Introduction

As one of the most popular chronic diseases, diabetes constitutes a great threat to
human health. The number of diabetes patients worldwide is expected to reach 642 million
by 2040 [1]. Abnormal glucose levels in the body fluids of patients with diabetes usually
increase their risk of diabetes complications, such as blindness, heart disease, kidney failure,
and foot damage [2]. Therefore, the effective and accurate detection of glucose levels is
crucial for patients with diabetes.

The enzyme-based electrochemical method is a widely used method for glucose
detection. However, it suffers from complicated enzyme immobilization procedures and the
poor stability of the enzyme. To overcome these limitations, non-enzymatic electrochemical
methods have attracted much attention in recent years [3]. Transition metals, such as Co,
Ni, and their alloys, have been widely investigated as the catalysts for non-enzymatic
glucose sensing due to their low cost and excellent catalytic activities [3–9]. Among these
materials, Co–Ni bimetallic alloys have received particular attention for glucose detection
due to their synergistic effect on the electro-oxidation of glucose, as well as their tunable
electronic and geometric structures [2,10–14]. The rich valence states provided by Co–
Ni alloys can offer more active sites than their individual species [13]. However, the
easy agglomeration of as-synthesized Co–Ni alloys has severely limited their catalytic
performance [14]. Therefore, it is highly desirable to develop a method to prepare a Co–Ni
alloy with an optimal microstructure to achieve high electrocatalytic efficiency.

In recent years, metal–organic frameworks (MOFs) with tunable microstructures and
compositions have been explored as the templates for synthesizing porous carbon-based
hybrids with various microstructures using the pyrolysis process [15]. The as-formed
porous carbon matrix exhibits an enhanced electrical conductivity, which is beneficial for
the charge transfer during the electrocatalytic process [16,17]. At the same time, the presence
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of heteroatoms in the carbon substrate induced by the pyrolysis of the organic ligands can
retain the dispersed metal nanoparticles on the substrate and prevent their aggregation,
offering abundant active sites for mass transport and electrocatalytic activity [18,19]. Recent
studies have shown that the proportion of Co and Ni in the Co–Ni alloy plays an important
role in determining its sensing performance for glucose [20–26]. The charge migration and
electronic properties of the active sites in the alloy can be modulated by tailoring the Co/Ni
ratio, thereby influencing its electrocatalytic performance [21].

Herein, we develop a facile method to prepare a bimetallic Co–Ni hybrid for the
detection of glucose. The hybrid containing Co–Ni alloy nanoparticles decorated on
a porous N-doped carbon matrix (CoxNiy/N-C) is synthesized through the one-step
pyrolysis of the MOF precursor. The effects of the Co/Ni ratio in the hybrid on the
microstructure and electrocatalytic performance toward glucose are investigated. A hybrid
with the optimal Co/Ni ratio shows outstanding performance toward the electro-oxidation
of glucose due to the synergetic effect between the Co and Ni species and the presence of
the N-dopant in the carbon matrix. This hybrid is also successfully used to determine the
glucose levels in real serum samples.

2. Materials and Methods
2.1. Materials

Cobalt nitrate hydrate (Co(NO3)2·6H2O, 99%), nickel nitrate hydrate (Ni(NO3)2·6H2O,
99%), zinc nitrate hydrate (Zn(NO3)2·6H2O, 99%), and sodium hydroxide (NaOH, 98%)
were purchased from Sinopharm Chemical Reagent (Shanghai, China). Glucose (99.5%)
and 2-methylimidazole (98%) were provided by Yuanye Biological Technology (Shanghai,
China). Isopropanol was obtained from Cologne Chemicals (Sichuan, China). Nafion
solution was purchased from DuPont (Wilmington, DE, USA). Sodium chloride (NaCl),
lactose (Lac), fructose (Fru), ascorbic acid (AA), dopamine (DA), adenosine triphosphate
(ATP), and uric acid (UA) were bought from Macklin Biochemical (Shanghai, China).
All chemicals were used without further purification. Milli-Q water with a resistance of
18.2 MΩ·cm was used for aqueous solution preparation.

2.2. Synthesis of CoxNiy/N-C hybrids

The metal salt aqueous solution was prepared by dissolving a total 6.4 mM of Co(NO3)2·6H2O
and Ni(NO3)2·6H2O mixture with different molar ratios (3:1, 1:1 and 1:3) in a 16 mL aque-
ous solution containing 4 mM Zn(NO3)2·6H2O. The 16 mL of the as-prepared metal salt
solution was then mixed with 160 mL of 3.45 M 2-methylimidazole aqueous solution under
magnetic stirring at room temperature for 6 h to obtain ZnCoNi-MOF solution. Subse-
quently, the ZnCoNi-MOF solution was centrifuged at a speed of 10 k rpm for 20 min and
washed three times with deionized water, followed by a freeze-drying process for 24 h to
obtain ZnCoNi-MOF powder. The as-received ZnCoNi-MOF powder was then annealed
at 900 ◦C for 2 h under N2 gas to achieve the CoxNiy/N-C hybrids with different Co/Ni
ratios, labeled as Co3Ni1/N-C, Co1Ni1/N-C, and Co1Ni3/N-C, respectively, according
to their feeding ratios. For comparison, Co/N-C and Ni/N-C hybrids were synthesized
using the same protocol except for the addition of 6.4 mM of Co(NO3)2·6H2O and 6.4 mM
Ni(NO3)2·6H2O, respectively, into the Zn(NO3)2·6H2O aqueous solution to prepare the
metal salt solution instead of the Co(NO3)2·6H2O and Ni(NO3)2·6H2O mixture.

2.3. Preparation of Hybrid-Modified Electrodes

Three-electrode system-based screen-printed electrodes (SPEs, Yituo Biosensing Tech-
nology, Suzhou, China) were employed as the substrate to investigate the sensing perfor-
mance of the hybrids for glucose. In bare SPEs, the carbon electrode, Ag/AgCl electrode
and carbon electrode were used as the working electrode, reference electrode and counter
electrode, respectively. The hybrid ink solution was prepared by dissolving 2 mg hybrid
powder into 1 mL isopropanol solution containing 0.5 wt% Nafion. For the modification of
the carbon-based working electrode, 5 µL of the hybrid ink was dropped on the working
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electrode with an area of 3 mm2 and dried at room temperature for 2 h to achieve the
hybrid-modified SPE.

2.4. Characterizations

The morphology and elemental composition of the hybrids were characterized using
a field emission scanning electron microscope (SEM, Quattro, 20 kV) and atransmission
electron microscope (TEM, JEM-2100F, 200 kV), respectively. X-ray diffraction (XRD, Rigaku
D/Max 2500, Tokyo, Japan) was used to determine the crystal structure of the samples
using Cu Kα radiation at 40 kV. The N2 adsorption–desorption isotherms were measured
using a Quadrasorb analyzer at 77 K after the pretreatment of the sample in a vacuum at
473 K for 2 h. The specific surface areas of the hybrids were calculated using the Brunauer–
Emmett–Teller (BET) method.

2.5. Electrochemical Measurements

Cyclic voltammetry (CV) and amperometry measurements (i-t) were employed to eval-
uate the electrochemical performance of the hybrid-modified SPEs, which were performed
in an electrochemical cell containing 100 mL 0.1 M NaOH aqueous solution using CHI660E
electrochemical workstation from Shanghai Chenhua Instrument Co., Ltd. (Shanghai,
China). For the i-t measurement, different concentrations of glucose were successively
added into a 0.1 M NaOH aqueous solution every 50 s at the applied potential of 0.6 V.

3. Results
3.1. Morphology and Structure Characterization

The hybrids were obtained through the pyrolysis of MOF precursors at 900 ◦C for
2 h under N2 gas. During the calcination process, the Zn species were evaporated and the
organic linkers containing a rich nitrogen source were carbonized, forming an N-doped
porous carbon substrate decorated with metallic particles [27]. The Co/N-C and Ni/N-C
hybrids were synthesized for comparison. The morphologies of the as-prepared hybrids
were characterized by SEM. As shown in Figure 1a,b, the Co/N-C and Ni/N-C hybrids
exhibit a porous structure decorated with particles of irregular morphologies and tubular
structures. For Co3Ni1/N-C and Co1Ni1/N-C hybrids, uniformly distributed spherical
particles are formed on the substrate (Figure 1c,d). However, after a further increase in
the Ni content to a Co/Ni ratio of 1:3, the particles show irregular spherical shapes and
aggregation (Figure 1e). We further calculated the specific surface areas of the hybrids using
the BET method (Figure S1 and Table S1). Among these hybrids, the Co1Ni1/N-C hybrid
displays the highest specific surface area of 375.64 m2/g, beneficial for mass transport [21].
The TEM and the corresponding EDS elemental mapping images confirm the homogenous
distribution of C, N, O, Co, and Ni elements in the CoxNiy/N-C hybrids (Figures 1f and S2).
The uniform distributions of Ni and Co on the carbon matrix at the same location in the
hybrids support the formation of the Co–Ni binary alloy on the carbon matrix.

The crystalline structures of the as-prepared hybrids were analyzed using XRD. The
XRD patterns of CoxNiy/N-C hybrids are similar to those of the Co/N-C and Ni/N-C
hybrids (Figure 2a). The relative broad peak at 26◦ was assigned to the (002) plane of
graphitic carbon (JCPDS No. 89-8487) [20]. There are three diffraction peaks at around
44◦, 52◦, and 76◦, which are indexed to the (111), (200), and (220) planes of the face-
centered cubic (FCC) structures of Co (JCPDS No. 04-0850) and Ni (JCPDS No. 04-0850),
respectively [28]. No other obvious peaks are observed, suggesting the evaporation of the
Zn species during the pyrolysis process. Figure 2b shows the zoomed-in (111) peak of the
hybrids. Compared with pristine Co/N-C, the zoomed-in (111) peak of the CoxNiy/N-C
hybrid gradually shifts towards a higher 2θ value with the increase in the Ni amount. This
is due to the lattice contraction of the Ni alloying with Co, confirming the formation of the
Co–Ni alloy [20,29]. No other planes were observed for the CoxNiy/N-C hybrids, implying
that the formation of the Co–Ni alloy has not destroyed the crystal structure of Co or Ni
due to the similar lattice parameters of Co and Ni.
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Figure 1. SEM images of (a) Co/N-C, (b) Ni/N-C, (c) Co3Ni1/N-C, (d) Co1Ni1/N-C, and
(e) Co1Ni3/N-C hybrids. (f) TEM and EDS mapping images of the Co1Ni1/N-C hybrid for C,
N, O, Co, and Ni.
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Figure 2. XRD patterns (a) and the corresponding zoomed-in XRD patterns (b) of the hybrids. XPS
spectra of C 1s (c), N 1s (d), Co 2p (e), and Ni 2p (f) for the Co/N-C, Ni/N-C, and Co1Ni1/N-C
hybrids.

The chemical compositions and valence states of the elements in the hybrids were
characterized using XPS (Figures 2c–f and S3). Three peaks in the high-resolution C 1s
spectra located at 284.8 eV, 285.6 eV, and 289.1 eV, are assigned to C=C, C-N and O-C-
O, respectively (Figure 2c) [30]. The existence of C=C and C-N indicates the graphite
carbon structure and the doping of N in the carbon matrix during the pyrolysis of the
MOF precursors, respectively [30]. For the N 1s spectra, four peaks at 398.9 eV, 400.6 eV,
401.4 eV, and 403.4 eV are ascribed to pyridinic-N, pyrrolic-N, graphitic-N, and oxidized-N,
respectively (Figure 2d) [31]. It has been reported that the presence of pyridinic-N and
pyrrolic-N can provide active sites and increase the charge density for electrocatalytic
reactions by tailoring the electronic properties of the carbon substrate with their lone pair
of electrons [32–34]. The amount of pyridinic and pyrrolic N in the Co1Ni1/N-C hybrid
(72.1%) is the highest among these hybrids (68.3% for Co/N-C, 69.5% for Ni/N-C, 71.4%
for CO3Ni1/N-C, and 70.1% for CO1Ni3/N-C, respectively) (Table S2). Meanwhile, it has
been shown that the existence of the N dopant can prevent the aggregation of the metallic
particles [19]. Figures 2e and S3 reveal that the Co 2p spectra of the CoxNiy/N-C and
Co/N-C hybrids compose the two main peaks of Co 2p3/2 and Co 2p1/2, which are further
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deconvoluted into four subpeaks, corresponding to Co0 (~778.5 eV and ~794.1 eV) and Co2+

(~780.4 eV and ~797.0 eV), and two satellites at around 784.4 eV and 804.2 eV [15]. The Ni
2p spectra of the CoxNiy/N-C and Ni/N-C hybrids have confirmed the presence of metallic
Ni at around 852.8 eV and 870.3 eV, respectively (Figures 2f and S3) [35,36]. The peaks
attributed to Ni 2p3/2 (~855.0 eV), Ni 2p1/2 (~872.6 eV) and two satellites (~860.3 eV and
~879.1 eV, respectively) are Ni2+ [15]. The presence of Co0 and Ni0 confirms the reduction
of Co2+ and Ni2+ species during the pyrolysis, while the existence of Co2+ and Ni2+ in the
hybrids indicates the surface oxidation by the atmosphere [29,37].

3.2. Electrochemical Performance of the Hybrid

The electrochemical activities of the CoxNiy/N-C hybrids were evaluated in an electro-
chemical cell containing 100 mL 0.1 M NaOH aqueous solution using CoxNiy/N-C hybrid-
modified SPEs. For comparison, bare SPE, Co/N-C hybrid-modified SPE, and Ni/N-C
hybrid-modified SPE were also measured under the same conditions. Figure 3a shows the
CV curves of the SPEs with and without the modification of the hybrids in a 0.1 M NaOH
aqueous solution at a scan rate of 50 mV·s−1. The current of the hybrid-modified SPEs
shows a huge improvement compared with that of the bare SPE. The Ni/N-C-modified
SPE shows an anodic peak current at around 0.51 V, indicating the oxidation of Ni2+ to
Ni3+, while the Co/N-C-modified SPE exhibits an anodic peak current of Co2+ to Co3+ at
around 0.16 V [21]. Although the oxidation peaks of the CO3Ni1/N-C and CO1Ni3/N-C
are located between those of the pristine Co/N-C and Ni/N-C hybrids due to the formation
of the Co–Ni alloy, the peak current is smaller than that of the pristine Ni/N-C (Figure 3a).
Interestingly, the Co1Ni1/N-C displays the highest oxidation current among the hybrids, in-
dicating the significant role of the Co/Ni ratio in dictating the electrocatalytic performance
of the hybrid.
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Figure 3. (a) CV curves of SPEs with and without the modification of the hybrid in 0.1 M NaOH
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We further investigated the performance of hybrid-modified SPEs in the presence of
1 mM glucose. As shown in Figure 3b, after the addition of 1 mM glucose, the oxidation
current of the Co1Ni1/N-C hybrid-modified SPE shows an increase starting from around
0.2 V, while the current of the bare SPE hardly changes, indicating high electrocatalytic
activity toward the glucose of the hybrid. An obvious increase in the oxidation current was
also observed for other types of hybrid-modified SPEs in the presence of 1 mM glucose
(Figure S4). Additionally, the CoxNiy/N-C hybrid starts to show the current increment
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at around 0.2 V, which is lower than that of the pristine Co/N-C (~0.4 V) and Ni/N-C
(~0.5 V) hybrids (Figure S4). The lower onset oxidation potential of the CoxNiy/N-C hybrid
indicates the synergistic effect between the Co and Ni species for the easier electro-oxidation
of glucose. The sensing mechanism can be explained as follows [15],

Ni (III) + Co (IV) + glucose → Ni (II) + Co (III) +gluconolactone (1)

In the alkaline solution, high-valence metallic species, Ni (III) and Co (IV), are respon-
sible for the oxidation of glucose to gluconolactone (Figure 3c). Meanwhile, the synergetic
effect between the Co and Ni species, along with the porous N-doped carbon network,
provides large active sites and promotes the electron transfer process, thereby promoting
the electro-oxidation of glucose.

We also found that the hybrid-modified SPEs showed the largest current increment
at around 0.6 V in the presence of 1 mM glucose. At the oxidation potential of 0.6 V,
the Co1Ni1/N-C hybrid-modified SPE exhibits the largest current increment, further con-
firming the optimal Co/Ni ratio of 1:1 for glucose sensing (Figure S5). Therefore, the
Co1Ni1/N-C hybrid-modified SPE was employed as the optimal electrode for the subse-
quent studies of glucose detection.

3.3. Glucose Detection with the Co1Ni1/N-C Hybrid-Modified SPE

Figure 4a shows the CV curves of the Co1Ni1/N-C hybrid-modified SPEs in the
presence of 1 mM glucose at different scan rates ranging from 2.5 mV/s to 150 mV/s. Both
anodic and cathodic currents increase with the increase in the scan rate in the presence
of 1 mM glucose. The anodic current at 0.6 V linearly increases with the square root
of the scan rate, suggesting that the glucose oxidation is a diffusion-controlled process
(inset in Figure 4a) [38]. Figure 4b indicates that the oxidation current of the CO1Ni1/N-C
hybrid-modified SPE increases with the increase in the glucose concentration from 0 mM
to 10 mM. We further plotted the oxidation current of the CO1Ni1/N-C hybrid-modified
SPE as a function of glucose concentration at different applied potentials (Figure S6a). The
sensitivity of the CO1Ni1/N-C hybrid-modified SPE for glucose oxidation reaches the
maximum at the applied potential of 0.6 V (Figure S6b). Therefore, the applied potential of
0.6 V was employed to perform i-t measurement of the CO1Ni1/N-C hybrid-modified SPE
for glucose in a 0.1 M NaOH aqueous solution.
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(a) 1 mM glucose at various scan rates (inset: the corresponding anodic peak current as a function of
the square root of the scan rate at the applied potential of 0.6 V), and (b) different concentrations of
glucose at a scan rate of 50 mV·s−1.

The amperometric response of Co1Ni1/N-C hybrid-modified SPEs was recorded by
successive addition of various concentrations of glucose into a 0.1 M NaOH aqueous
solution under magnetic stirring conditions (Figure 5a). A steady current can be achieved
in less than 5 s after each addition of glucose. We find that the response current at 50 s of the
Co1Ni1/N-C hybrid-modified SPEs to glucose shows two linear ranges (Figure 5b). The low
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linear range is from 0.5 µM to 1 mM (R2 = 0.987) with a sensitivity of 1041.7 µA·mM−1·cm−2

(inset in Figure 5b). The linear range in the high concentration region is from 1 mM to
10 mM (R2 = 0.980) with a sensitivity of 75.7 µA·mM−1·cm−2. The detection limit was
estimated to be 0.11 µM (S/N = 3), which is lower than most similar non-enzymatic glucose
sensors reported (Table S3).
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of different concentrations of glucose into a 0.1 M NaOH aqueous solution (a) and the corresponding
calibration curve for glucose detection (inset: linear fitting of the low concentration regime) (b).
(c) Amperometric response of the Co1Ni1/N-C hybrid-modified SPE after the successive addition of
glucose and interferences.

Lac, Fru, AA, UA, DA, ATP, and NaCl, which coexist with glucose in biological
fluids, are major interference species for the detection of glucose. We studied the current
response of the Co1Ni1/N-C hybrid-modified SPE after the successive addition of 1 mM
glucose and interferences of 2 mM Lac, 2 mM Fru, 2 mM AA, 2 mM UA, 2 mM DA, 2 mM
ATP, and 30 mM NaCl in the 0.1 M NaOH aqueous solution (Figure 5c). However, we
found that compared with the current change induced by 1 mM glucose, the Co1Ni1/N-C
hybrid-modified SPE exhibits a negligible current change after the addition of interferences,
indicating the good selectivity of the Co1Ni1/N-C hybrid-modified SPE.

The reproducibility of the CO1Ni1/N-C hybrid-modified SPE was evaluated using
five independent electrodes for the detection of 1 mM glucose in a 0.1 M NaOH aqueous
solution (Figure 6a). The relative standard deviation (RSD) of the five current responses
is 4.84%, indicating the good reproducibility of the electrode. The stability experiment
was conducted by measuring the current response of the prepared CO1Ni1/N-C hybrid-
modified SPE for 1 mM glucose for 7 days. As shown in Figure 6b, the CO1Ni1/N-C
hybrid-modified SPE retained 90.22% of the initial responses for 1 mM glucose after 7 days,
suggesting good stability.
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3.4. Glucose Detection Using Real Samples

To assess the feasibility of the Co1Ni1/N-C hybrid-modified SPE, human serum
samples were collected from volunteers in Chongqing University Hospital to evaluate
the glucose sensing performance. The samples were used for the experiment with the
consent of the volunteers and Chongqing University Hospital. For analysis, 6 µL serum
was first diluted using 24 µL 0.1 M NaOH aqueous solution and then dropped on the SPE.
Amperometry measurement (i-t) was performed at the applied potential of 0.6 V for 60 s to
determine the glucose concentration in the diluted serum samples (Figure S7). The current
response at 50 s was extracted to calculate the corresponding glucose concentration based
on the calibration curve. For comparison, a blood glucose meter and its electrode (accuracy:
≤±20%, precision: CV < 7.5%, Yuwell 660, Zhenjiang, China) were employed to determine
the glucose levels in the serum samples. As shown in Table 1, compared with the glucose
concentration determined by the glucose meter, the Co1Ni1/N-C hybrid-modified SPE
shows similar results with a relative standard deviation (RSD) of less than 3.01%. These
results indicate that the Co1Ni1/N-C hybrid-modified SPE demonstrates good feasibility
for detecting glucose in real samples.

Table 1. Glucose detection in human serum samples using a blood glucose meter and the Co1Ni1/N-C
hybrid-modified SPE.

Samples Blood Glucose Meter
(mM)

Co1Ni1/N-C
Hybrid-Modified SPE (mM) RSD (%)

1 6.6 6.61 ± 0.12 1.82
2 4.0 4.02 ± 0.09 2.24
3 5.4 5.32 ± 0.16 3.01
4 4.6 4.58 ± 0.11 2.40

4. Conclusions

In summary, CoxNiy/N-C hybrids with different Co/Ni ratios were synthesized
through the carbonization of MOF precursors. The obtained hybrids exhibited good elec-
trocatalytic activities toward glucose. We found that the microstructure and electrocatalytic
performance of the hybrid are dependent on the Co/Ni ratio. The hybrid-modified SPE with
the optimal Co/Ni ratio of 1:1 for the electro-oxidation of glucose shows two linear detec-
tion ranges (0.5 µM to 1 mM, 1 mM to 10 mM) with a sensitivity of 1041.7 µA·mM−1·cm−2

and 75.7 µA·mM−1·cm−2, respectively. The detection limit of the Co1Ni1/N-C hybrid-
modified SPE for glucose was calculated as being as low as 0.11 µM. The high-sensing
performance of the Co1Ni1/N-C hybrid can be ascribed to the synergistic effect between
the Co and Ni species, along with the porous N-dopant carbon matrix. The feasibility of
the Co1Ni1/N-C hybrid-modified SPE for glucose detection in real serum samples was also
validated, indicating a promising candidate for the non-enzymatic detection of glucose.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/chemosensors12030038/s1. Figure S1: N2 adsorption/desorption isotherm
of Co1Ni1/N-C hybrid; Table S1: Specific surface areas of hybrids calculated by BET method;
Figure S2: The TEM images and the corresponding elemental mapping images of (a) Co3Ni1/N-C
and (b) Co1Ni3/N-C hybrids for C, N, O, Co, and Ni. The scale bar is 500 nm; Figure S3: XPS spectra
of C 1s, N 1s, Co 2p, and Ni 2p for (a) Co3Ni1/N-C and (b) Co1Ni3/N-C hybrids; Table S2: N contents
calculated from XPS spectra; Figure S4: CV curves of SPEs modified with (a) Co/N-C, (b) Ni/N-C,
(c) Co1Ni3/N-C, and (d) Co3Ni1/N-C hybrids in 0.1 M NaOH aqueous solution in the absence and
presence of 1 mM glucose at a scan rate of 50 mV·s−1; Figure S5: The current increment extracted
from the CVs of hybrid-modified SPEs with different Co/Ni ratios at 0.6 V in presence of 1 mM
glucose at a scan rate of 50 mV·s−1; Figure S6: Current response of CO1Ni1/N-C-modified SPE as a
function of glucose concentration in 0.1 NaOH aqueous solution at various applied potentials (a) and
the corresponding sensitivity at different applied potentials (b); Table S3: Comparison of the sensing
performance of Co1Ni1/N-C hybrid-modified SPE prepared in this work with other non-enzymatic

https://www.mdpi.com/article/10.3390/chemosensors12030038/s1
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glucose sensors; Figure S7: Amperometric response of CO1Ni1/N-C hybrid-modified SPE for glucose
determination using serum samples.
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