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Abstract: Bipyridyl Ruthenium-decorated Ni-MOFs on multi-walled carbon nanotubes (MWCNT-
RuBpy@Ni-MOF) were synthesized. In an alkaline solution, the glucose was electrocatalytically
oxidized at +0.5 V vs. Ag/AgCl at the composite interface of MWCNT-RuBpy@Ni-MOF on a glassy
carbon electrode. The Ni3+/Ni2+ redox couples in Ni-MOFs played a key role as the active center for
the catalytic oxidation of glucose at the electrode, where both RuBpy and MWCNTs enhanced the
current responses to glucose. The resulting enzymeless glucose sensor from MWCNT-RuBpy@Ni-
MOF exhibited a wide range of linear responses, high sensitivity and selectivity for the determination
of glucose.

Keywords: bipyridyl ruthenium; Ni-MOFs; carbon nanotubes; electrocatalytic oxidation; glucose
sensing

1. Introduction

The quantitative detection of glucose plays an important role in food science, agri-
cultural science, biological science and other fields [1–6]. Since biological oxidases and
dehydrogenase for substrates such as lactate, glucose and alcohols have limitations such
as a low stability, difficulty in reuse and high costs, people explore various ways to detect
these substrates via their direct oxidation. However, under normal circumstances, these
substances are not easily directly oxidized. The catalytic activity of some MOFs enables the
electrocatalytic oxidation of the target analytes without the need for the enzymes [7–11].
Moreover, the catalytic performance of MOFs can be greatly enhanced by incorporating
other materials. The rational design and engineering of MOFs and their composite ma-
terials provide new opportunities for the development of various new catalytic sensing
strategies and detection mechanisms [12–18]. On the other hand, the low conductivity and
instability of MOFs in aqueous media limit their application in electrochemical processes
and sensors [19].

Theoretically, the Ni-H2O system yields a gradual increase in the valence state of
Ni from Ni2+ to Ni4+ with increasing potential values. Experimentally, cyclic voltamet-
ric tests have been efficiently implemented to observe Ni2+/Ni3+ and Ni3+/Ni4+ electron
pairs [20,21]. Indeed, the reduction of high valence Ni4+ to low valence Ni2+ can be achieved
by two consecutive single-electron-transfer channels, Ni4+/Ni3+ and Ni3+/Ni2+ [22,23]. The
observation of isolated oxidation peaks in nickel-based electrochemistry is very important
since the higher valence and smaller radius of the transition metal cation are more oxida-
tively active [24,25]. The redox reactions of glucose catalyzed by nickel-based materials
are generally interpreted as the deprotonation and isomerization of glucose by Ni3+/Ni2+

redox couples. In fact, some glucose sensors have been developed using Ni-based MOFs
composites for improving the catalytic performance and catalytic efficiency of the sensors.
For example, the Ni2(dihydroxyterephthalic acid) (also known as CPO-27-NiII)-modified
glassy carbon electrode exhibited a wide linear range of glucose detection with high sensi-
tivity (~585 µA mM−1 cm−2) and a low detection limit (1.46 µM) [1]. A layer-assembled
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flower-like Ni-MOF/carbon nanotube composite was used to fabricate the glucose sensor
with a sensitivity of 77.7 µA mM−1 cm−2 and a linear range of 20 µM to 4.4 mM [3]. The
glucose sensor employing ultrathin Ni-MOF nanoribbons was reported with a sensitivity
of 1.542 µA mM−1 cm−2 and a linear range of 1–500 µM [26]. However, in most cases,
due to low conductivity and the absence of electron transfer mediators, the sensors based
on Ni-MOFs usually have limited sensitivity in the detection of glucose. Exceptionally,
Lu and Sun et al. reported that a glucose sensor based on a conductive Ni-MOF material
Ni3(HHTP)2 displayed a high sensitivity of 21,744 µA mM−1 cm−2 [27].

Tris(2,2′-bipyridyl) ruthenium dichloride (RuBpy) is an electron transfer mediator with
both fluorescent and electrochemical redox properties. Many reports have focused on the
immobilization of RuBpy, including the Langmuir–Blodgett technological approach [28–30],
the self-assembly technique [31,32] and the sol-gel method [33–36]. The immobiliza-
tion materials for RuBpy have also been applied to sensing, such as cation-exchange
polymers [37–39], SiO2 nanoparticles [40–43], carbon nanotubes [44,45], metal nanoparti-
cles [46] and MOF materials [47]. Among these materials, multi-walled carbon nanotubes
(MWCNTs) have excellent electrical conductivity (1.85 × 103 S cm−1) as a carrier mate-
rial [48]. Current densities close to 109 A cm−2 have also been reported for MWCNTs [49].
Together with the robust adsorption and mechanical properties of MWCNTs, this makes
them strong candidates for microelectronic devices and electrode interconnections in nu-
merous applications.

In this work, the Ni-MOF material was synthesized using p-phthalic acid (PTA) as the
ligand. RuBpy was spontaneously adsorbed on the Ni-MOF material to form RuBpy@Ni-
MOF. Then, RuBpy@Ni-MOF and MWCNTs were co-suspended in a Nafion solution.
The resulting MWCNT-RuBpy@Ni-MOF (Scheme 1) was then loaded on electrodes as an
electrocatalyst to construct the enzymeless glucose electrochemical sensor. Both RuBpy as
an electron transfer mediator and MWCNTs as a carrier enhanced the catalytic efficiency of
the Ni-MOF material for glucose oxidation and thus strengthened the sensor performance.
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Scheme 1. Synthesis of MWCNT-RuBpy@Ni-MOF.

2. Materials and Methods

All experiments and experimental preparations were carried out at ambient conditions
at room temperature (22 ± 1 ◦C), except for those specified. Ni(NO3)2·6H2O and DMF
were purchased from Xilong Scientific (Shantou, China). The Tris(2,2′-bipyridyl)ruthenium
dichloride was from D&B Biotech (Shanghai, China). MWCNTs, uric acid and L-Cysteine
(L-Cys) were purchased from Aladdin (Shanghai, China). The MWCNTs from Aladdin
(Product # C139823) contain 95% of multi-walled carbon nanotubes with an average length
of 50 µm, whose interior and outer diameters are in the range of 3–5 nm and 8–15 nm,
respectively. P-phthalic acid (PTA), Nafion (5%), glucose, fructose, maltose, D-ribose and
sucrose were purchased from Macklin Biochem (Shanghai, China). D-lactose was purchased
from Yuanye Biotech (Shanghai, China). L-ascorbic acid and urea were obtained from
Rhawn Reagents (Shanghai, China). All reagents were used without further purification.

The solvothermal synthesis of Ni-MOFs in DMF has been reported using either
Ni (NO3)2 or NiCl2 as the source of Ni2+ with a variety of ligands [1,3,14,50]. In this
work, the Ni-MOF material was synthesized using a similar procedure as previously
reported [1,3,14,50]. In total, 2.18 g of Ni(NO3)2·6H2O and 0.50 g of PTA were dissolved
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in 60 mL DMF via stirring, forming into an emerald-green solution. The solution was
transferred to a polytetrafluoroethylene-lined reaction kettle and allowed to react at 120 ◦C
for 24 h. Then, it was cooled to room temperature. The reacted mixture was centrifuged at
10,000 rpm for 5 min. The deposit was washed with ethanol and centrifuged five times to
remove the excess reactants and residual DMF. The deposit was dried in a vacuum drying
oven at 60 ◦C for 12 h. The dried deposit was ground and, thus, the Ni-MOF material
was obtained.

A total of 45 mg of Ni-MOFs was dispersed and suspended in 9 mL of ethanol. A total
of 18 mg of RuBpy was dissolved in 9 mL of ethanol. The Ni-MOF suspension and the
RuBpy solution were mixed and shaken at 1000 rpm at 4 ◦C for 10 h to allow RuBpy to be
adsorbed on Ni-MOF. The mixture was washed with ethanol and centrifuged at 7000 rpm
for 5 min three times. The deposit was dried at room temperature. The dried deposit was
ground and, thus, RuBpy@Ni-MOF was obtained.

In total, 0.25 mL of 2 mg/mL of RuBpy@Ni-MOF in 0.05% Nafion aqueous solution
was mixed well with 0.25 mL of 1 mg/mL of MWCNTs in 0.05% Nafion aqueous solution
until it was well dispersed and ready for use. The glassy carbon electrode (GCE, diameter:
3 mm) was polished until it was subsequently smooth with 1 µm, 0.3 µm and 0.05 µm
alumina polishing powder. The GCE surface was then ultrasonically cleaned with 1:3 nitric
acid, deionized water and ethanol, respectively. Then, the clean GCE was dried with N2.
Then, 5 µL of the prepared suspension of RuBpy@Ni-MOF and MWCNTs in 0.05% Nafion
aqueous solution was pipetted onto the GCE surface and allowed to dry at room tempera-
ture. Thus, the working electrode MWCNT-RuBpy@Ni-MOF/GCE was obtained. In the
absence of MWCNTs, the control electrodes Ni-MOF/GCE and RuBpy@Ni-MOF/GCE
were prepared in a similar way.

The three-electrode electrochemical measurements were carried out with a CHI730E
electrochemical workstation in 5 mL of 0.1 M NaOH solution, where MWCNT-RuBpy@Ni-
MOF/GCE or the control electrode was the working electrode, a Ag/AgCl (3M KCl)
electrode was the reference electrode and a platinum wire was the counter electrode. The
electrochemical measurements were implemented with cyclic voltammetry and chronoam-
perometry (current versus time (i-t) curve). For cyclic voltametric tests, the potential range
was scanned from 0.0 V to +0.8 V at the scanning rate of 100 mV/s. In i-t tests, the glucose
was successively added under constant stirring with the potential set at +0.5 V, except for
those specified.

Scanning electron microscopy (SEM) images were acquired by a field emission scan-
ning electron microscope (HT7000, Hitachi SU5000, Tokyo, Japan) operated at 5 kV. Trans-
mission electron microscopy (TEM) images were obtained at a working voltage of 200 kV
by a field emission transmission electron microscope (JEM-2100F, Japan Electronics, Tokyo,
Japan). X-ray photoelectron spectroscopy (XPS) was measured on an XPS spectrometer
(ESCALAB 250Xi, Thermo Electron Corporation, Round Rock, TX, USA).

3. Results and Discussion

The SEM images show the morphologies of Ni-MOFs, RuBpy@Ni-MOF and MWCNT-
RuBpy@Ni-MOF (Figure 1). Figure 1a displays that Ni-MOFs had a morphology of aggre-
gated spherical and irregular particles. Figure 1b shows that the morphology of RuBpy@Ni-
MOF did not change much but with some fine particles of RuBpy decorated on Ni-MOFs.
Figure 1c demonstrates that RuBpy@Ni-MOF particles were embellished and more disper-
sive on MWCNTs, compared to those aggregates in the absence of MWCNTs (Figure 1a,b).
Figure 2a shows the TEM image of Ni-MOFs. The morphology of the Ni-MOF particles
shows a spherical shape, and the size is about 100 nm. There are some extra crystals on the
surface of RuBpy@Ni-MOF, and thus, it appears much rougher than Ni-MOFs (Figure 2a,b),
indicating RuBpy was compounded on Ni-MOFs. Figure 2c shows the TEM image of
MWCNT-RuBpy@Ni-MOF. Obviously, MWCNTs were entangled around RuBpy@Ni-MOF.
The image with high-angle annular dark-field transmission electron microscopy (HAADF-
TEM) and the EDS elemental distribution mappings of O, Ni, N and Ru of RuBpy@Ni-MOF
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are displayed in Figure 2d–h. The major and characteristic elements, O, Ni, N and Ru, were
uniformly distributed with RuBpy@Ni-MOF (Figure 2d–h). The results demonstrate that
RuBpy was uniformly distributed all over the Ni-MOF surface.
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XPS tests of RuBpy@Ni-MOF could reveal the surface electronic state and core energy
levels of the elements. Figure 3a shows the full spectra of the representative elements Ni,
O, N, C and Ru present in RuBpy@Ni-MOF. The binding energies of Ru and C are located
in the same region, and the binding energy of C is large, so the characteristic peak of Ru is
partially masked by the characteristic peak of C. Figure 3b–d demonstrate the analytical
spectra of Ni 2p, Ru 3d and N 1s. Figure 3b illustrates the core energy level spectra of Ni
2p, showing the presence of two states of Ni. In the fine spectrum of Ni 2p, the two peaks
observed at 855.9 eV and 873.7 eV belong to Ni 2p3/2 and Ni 2p1/2 of Ni0, respectively,
while the peaks of Ni 2p3/2 and Ni 2p1/2 in Ni2+ are located at 860.34 eV and 878.0 eV,
respectively. In addition, the other two peaks are the satellite peaks of Ni 2p3/2 and Ni 2p1/2
of Ni2+ with the spin-orbit energy level located at 863.7 eV and 881.2 eV, respectively [51].
Figure 3c demonstrates the analytical spectrum of Ru 3d. The high-resolution XPS spectra
of RuBpy@Ni-MOF show Ru 3d has the double peaks Ru 3d5/2 and Ru 3d3/2 located at
284.6 eV and 287.9 eV, respectively, with a spin-orbit splitting energy of 3.3 eV. The Coster–
Kronig effect is responsible for the 3d3/2 peak being much wider than the 3d5/2 peak, which
is consistent with the report [52]. Figure 3d demonstrates the analytical spectrum of N
1s. There are two characteristic peaks for N 1s, which are C=N-C and N-Ru, located at
400.0 eV and 406.9 eV, respectively [53]. The results demonstrate that RuBpy@Ni-MOF was
successfully synthesized.
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Figure 2. TEM images of Ni-MOFs (a); RuBpy@Ni-MOF (b); MWCNT-RuBpy@Ni-MOF (c); HAADF-
TEM image of RuBpy@Ni-MOF (d); Single-colored EDS elemental dot mappings of O, Ni, N and Ru,
respectively (e–h).

Cyclic voltametric experiments were carried out with GCE, Ni-MOF/GCE, RuBpy@Ni-
MOF/GCE and MWCNT-RuBpy@Ni-MOF/GCE in the absence and presence of 1 mM glu-
cose in 0.1 M NaOH. Figure 4 shows the well-defined redox peaks resulting from Ni3+/Ni2+

redox couples of Ni-MOF/GCE, RuBpy@Ni-MOF/GCE and MWCNT-RuBpy@Ni-MOF/
GCE. Compared to the bare GCE, the redox peaks were attributed to the Ni2+/Ni3+ redox
electron pair [14]. The oxidation peaks of all three electrodes were located around +0.51 V
(Figure 4). The reduction peaks of Ni-MOF/GCE and RuBpy@Ni-MOF/GCE were located
around +0.33 V, while the reduction peak of MWCNT-RuBpy@Ni-MOF/GCE was located
around 0.29 V (Figure 4). Since the baselines of cyclic voltammograms of three modified
electrodes were nearly the same as that of the naked GCE during the potential scanning in
the direction from the low potential to the high potential prior to the oxidation of Ni2+ to
Ni3+, in the absence of glucose, the current increase could result from a reduced resistance
of the system upon adding RuBpy and MWCNTs. The peak currents of the Ni3+/Ni2+
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redox couples were in the range of 0.5–1.0 mA. This is a large current range for GCE with
a diameter of 3 mm. In the presence of glucose, the catalytic currents were observed for
all three modified electrodes. The catalytic currents, the differences in the oxidation peak
currents in the absence and presence of glucose, were actually increased larger and larger
when the working electrode switched from Ni-MOF/GCE to RuBpy@Ni-MOF/GCE and
then to MWCNT-RuBpy@Ni-MOF/GCE. For example, at +0.55 V, the differences in the
oxidation peak currents in the absence and presence of glucose were about 66.0, 71.0 and
100.1 µA for Ni-MOF/GCE, RuBpy@Ni-MOF/GCE and MWCNT-RuBpy@Ni-MOF/GCE,
respectively. The results demonstrate that, besides providing greater conductivity and
a larger electrode area, MWCNTs could allow the aggregated RuBpy@Ni-MOF particles
to be more dispersive on the electrode (Figure 1c), which could thus expose more active
sites for the catalytic oxidation of glucose and accordingly enhance the catalytic currents
to some extent. Although the differences in the oxidation peak currents in the absence
and presence of glucose seemed as a small fraction of the peak currents of three modi-
fied electrodes, such catalytic currents over 60.0 µA were still quite large for 3 mm GCE.
MWCNT-RuBpy@Ni-MOF/GCE was thus selected as the working electrode for the rest of
this work.
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Figure 3. XPS spectra of RuBpy@Ni-MOF (a), Ni 2p (b), Ru 3d (c), and N 1s (d).
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Figure 4. Cyclic voltammograms of GCE, Ni-MOF/GCE, RuBpy@Ni-MOF/GCE and MWCNT-
RuBpy@Ni-MOF/GCE in 0.1 M NaOH in the absence and the presence of 1 mM glucose, respectively.
The scanning rate: 100 mV/s.

In 0.1 M NaOH, the specific reaction formula was proposed as the following equa-
tion [14]:

Ni(OH)2 + OH− → NiOOH + H2O + e− (1)

2NiOOH + glucose → 2Ni(OH)2 + gluconolactone (2)

During anodic scanning in 0.1 M NaOH, it was proposed that Ni(OH)2 could be
generated at the surface of MWCNT-RuBpy@Ni-MOF/GCE. Ni(OH)2 could lose one
electron to generate NiOOH in 0.1 M NaOH, as shown in Equation (1). In the presence of
1 mM glucose, NiOOH could oxidize glucose to generate Ni(OH)2 again, thus increasing
the anodic peak current, as shown in Equation (2) [54]. The positive shift of the anodic peak
indicates the slower kinetics of the reaction, including the oxidized intermediates and the
uptake of glucose at the active site [55].

Figure 5a shows cyclic voltammograms of MWCNT-RuBpy@Ni-MOF/GCE at differ-
ent scan rates in the presence of 1 mM glucose in 0.1 M NaOH. The redox peak currents
increased as the scan rate increased, and the oxidation and reduction peak currents (Ia and
Ic) were proportional to the square root of the scan rate (Figure 5b). The results demonstrate
that the electrocatalytic glucose oxidation process at MWCNT-RuBpy@Ni-MOF/GCE was
a typical diffusion-controlled electrochemical reaction [56].

The i-t curves were tested using MWCNT-RuBpy@Ni-MOF/GCE at different applied
potentials with the step concentrations of 0.5 mM, 1 mM, 1.5 mM, 2 mM and 2.5 mM in
the testing solution for glucose (Figure 6a). Overall, at +0.45 V and +0.50 V, the current
responses were larger than those at +0.55 V and +0.60 V. And the current response at
+0.50 V was slightly higher than that at +0.45 V. At +0.60 V, the increase in the current
response was not significant, and the baseline current was much larger than that at +0.45,
+0.50, and +0.55 V. Considering that the higher the potential, the greater the number of
possible interfering substances, +0.50 V was selected as the optimal working potential
for subsequent testing. In order to investigate the selectivity of MWCNT-RuBpy@Ni-
MOF/GCE, the potential interferences such as AA, UA, L-Cys, Urea, fructose, lactose,
maltose, sucrose and D-ribose were tested under the same conditions as for glucose. In
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human serum, the concentration of glucose is more than 30 times higher than that of these
interferences. The experiments were carried out under continuous stirring in the presence
of 0.5 mM glucose and 50 µM interfering substances (Figure 6b). The results demonstrate
that the responses to all tested substances were minimal. Therefore, the glucose sensor
developed in this work could be practically applied for the determination of glucose in
some real samples.
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of glucose at the different potentials in 0.1 M NaOH. The concentration of glucose in the testing
solution was 0.5 mM, 1 mM, 1.5 mM, 2 mM and 2.5 mM for each step of glucose addition; (b) Current
responses (i-t curve) of MWCNT-RuBpy@Ni-MOF/GCE of 0.5 mM glucose and 50 µM AA, Urea,
UA, L-Cys, fructose, lactose, maltose, sucrose and D-ribose, respectively, in 0.1 M NaOH at +0.50 V.

For the calibration plot, the i-t curve was obtained with MWCNT-RuBpy@Ni-MOF/
GCE at +0.50 V (Figure 7a). The inset represents the i-t curve for low concentrations of
glucose with a minimum concentration of 5 µM. The detection limit of the resulting glucose
sensor based on MWCNT-RuBpy@Ni-MOF/GCE was as low as 1.5 µM. The fitting curve
of response currents vs. glucose concentrations exhibited that the glucose sensor had a
wide linear detection range from 5 µM to 3.5 mM, spanning three orders of magnitude
(Figure 7b). The R2 values were 0.9966, 0.9977 and 0.9959 for the linear ranges of 5 µM
to 50 µM (upper-left inset of Figure 7b), 50 µM to 0.5 mM (lower-right inset of Figure 7b)
and 5 mM to 3.5 mM of glucose concentrations, respectively. When taking the entire linear
range from 5 µM to 3.5 mM of glucose into account, its R2 value was 0.9967 (Figure 7b).



Chemosensors 2024, 12, 39 9 of 15

Based on the slope of 0.103 µA·µM−1 and the GCE surface area (0.07 cm2), the sensitivity
of the glucose sensor was calculated as 1471.43 µA·mM−1·cm−2.
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The response stability of MWCNT-RuBpy@Ni-MOF/GCE was evaluated by contin-
uously recording the i-t curve in the presence of 1 mM glucose (Figure 8a). The current
signal was measured over 2500 s. Taking the increment of the current response at the time
of addition of glucose at 100 s as 100%, the current signal was retained by 99.65% after
1000 s, 95.24% after a 1500 s scan and 92.51% after 2500 s, respectively. The results show that
MWCNT-RuBpy@Ni-MOF/GCE was relatively stable in detecting glucose. The response
stability of MWCNT-RuBpy@Ni-MOF in the detection of glucose was also characterized
by multiple assays with the same sensor in the presence of 1 mM glucose (Figure 8b). The
response stability was retained by 99.52% after 5 assays and by 91.47% after 30 assays, re-
spectively. The data demonstrate that MWCNT-RuBpy@Ni-MOF/GCE had an outstanding
response stability.
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Figure 8. (a) Amperometric response stability of MWCNT-RuBpy@Ni-MOF/GCE; (b) Stability of
MWCNT-RuBpy@Ni-MOF after multiple assays. [Glucose]: 1 mM. Working solution: 0.1 M NaOH.
Working potential: +0.50 V.

The reproducibility of multiple sensors was tested with six MWCNT-RuBpy@Ni-
MOF/GCEs prepared from the same preparing process (Figure 9). For the response of
0.5 mM glucose, the relative standard deviation (RSD) of 1.11% was acquired with the
time window 800 to 1000 s for the six sensors (Figure 9a and the inset). Figure 9b shows
the response reproducibility by recording the i-t curves of six sensors under successive
additions of glucose. For the glucose concentration steps from 0.1 to 0.8 mM, the RSD
of 7.21–15.75% was obtained with the current signal at 10 s of each step plateau for the
six sensors (Figure 9b). The results demonstrate that the constructed enzymeless glucose
sensors had good performance reproducibility.
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Figure 9. (a) Amperometric responses of six MWCNT-RuBpy@Ni-MOF/GCEs in the presence of
0.5 mM glucose at +0.50 V in 0.1 M NaOH; (b) i-t curves of six MWCNT-RuBpy@Ni-MOF/GCEs at
+0.50 V in 0.1 M NaOH. The glucose concentration in the testing solution for each step was 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 mM, respectively.

The chronoamperograms (i-t curves) were measured with different concentrations of
glucose at +0.5 V to further evaluate the electrocatalytic kinetics of glucose oxidation at
MWCNT-RuBpy@Ni-MOF/GCE (Figure 10a). The electrocatalytic kinetics were studied
for the initial rate of current responses in the time window at the very beginning of the
development of the i-t curve from 0.4 to 1.3 s (Figure 10a). Figure 10b shows that the linear
curve of Icat/I0 vs. t1/2 originated from the chronoamperogram at 0.0 mM and 1.0 mM
glucose. Therefore, the catalytic rate constant (kcat) for glucose oxidation can be calculated
using the following equation [14]:
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Icat

I0
= π1/2(Kcat · C·t)1/2 (3)

where Icat and I0 are the currents in the presence and absence of glucose, respectively; C is
the concentration of glucose; and t is the time in s. When [glucose] was 1 mM, based on
the slope of the plot of Icat/I0 vs. t1/2, Kcat = 104.1 × 106 cm3 M−1s−1, indicating that the
composite electrode interface of MWCNT-RuBpy@Ni-MOF/GCE had good electrocatalytic
activity for glucose oxidation.
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Figure 10. (a) Chronoamperograms of MWCNT-RuBpy@Ni-MOF/GCE in the presence of various
concentrations of glucose in 0.1 M NaOH; (b) The plot of Icat/I0 vs. t1/2, derived from the data of the
chronoamperogram for 1 mM glucose.

The comparison of the performances of the enzymeless glucose sensors based on Ni-
based materials including Ni-MOFs is in Table 1. Compared to the enzymeless electrochem-
ical glucose sensors based on other Ni-based composite materials, MWCNT-RuBpy@Ni-
MOF/GCE exhibited high sensitivity and a wide linear range of responses. However,
the catalytic current in the presence of glucose only accounted for a small fraction of
the oxidation peak currents of the composite material-modified electrodes in the absence
of glucose, implying that the ratio of Ni-MOF compositing with RuBpy and MWCNTs
could be optimized to reduce the base current. The detection limit could thus be further
improved compared to that of other enzymeless glucose sensors reported (Table 1). The
actual measurements of glucose in a honey product from the local market with MWCNT-
RuBpy@Ni-MOF/GCE was studied by the recovery experiment. The calibration plot based
on the i-t curve (Figure 7) with the successive addition of glucose was used to determine
the glucose concentration in honey samples. Using the same procedure for the calibration
plot displayed in Figure 7, the diluted honey sample was first added in the testing solution,
and subsequently, three glucose solutions were successively added under stirring, and the
current responses were continuously recorded. Each current value was calculated based on
the calibration plot. The experimental results are summarized in Table 2. The sample recov-
eries were in the range of 100.26–102.14%, which demonstrated the potential application
prospects of MWCNT-RuBpy@Ni-MOF/GCE in the analysis of practical samples.
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Table 1. Comparison of the performances of the electrochemical glucose sensors based on MWCNT-
RuBpy@Ni-MOF and other Ni-based materials in the electrolyte 0.1 M NaOH.

Electrode Linear Range
(µM)

Detection
Limit
(µM)

Sensitivity
(µA mM−1

cm−2)

Working
Potential (V) Ref.

CPO-27-NiII 40–500 1.46 585 +0.55 [1]

Ni(TPA)-
SWCNT-CS 20–4400 4.6 - +0.55 [3]

Au@Ni-BTC 5–7400 1.5 1447.1 +0.55 [14]

Ni3(HHTP)2 1–8000 0.66 21,744 +0.55 [27]

Ni/NiO@C 10–2000
2000–10,000 0.116 1291 +0.55 [51]

Ni/NCNs-500 0.1–533.6
533.6–3030 0.07 337.32

210.56 +0.55 [57]

Ni3N@C 1–3000 0.3 1511.59 +0.6 [58]

Ni3S2@NCNT 0.46–3190 0.14 1447.64 +0.55 [59]

Ni/Co
LDH/GNRs 5–800 0.82 344 +0.6 [60]

MWCNT-
RuBpy@Ni-MOF 5–3500 1.7 1471.43 +0.50 This

work

Table 2. Determination of glucose in the testing solution for honey samples (n = 3).

Sample Original (µM) Added (µM) Found (µM) Recovery (%) RSD (%)

Honey 84.23 49.50 133.86 100.26 3.07
26.20 39.64 66.69 102.14 4.50

4. Conclusions

In summary, the composite material of MWCNT-RuBpy@Ni-MOF was prepared and
successfully applied to glucose oxidation and enzymeless electrochemical glucose sensing.
In the alkaline condition, the catalytic oxidation peak of the redox pair of Ni2+/Ni3+

from Ni-MOFs occurred around the working potential of +0.50 V (vs. Ag/AgCl). The
catalytic current was enhanced by decorating the Ni-MOF material with the electron transfer
mediator RuBpy, and the catalytic current was further enhanced after compositing with
MWCNTs. Besides providing greater conductivity and a larger electrode area, MWCNTs
could allow the aggregated RuBpy@Ni-MOF particles to be more dispersive on the electrode
and thus expose more catalytic active sites for the oxidation of glucose and accordingly
enhance the catalytic currents to some extent. The resulting enzymeless sensor based on
MWCNT-RuBpy@Ni-MOF had an excellent performance in detecting glucose, with a wide
range of linear responses, a low detection limit, high sensitivity and good selectivity. The
sensor also had good stability and reproducibility and was successfully applied for the
glucose measurement of the honey product. The results demonstrate that Ni-MOFs served
as the catalytic and active center, while RuBpy and MWCNTs also promoted the glucose
oxidation at the electrode and thus the sensor performance.
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