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Abstract: The review paper provides a comprehensive analysis of nickel oxide (NiO) as an emerging
material in environmental monitoring by surveying recent developments primarily within the last
three years and reports the growth processing and strategies employed to enhance NiO sensing
performance. It covers synthesis methods for pristine NiO, including vapor-phase, liquid-phase, and
solution-processing techniques, highlighting advantages and limitations. The growth mechanisms
of NiO nanostructures are explored, with a focus on the most recent research studies. Additionally,
different strategies to improve the gas sensing performance of NiO are discussed (i.e., surface
functionalization by metallic nanoparticles, heterostructure formation, carbon-based nanomaterials,
and conducting polymers). The influence of these strategies on selectivity, sensitivity, response
time, and stability of NiO-based sensors is thoroughly examined. Finally, the challenges and future
directions that may lead to the successful development of highly efficient NiO-based gas sensors for
environmental monitoring are introduced in this review.
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1. Introduction

Environmental monitoring is of great importance in today’s world due to the in-
creasing awareness of environmental issues and the need for sustainable development. It
involves systematic observation, measurement, and analysis of environmental parameters
to understand and assess the state of the environment, detect changes, and identify po-
tential risks or hazards. Metal oxide gas sensors play a significant role in environmental
monitoring, particularly in the detection and measurement of various gases and pollu-
tants in the air. These sensors are designed to detect and quantify gases such as carbon
monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), volatile organic
compounds (VOCs), and many others [1]. The use of metal oxide gas sensors in environ-
mental monitoring offers several advantages. They are sensitive to low gas concentrations,
allowing for early detection of pollutants and potential hazards. They are also relatively
low-cost compared to other sensor technologies, making them accessible for widespread
deployment [2–4].

Emerging materials for gas-sensing metal oxide semiconductors (MOX) have been
extensively investigated. Among these materials, we will focus on nickel oxide (NiO),
which is a versatile material with a range of properties that make it attractive for various
applications, including catalysis, energy storage, solar water oxidation [5], and electronics.
NiO has attracted significant research interest due to its unique electronic and magnetic
properties, as well as its potential as a cost-effective and environmentally friendly material.

NiO can exist in different crystal phases [6], where the rock salt structure is highly
recommended for gas sensors due to its stability at high temperatures [7]. The rock salt
structure is characterized by a face-centered cubic (FCC) lattice, with nickel cations (Ni2+)
occupying the FCC lattice sites, while oxygen anions (O2−) fill the octahedral holes between
the nickel cations (See Figure 1).
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It is important to note that the crystal phase of NiO can be influenced by various 
factors such as temperature, pressure, and synthesis methods. Moreover, its gas-sensing 
properties are significantly influenced by its chemical state. The presence of oxygen va-
cancies in NiO creates active sites for gas molecules to be adsorbed and react, thereby 
enhancing its gas sensing capabilities. Due to its wide bandgap (3.5–4 eV) [9], the stoichi-
ometric form of NiO behaves as an insulator with a very low intrinsic conductivity of 10−13 
S cm−1 at room temperature (RT) [10]. However, NiO is a metal-deficient p-type semicon-
ductor, which means that it contains vacancies in the cation lattice site, specifically nickel 
vacancies. These vacancies result in a partial conversion of Ni2+ ions to Ni3+ ions to main-
tain electrical neutrality within the structure. Consequently, the created Ni3+ ions assume 
the role of charge carriers for conduction in NiO, which facilitates electron transfer and 
further promotes the formation of oxygen vacancies [11,12]. 

The presence of nickel defects within NiO material, even at temperatures higher than 
150 K, provides complex and variable O2 desorption. This complexity could result in tem-
perature-dependent interactions with specific analytes and lead to enhanced selectivity of 
humidity-tolerant NiO sensors [13]. 

The distinctive behavior of NiO in comparison to other commonly used metal oxides 
is proved by operando diffuse reflectance infrared Fourier transform spectroscopy inves-
tigations [14]. It is found that NiO exhibits a good response to CO and H2 analytes in dry 
and humid conditions. This humidity tolerance is one of the advantages of using such 
material in real monitoring sensing applications. It is also reported that NiO sensing is 

Figure 1. FCC crystal structure of NiO, reproduced from reference [8] MDPI publisher (Copy-
right 2020).

It is important to note that the crystal phase of NiO can be influenced by various factors
such as temperature, pressure, and synthesis methods. Moreover, its gas-sensing properties
are significantly influenced by its chemical state. The presence of oxygen vacancies in
NiO creates active sites for gas molecules to be adsorbed and react, thereby enhancing its
gas sensing capabilities. Due to its wide bandgap (3.5–4 eV) [9], the stoichiometric form
of NiO behaves as an insulator with a very low intrinsic conductivity of 10−13 S cm−1

at room temperature (RT) [10]. However, NiO is a metal-deficient p-type semiconductor,
which means that it contains vacancies in the cation lattice site, specifically nickel vacancies.
These vacancies result in a partial conversion of Ni2+ ions to Ni3+ ions to maintain electrical
neutrality within the structure. Consequently, the created Ni3+ ions assume the role
of charge carriers for conduction in NiO, which facilitates electron transfer and further
promotes the formation of oxygen vacancies [11,12].

The presence of nickel defects within NiO material, even at temperatures higher than
150 K, provides complex and variable O2 desorption. This complexity could result in
temperature-dependent interactions with specific analytes and lead to enhanced selectivity
of humidity-tolerant NiO sensors [13].

The distinctive behavior of NiO in comparison to other commonly used metal oxides
is proved by operando diffuse reflectance infrared Fourier transform spectroscopy investi-
gations [14]. It is found that NiO exhibits a good response to CO and H2 analytes in dry
and humid conditions. This humidity tolerance is one of the advantages of using such
material in real monitoring sensing applications. It is also reported that NiO sensing is
primarily driven by the reduction and oxidation of the material rather than the formation
of specific ionic species at the surface.

Nickel oxide shows remarkable properties that have been extensively studied and
validated as a viable material in gas sensing applications: it has been ranked third in terms of
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scientific publications over the past three years, as highlighted in Figure 2. Despite the low
sensitivity it shows in comparison with n-type materials, NiO enhances the catalytic effect
and humidity tolerance that justifies its inclusion among p-type metal oxide candidates for
gas detection in real-environment devices [15].
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three years. Data extracted from Elsevier on 9 May 2023.

Additionally, NiO proves its sensitivity toward several gases, as described in
Figure 3, where the greatest number of publications is assigned to ethanol, acetone, and
formaldehyde detection.

Several reviews have highlighted the remarkable gas-sensing capabilities of nickel
oxide (NiO), particularly in detecting volatile organic compounds (VOCs) and other gases
(CO, NO2, H2S, NH3, etc.) [16–18].



Chemosensors 2024, 12, 45 4 of 76Chemosensors 2024, 12, x FOR PEER REVIEW 4 of 81 
 

 

 
Figure 3. Number of research articles on NiO gas sensing toward various gases over the last three 
years. Data extracted from Elsevier on 21 May 2023 with keywords ‘NiO’ or ‘nickel oxide’, ‘gas 
sensing’ or ‘gas sensors’, and ‘specified gas’. 

Several reviews have highlighted the remarkable gas-sensing capabilities of nickel 
oxide (NiO), particularly in detecting volatile organic compounds (VOCs) and other gases 
(CO, NO2, H2S, NH3, etc.) [16–18]. 

To highlight the strides in understanding and using nickel oxide for gas sensing, we 
conducted a comprehensive review. This overview delves into recent research on growth 
processing, gas sensing mechanisms, and strategies to enhance NiO performance. The sec-
tion describing the growth strategies is devoted to explaining the experimental proce-
dures leading to different morphologies of NiO that can be beneficial for gas sensing ap-
plications in the future. The goal is to reinforce the NiO position as a promising material 
in gas sensing applications by drawing the scientific community’s attention to new tech-
niques and conditions that can provide good morphologies and high sensing perfor-
mance. 

2. Pristine Nickel Oxide Semiconductor: Growth Strategies 
2.1. Vapor-Phase Deposition 
2.1.1. Sputtering 

Sputtering deposition is a physical vapor deposition technique used to deposit thin 
films of materials onto a substrate. It involves bombarding the target material with high-
energy particles in a low-pressure gas environment, causing atoms or molecules to be 
ejected from the target surface. This process occurs due to the transfer of momentum be-
tween the ions and the atoms in the target material. The ions penetrate the surface of the 
target material and transfer their kinetic energy to the target atoms, causing them to be 
ejected from the target. This process can occur through a variety of mechanisms, including 
direct knock-on collisions, momentum transfer through electron excitations, or chemical 
reactions with the target material. Once ejected, the sputtered atoms can deposit onto a 
substrate and form a thin film. The quality and properties of the deposited film can be 
controlled by adjusting the deposition parameters such as the energy and angle of inci-
dence of the ions, the pressure, and the composition of the gas in the sputtering chamber, 
the time of deposition, target-to-substrate distance, and substrate temperature. A sche-
matic illustration of sputtering concept is presented in figure 4. 

Figure 3. Number of research articles on NiO gas sensing toward various gases over the last three
years. Data extracted from Elsevier on 21 May 2023 with keywords ‘NiO’ or ‘nickel oxide’, ‘gas
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To highlight the strides in understanding and using nickel oxide for gas sensing, we
conducted a comprehensive review. This overview delves into recent research on growth
processing, gas sensing mechanisms, and strategies to enhance NiO performance. The sec-
tion describing the growth strategies is devoted to explaining the experimental procedures
leading to different morphologies of NiO that can be beneficial for gas sensing applications
in the future. The goal is to reinforce the NiO position as a promising material in gas
sensing applications by drawing the scientific community’s attention to new techniques
and conditions that can provide good morphologies and high sensing performance.

2. Pristine Nickel Oxide Semiconductor: Growth Strategies
2.1. Vapor-Phase Deposition
2.1.1. Sputtering

Sputtering deposition is a physical vapor deposition technique used to deposit thin
films of materials onto a substrate. It involves bombarding the target material with high-
energy particles in a low-pressure gas environment, causing atoms or molecules to be
ejected from the target surface. This process occurs due to the transfer of momentum
between the ions and the atoms in the target material. The ions penetrate the surface of
the target material and transfer their kinetic energy to the target atoms, causing them to be
ejected from the target. This process can occur through a variety of mechanisms, including
direct knock-on collisions, momentum transfer through electron excitations, or chemical
reactions with the target material. Once ejected, the sputtered atoms can deposit onto a
substrate and form a thin film. The quality and properties of the deposited film can be
controlled by adjusting the deposition parameters such as the energy and angle of incidence
of the ions, the pressure, and the composition of the gas in the sputtering chamber, the
time of deposition, target-to-substrate distance, and substrate temperature. A schematic
illustration of sputtering concept is presented in Figure 4.

NiO thin film has been widely deposited via sputtering. In the following, we cite some
research works and list the deposition parameters and film thicknesses in Table 1.

Notably, film thickness of sputtered NiO as sensing material is very important for gas
detection efficiency [19–21], and Table 1 provides a summary of experimental conditions
that enable the adjustment of thickness using different modes, pressure, power, and time.
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Table 1. Sputtering parameters for deposition of NiO films and their thicknesses (since 2022).

Reference Pressure (mTorr) Time (s) Substrate—Temperature Power (W) Mode Film Thickness (nm)

[22] 2.25 N/A ITO/Glass—RT 200 DC * 150

[23] 0.003 3600 Soda-Lime Glass (SLG)—RT 90 RF * 200

[24] 10 NA PET/ITO—RT 50 RF 200

[25] 7.5 9000 Glass—RT 250 RF 222

[26] 3.75 NA FTO/Glass—RT 70 RF 25

[27] 9 NA ITO/Glass—RT 120 DC 250

[28] 15

5

Glass—RT 100 RF

4.99

10 21.85

15 31.50

20 42.10

[29] 3.75 NA Platinum thin film—400 ◦C 40 DC 50–200

[30]

7.5

3600 Glass—300 ◦C 120 DC

160.2

9 168.8

10.5 166.9

12 157.5

13.5 150.0

[31]
37.5

NA
Silica—400 ◦C 100

RF
30

7.5 Silica—RT 50 30

[32] 112.5 10,800 Glass—RT 140 DC NA

* NA: Not Available data; DC: Direct Current (DC) type; RF: Radio Frequency.

NiO-sputtered films have granular structures whose density and homogeneity depend
on the deposition factors. Turgut et al. [33] have studied the pressure effect on the morphol-
ogy of the deposited NiO with bunsenite crystal phase, proving that increasing the working
pressure from 0.6 to 2 mTorr leads to changing the nano-pyramidal shape (30–150 nm of
size) to the nano-spherical shapes (60 nm) which exhibit more compact surface at high
pressure, formed with very small and coalesced granules when compared to the sample
grown under moderate pressure (See Figure 5).

The substrate temperature has also impacted the morphology of deposited NiO films.
Jamal et al. [34] have investigated its effect on the structural properties by SEM, as shown
in Figure 6. However, high temperatures can degrade the crystal quality of the film by
decomposing the NiO atoms.
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In another work [35], the growth of sputtered NiO films at 1 Pa on different substrates is
reported, showing (111), (200), and (220) diffraction peaks and different texture coefficients,
as mentioned in Figure 7a–d. The choice of 1 Pa as a total sputtering pressure is devoted to
realizing fiber-textured structures with lower stress. Increasing the oxygen flow led to reach
higher fiber texture for NiO thin films deposited on alumina compared to that deposited
on glass whose structure has more random texture. TEM images show an epitaxial growth
of NiO on alumina with a sharp interface (See Figure 7e–g). In contrast, the deposition
of NiO on silicon is non-epitaxial, and the presence of nanocrystals (4 nm) is observed in
Figure 7h–j.
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2.1.2. Thermal Evaporation–Condensation

Thermal evaporation–condensation is a common technique for the growth of one-
dimensional metal oxide nanostructures. In this technique, a source material, typically
in the form of a solid or powder, is heated to its vaporization temperature within a con-
trolled environment. The evaporated material then migrates to a cooler substrate, where it
undergoes condensation and nucleation processes. As the vapor contacts the substrate, it
condenses and forms nanowires due to the presence of nucleation sites, which can be natu-
rally occurring defects on the substrate (Vapor–Solid process) or intentionally introduced
seeds (Vapor–Liquid–Solid process).

Vapor–Liquid–Solid (VLS) growth: In this process, a catalyst material, such as gold
(platinum, palladium, etc.), is deposited onto a substrate and then heated in the presence of
vapor of the source material, such as a metal or metallic oxide. The source material then
dissolves into the catalyst, forming a liquid alloy. As the temperature increases, the alloy
becomes supersaturated, and nanowires begin to grow from the liquid–solid interface. The
nanowires grow in the direction perpendicular to the substrate surface and are typically
single-crystalline [36].
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Vapor–Solid (VS) growth: In this process, the source material is heated in a vacuum
chamber, causing it to evaporate and condense onto a heated substrate. As the vapor
condenses, it forms nanowires on the substrate surface. The nanowires grow in the direction
parallel to the substrate surface and are typically polycrystalline [36].

The properties of the nanowires depend significantly on the properties of the source
material, the presence of a catalyst, the substrate temperature during the deposition, the
evaporation temperature and rate, the deposition time, the pressure, the gas composition,
etc. [37–40].

Optimizing these parameters is critical to obtaining high-quality nanowires with the
desired properties, and adjustments may be necessary depending on the specific application
and material being used.

This vapor-transport technique has been commonly used to grow nanostructures of
various materials, including nickel oxide nanowires. The choice of process depends on the
desired properties of the nanowires, such as their crystal structure, diameter, length, and
density. N. Kaur et al. have prepared NiO nanowires on alumina by VLS process, well
described in Figure 8 below.
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Figure 8. Thermal evaporation set-up following the VLS process: (a) growth mechanism, (b) schematic
illustration of the furnace used for the synthesis of NiO material, and (c) necessary processes for
evaporation-condensation of NiO powder on the substrate, reproduced from reference [41] ACS
publisher (Copyright 2020).

VLS growth of NiO structures is realized in such work [42] using different seed layers
and substrate temperatures under different argon flows and evaporation temperatures.
Kaur et al. show how the density and the shape of nanowires strongly depend on the
evaporation conditions. At 1400 ◦C and 1 mbar, the formation of nanowires is denser and
more confined for Au-catalyst than Pt-catalyst. Increasing the substrate temperature led to
growing nanowires longer and denser.

2.1.3. Thermal Oxidation

Thermal oxidation is a controlled process serving to grow metal oxide compounds
using a solid phase source. The material source could be pure metal, or an alloy deposited
onto the substrate using techniques like chemical vapor deposition (CVD) or physical
vapor deposition (PVD). A high-temperature furnace or reactor able to withstand high
temperatures and maintain a controlled atmosphere into which the metallic layer is placed
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is recommended for thermal oxidation. Gradually increasing the temperature inside the
chamber to the desired level enables the oxidation reaction to progress, where a layer of
metal oxide begins to grow on the surface of the metallic layer. This growth occurs at the
interface between the metal and the oxidizing atmosphere. The growth rate and thickness
of the oxide can be controlled by adjusting parameters like temperature, pressure, time, and
gas flow. This method is widely used to obtain metal oxides with different morphologies
depending on the temperature, the ramp rate, the pressure, the oxidation time, the metallic
layer properties, and the surrounding environment [43–46].

Nickel oxidation has been the subject of several studies to attend NiO structures with
adjustable properties.

The formation of NiO on Ni metallic film in a high-temperature regime by varying
the oxidation temperature from 600 to 1200 ◦C implies various morphological aspects [47].
At temperatures exceeding 800 ◦C, a continuous NiO scale envelops the surface, with its
grain size augmenting proportionally to the temperature increment. At temperatures below
700 ◦C, the surface shows irregularities. Some parts have a thin layer of NiO, and streaks of
NiO are visible along the polished surface steps [47]. However, low temperatures ranging
from 50 to 150 ◦C can oxidize only a few monolayers of NiO after Ni exposure to an oxygen
atmosphere for 100 to 1000 h, as mentioned in Pinnel’s work [48].

The process of oxidation of nickel is believed to occur through the transfer of electrons
across the interface, leading to the formation of a monolayer of oxygen ions on the surface
of the metal and the diffusion of oxygen anions into the metal film. Structural defects like
dislocations, grain boundaries, and impurities act as nucleation sites for the growth of
NiO oxide islands, which expand laterally [49]. The oxide islands rapidly grow, forming
a NiO film that partially protects the Ni surface from air. The growth of the oxide film is
accelerated by diffusion of Ni cations into the NiO layer at temperatures above 350 ◦C [50].
The penetration of oxygen into the NiO layer through cracks and microchannels is also
possible, which is promoted by metal diffusion at higher temperatures. Valladares et al. [50]
have studied Nickel oxidation in air, proving that the coexistence of Ni and NiO phases
is detected at 400 ◦C and that the oxidation rate depends on the annealing temperature
and on the thickness of the oxide layer. They have reported that the complete oxidation of
the Ni films occurs at high temperatures such as 700 ◦C (See Figure 9). Thermal oxidation
also affects the morphology of the film, making it granular, as can be seen in Figure 10. It
is worth noting that oxidation is a self-stabilizing process at a temperature not exceeding
627 ◦C [49].
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In Table 2, we summarize the thermal oxidation conditions of NiO with associated
morphologies and crystallite size that help in predicting the crystallite size and gas sens-
ing properties.

Table 2. Parameters for thermal oxidation of NiO films.

Structure Temperature (◦C) Duration (min) Crystallite Size (nm) Pressure (mbar)

Granular films with the formation of cracks when
increasing temperature [51]

500 240 17 NA

600 240 21 NA

700 240 41 NA

800 240 45 NA

Cellular and porous structure [52] 700 ∼17 N/A 1013.25

Granular film [49]

500 240 31 NA

600 240 38 NA

700 240 52 NA

800 240 73 NA

Compact morphology with columnar and facetted NiO
grains [52] 1100 ∼2000 N/A 1013.25

Coarse-grained structure [53] 1400 ∼1200 N/A 1

Nanosized granular surface [54] 400 60 N/A NA

Nano-rings [54] 600 60 N/A NA

Slightly porous film with pseudospherical particles [54] 800 60 N/A NA

Nanoplates of NiO with an average thickness of
17 nm [54] 500 240 N/A NA
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In recent work, Dastan et al. [49] have oxidized the Ni foil at different temperatures,
leading to granular films where the nanoparticles tend to agglomerate and enlarge the
grain size at higher oxidation temperatures, as described in Figure 10. However, the
atomic ratio is out of stoichiometry in NiO samples (oxygen-deficiency). At 800 ◦C, NiO is
almost stoichiometric (Ni:O = 56.65:43.35) with large grains and irregular distribution on
the surface.

Starting from ready Ni foil, like reference [49], nickel plates oxidized at 400 ◦C show
nanoring-like particles predominantly composed of metallic Ni with an aggregation as-
pect. By increasing heating to 600 ◦C, the atomic ratio is close to stoichiometry, with the
appearance of NiO plates not-well developed. At 800 ◦C, NiO crystallites are larger and
indicate a slightly higher oxygen content than stoichiometric NiO (extra oxygen for charge
compensation due to the formation of Ni3+ at high temperatures) [54].

It is worthy to conclude that high oxidation temperature enhances stoichiometry for
NiO, but further increases in temperature can induce the formation of Ni2O3. Also, the
nature of Ni foils, the oxidation time, and additional treatment, such as immersing the Ni
plate in an aqueous solution of Ni(CH3COO)2 [54] can highly influence the morphology of
NiO structures, despite keeping the same oxidation temperature.

One can also note the discrepancy in NiO morphologies and crystallite size between
references [49,51], despite keeping the same oxidation temperature and time, which can be
related to the sputtered Ni layers on quartz substrate distinguished from Ni foils which
can highly influence the morphological aspects of NiO after oxidation.

Following step-wise oxidation of Ni nanowires electrodeposited into anodic aluminum
oxide (AAO) membranes, Ren et al. [55] have proved the formation of NiO nanotubes
with uniform wall thickness by working in a low oxidation temperature regime and using
chemical etching (See Figure 11).

In their work, the oxidation behavior of Ni nanowires was investigated, and two
distinct temperature regimes were identified. The low-temperature regime was found to be
driven by the field-driven oxidation mechanism and rapid vacancy diffusion, resulting in
the formation of NiO–Ni heterojunctions. In contrast, the high-temperature regime (above
650 ◦C) was dominated by the Kirkendall effect, whereby Ni2+ ions diffused through
the oxide layer due to the thermally enhanced diffusion rate. Interestingly, the step-wise
oxidation behavior of Ni resulted in the formation of bamboo-like structured NiO nanotubes
due to the fast vacancy diffusion at the initial ramp-up stage of annealing. However, it
was found that uniform NiO nanowires or nanotubes could not be obtained through
conventional annealing/oxidation processes. Instead, a simple method was proposed for
obtaining NiO nanotubes with relatively uniform wall thickness by utilizing the step-wise
oxidation mechanism. This involved oxidizing Ni nanowires in the low-temperature regime
(around 400 to 450 ◦C) followed by wet-chemical etching to remove the residual Ni metal
core. Overall, these findings shed light on the complex oxidation behavior of Ni nanowires
and provide a promising method for the synthesis of uniform NiO nanotubes.

Thermal oxidation is a commonly used method for growing metal oxides, as it is
relatively easy to perform. However, it requires pre-fabrication of the metallic film using
techniques such as sputtering or thermal evaporation. To obtain the desired morphology
and physical properties of the oxide film, careful selection of parameters such as tempera-
ture, pressure, duration, and environment is crucial. The appropriate conditions for thermal
oxidation must be determined to ensure successful and reproducible results. With proper
control of these parameters, thermal oxidation can provide a straightforward method for
growing high-quality metal oxide films.
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Figure 11. (I) Before oxidation: (a) SEM image (b) HRTEM image at 100 nm scale, (c) HRTEM
image at 5 nm scale: A, B, and C represent three regions with different grain orientations and
(d) XRD of Ni nanowires; (II) After oxidation at low temperature: (a,c,d) TEM images, (b) EDX
mapping, and (e) XRD of Ni nanowires annealed at 450 ◦C for 10 h with (f) schematic of two types of
(A) vacancy generation diffusion and (B) rapid diffusion of vacancies and their agglomeration during
the oxidation of Ni nanowires; (III) After oxidation at high temperature: (a,b,f) TEM images, (c) SEM
image, (d) XRD image, (e) representation of different nanowires oxidized at 550 ◦C and 650 ◦C for
5 min, respectively, (g) illustration of step-wise manner of Ni nanowires evolution with the ramping
rate, reproduced from reference [55] John Wiley and Sons publisher (Copyright 2010).

2.1.4. Levitation–Jet Synthesis (LJS)

LJS is one of the advanced powder technologies that allows tuning the size, shape,
and phase composition of the desired material. It is based on condensing the metal vapor
in helium (argon) gas flow with injected gaseous oxygen (air) under reduced pressure.
Vorotyntsev et al. have described the apparatus of levitation–jet synthesis, as illustrated in
Figure 12.
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Figure 12. Schematic representation of levitation–jet synthesis method, reproduced from reference [56]
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The levitation–jet system is composed of a quartz tube in which the nickel wire is
suspended and heated up to be melted by using a high-frequency counter-current inductor.
After its evaporation, the nickel atoms will be cooled and then condensed in the particle’s
container with nano sizes, recovered after passing through a tissue filter. The adjustment of
carrier gas flows (He (Ar)–O2 (air)) plays a pivotal role in ensuring the melting, evaporation,
and condensation processes to form the nickel nano-powder [57].

In fact, the condensation is governed not only by the magnitude of the applied electric
field but also by the oxygen content, which in turn is undergone by the combined mode
(introduced in the He (Ar) gas stream) and the post-formation of nickel atoms mode
(introduced after producing the atomized nickel stream) [57].

The full regulation of the synthesis method, the capping/surfactant agent indepen-
dence, and the one-pot processing make the LJS promising for material engineering by
simultaneously controlling the shape and size of the metal particles.

They have compared the nanoparticles’ shape by TEM characterization. Indeed, the
formation of nanoparticles is primarily influenced by the electric field, which creates a
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condensation zone defining the characteristic size of the particles. TEM imaging shows
that the application of a field leads to a decrease in the average particle size and a nar-
rowing of the size distribution, as well as the formation of pronounced cubic shapes in
Ni nanoparticles. While spheroidal chainlike morphology dominates in nanoparticles pre-
pared without a field, the TEM micrograph shows localized crystallization points of small
cubic nanocrystals. The transition from spheroidal to cubic morphology cannot be solely
attributed to the external field, but it accelerates the process. However, in a combined mode
of helium–oxygen flow, a cubic shape is observed before and after the application of the
electric field. This can be explained by the sufficient oxygen molecules present in the total
flow of the nanoparticles’ synthesis. The increase in NiO content under the external electric
field was observable and was attributed to oxygen ionization processes and additional
energy. The formation and evolution of oxide domains were mainly dictated by surface
oxygen dynamics and strongly depended on the applied electric field, noting that more
increases in the electric field lead to a more uniform surface coverage. In contrast, the
activation energy barriers for ionic migration ensured lower oxygen surface mobility at
zero field.

Figure 13 represents TEM images of Ni/NiO nanostructures prepared by the LJS
method with cubic morphology and average particle sizes (<100 nm).
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ified for the deposition of metals and insulators as well. Due to the use of ultrahigh vac-
uum chambers in the MBE process, the highest level of material purity is attained, and in 
situ surface-sensitive tools are available for monitoring the growth process. In recent 
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Figure 13. TEM micrographs of LJS-prepared Ni/NiO nanoparticles at different conditions:
(A): He—500 L/h, Ni—1 g/h, (B): He—1000 L/h, O2—200 L/h, Ni—1 g/h, (C): He—1000 L/h,
O2—100 L/h, Ni—0.4 g/h, (D): commercial NiO, (E): commercial NiO (Aldrich), (F): He—500 L/h,
air—9 L/h, Ni—2 g/h, Fe—3.5 g/h, reproduced from reference [58] Elsevier publisher (Copy-
right 2019).

2.1.5. Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is a unique technique for synthesizing high-quality
oxide thin films and heterostructures that is dedicated to fundamental studies and fabrica-
tion of nanoscale devices. This growth method has recently been adapted to the realization
of diverse multicomponent oxide materials. Initially, MBE systems were designed for the
growth of semiconducting compounds. However, over time, the technique was modified
for the deposition of metals and insulators as well. Due to the use of ultrahigh vacuum
chambers in the MBE process, the highest level of material purity is attained, and in situ
surface-sensitive tools are available for monitoring the growth process. In recent times,
MBE has been further adapted to enable the synthesis of oxides and nitrides by introducing
suitable reactive gases into the growth chamber [59]. Regarding its working principle, the
method utilizes an ultrahigh vacuum chamber in which a beam of atoms or molecules is
directed toward a heated substrate. The substrate temperature is precisely controlled to
ensure that the incoming atoms or molecules condense onto its surface, forming a single
crystal layer with precise thickness and orientation. MBE typically employs one or more
effusion cells or valved sources, which are used to produce atomic or molecular beams. By
adjusting the relative fluxes of the beam species, the composition of the growing film can
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be precisely controlled. The MBE process also allows for in situ monitoring of the growth
process using various surface-sensitive techniques, such as reflection high-energy electron
diffraction (RHEED) or Auger electron spectroscopy (AES), enabling real-time feedback
control of the deposition process. The formation of the correct phase, the presence of long-
range crystallinity, and the coherence of the film/substrate interface are very important in
the growth of metal oxides.

Budde et al. have used plasma-assisted MBE to prepare NiO and on (00.1)-oriented
gallium nitride templates, consisting of α-Al2O3 substrate, AlN buffer layer, and GaN layer,
under oxygen-rich conditions at different growth temperatures [60].

Ni epitaxial films have been deposited on (001) MgO substrates [61] by MBE at a
temperature of 300 ◦C. The experimental results showed that Ni grows epitaxially on
MgO, with a cube-on-cube orientation relationship from the early stages of growth, as
confirmed by RHEED. Interestingly, we also observed a weak uniaxial anisotropy in the
epitaxial Ni growth, although not as strong as in the (001) case. The origin of this anisotropy
is not fully understood yet, but it could be related to surface features such as steps or
screw dislocations or shape anisotropy. It is worth noting that there is no effect of NiO
distortion in this configuration, as it should be perpendicular to the (111) plane. These
findings provide valuable insights into the epitaxial growth of Ni on MgO and its potential
applications in various fields.

Co-deposition is also allowed in the MBE setup, where the oxide components were
evaporated from the individual sources simultaneously. For instance, lanthanum nickel
oxide is grown by deposition of both nickel and lanthanum at the same rate to ensure the
correct stoichiometry [62].

The phase formation process results from a chemical reaction between the evaporated
Ni and La atoms and the oxygen species at the surface of the substrate. When a coherent
interface is established, the lattice mismatch between the substrate and the epitaxial film
can generate several strain states and may result in the formation of metastable compounds.
As the nickel has different oxidation states, the LaNiO3 phase diagram is dependent on it.
So, the adjustment of pressure and temperature should be appropriately made to avoid
the film decomposition into NiO and La2NiO4 due to low (high) pressure (temperature)
that shift the chemical equilibrium of the oxidation reaction toward lower oxidation states
and may reduce the adatoms’ mobility resulting in island growth mode that increases
the surface roughness and generates more structural defects when lowering the growth
temperature [63].

2.1.6. Metal–Organic Chemical Vapor Deposition

The metal–organic chemical vapor deposition (MOCVD) process begins with the
preparation of a substrate, which is typically a silicon wafer or a glass slide. The substrate
is first cleaned to remove any impurities and then coated with a thin layer of a metal-
organic precursor. This precursor is typically a volatile organic compound containing
the metal of interest, such as metal alkoxides, beta-diketonates, or metal carboxylates.
The reactor is then heated to a high temperature, typically between 400 and 900 ◦C, to
decompose the metal-organic precursor and produce the metal oxide film on the substrate
(the decomposition can occur thermally, photochemically, or by plasma). During the
deposition process, the metal oxide film grows layer by layer on the substrate, with the
thickness of the film controlled by the duration of the deposition process. The growth rate
and thickness of the film can be controlled by adjusting the temperature, pressure, and flow
rate of the reactants [64–68]. One of the advantages of MOCVD is its ability to produce
high-quality metal oxide films with precise control over the thickness and composition
of the film. The process also allows for the growth of complex metal oxides with tailored
properties, such as multi-layered films, alloys, and doped materials. In addition, the use of
metal-organic precursors allows for the growth of films at lower temperatures, reducing
the risk of substrate damage. However, MOCVD also has some limitations. The technique
requires a high level of expertise and specialized equipment, which can be expensive
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to maintain. Additionally, the process can be time-consuming, with typical deposition
times ranging from a few minutes to several hours. Lo Nigro et al. [69] have fabricated
epitaxial NiO thin films on an AlGaN/GaN template using Metal Organic Chemical Vapor
Deposition (MOCVD) at two different temperatures (500 ◦C and 750 ◦C) and a range of
oxygen flow values (50 to 500 sccm). A nickel β-diketonate adduct known as Ni(tta)2.tmeda
was the precursor introduced in an alumina boat and heated at 160 ◦C. Its vapors were
transported to the deposition chamber using 150 sccm of Ar flow and different lows of
oxygen with an operative pressure of 399.97–533.29 Pa and time deposition of 20 min.
The resulting films were found to be uniform in thickness, adherent, and possess smooth
surfaces. Varying deposition temperatures and oxygen flow values led to morphological
differences in the films. The optimized deposition conditions were determined to be a
deposition temperature of 500 ◦C, 200 sccm oxygen flow, a 45◦ tilted substrate position,
and a slow cooling rate of 1 ◦C/min post-deposition. XRD and TEM analyses revealed that
the films were epitaxial and exhibited a high-quality film/substrate interface, as shown in
Figure 14. These findings provide insights into the fabrication of high-quality NiO films for
potential applications in various electronic devices.
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NiO/AlGaN interface and (f) its relative Fast Fourier Transform image, (g) TEM in-plane image of
NiO deposited at 500 ◦C, (h) relative electron diffraction patterns from the substrate (white circles) and
from the NiO film (red circles), reproduced from reference [69] Elsevier publisher (Copyright 2014).
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2.1.7. Atomic Layer Deposition

As the MOCVD technique mentioned above requires extremely high temperatures
and involves toxic and volatile substances, another chemical process is introduced and
known as atomic layer deposition (ALD). This deposition can be a good opportunity to use
substrates that cannot withstand high temperatures. This thin film deposition is based on
sequential surface reactions between precursor gases and the substrate surface. In ALD, the
substrate is exposed to a pulse of precursor gas, which chemically reacts with the surface.
After the reaction, the unreacted precursor is purged from the reaction chamber using an
inert gas. The substrate is then exposed to a second pulse of a different precursor gas,
which reacts with the remaining unreacted sites on the surface. The process is repeated in a
cyclic fashion until the desired film thickness is achieved.

ALD is a highly controlled and precise technique that can be used to deposit a wide
range of thin films, including metal oxides, nitrides, and other materials. The technique
is particularly useful for depositing films with high uniformity, conformality, and purity.
The thickness of the film can be precisely controlled at the atomic level by adjusting the
number of deposition cycles. One of the major advantages of ALD is its ability to deposit
films with excellent conformality, even on complex three-dimensional structures with high
aspect ratios. This is due to the self-limiting nature of the surface reactions, which ensures
that the thickness of the film is determined by the number of reaction cycles rather than the
thickness of the film deposited in each cycle. ALD can also be used to deposit films with
controlled composition, enabling the precise tuning of material properties [70].

Figure 15 represents the ALD process to grow alumina film from trimethylaluminum
(TMA) and water [71].
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Figure 15. ALD process of alumina: (a) pulse of the precursor (trimethylamine) and chemisorption
process, (b) purging and pumping of the by-products (excess of precursor), (c) pulse of H2O molecules
reacting with the remaining precursor ligands, (d) purging and pumping of the by-products (excess of
water molecules), and (e) the alumina surface after three cycles of ALD, reproduced from reference [71]
Elsevier publisher (Copyright 2023).

ALD has found widespread use in a variety of applications, including gas sensors. Pan
et al. [72] have deposited ultrathin films of sub-50 nm NiO on SiO2/Si wafers to enhance
the detection of triethylamine (TEA). The deposition is based on the following chemical
reactions:

Surface − OH + C5H5 − Ni − C5H5 → Surface − O − Ni − C5H5 + C5H6

Surface − O − Ni − C5H5 + O3 → Surface − NiO + C5H4O + H2O

They have reported a nanometric film of NiO with a large number of closely aggregated
nanoparticles, observed by SEM imaging, giving an undulating aspect to the surface whose
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roughness is measured by AFM to be 0.874 nm. In addition, TEM imaging revealed a high
crystallinity of Ni2O3 along (002) with a lattice spacing of 0.28 nm.

2.2. Liquid-Phase Deposition

The liquid film deposition has been developed as a quick, simple, low-cost, easy
scaling up, uniform, less hazardous, and a non-vacuum required route for thin film coating.
The most used and emerging techniques are chemical bath deposition, electrodeposition,
electrospinning, spin coating, dip coating, spray coating, and inkjet printing, described in
the following.

2.2.1. Chemical Bath Deposition (CBD)

Forming solids from a solution or a gas using an aqueous precursor solution is re-
alizable thanks to the chemical bath deposition. This method is based on immersing the
substrate in a liquid solution containing the precursor material, where chemical reactions
are responsible for depositing the thin film onto the substrate. The chemical reactions can
be initiated by heat, light, or other chemical agents [73–75].

The solution for CBD of NiO reported in the literature [76] was prepared by mixing
40 mL of 1 M nickel sulfate, 30 mL of 0.25 M potassium persulfate, 10 mL of 28–30%
aqueous ammonia, and 20 mL of deionized water using a 5 cm magnetic stir bar rotating at
200 rpm, at room temperature. The initial reaction, denoted as reaction 1, comprised the
deposition of nickel oxide with a higher valency state. This resulted in the formation of
mixed valency states, specifically, valency states 2 and 3. The subsequent step, reaction
2, involved the reduction of the higher valence nickel species by ammonia to attain the
normal oxidation state. This process demonstrated the ability to manipulate the oxidation
state of nickel species using simple chemical methods.

NiSO4 + xK2S2O8 + 2x(1 + x)OH− → NiO1+x + xK2SO4 + (1 + x)SO2−
4 + (1 + x)H2O; (R1)

NiO1+x +
2x
3

NH3 → NiO +
x
3

N2 + H2O (R2)

Microstructural analysis of the deposited NiO demonstrates the deposition of
180 nm-thin film showing porous structure, which is well defined after annealing.

2.2.2. Electrodeposition

Electrodeposition is a widely used technique for the synthesis of various materials, and
it involves several steps, including the transport of the metal ions to the electrode surface,
their reduction at the electrode, and the formation of a metal deposit on the electrode surface.
The mechanism of electrodeposition is highly dependent on the reaction conditions, such
as the type of electrolyte, electrode potential, current density, and deposition time. The
initial step of electrodeposition is the transport of the metal ions to the electrode surface.
The metal ions can be transported by diffusion or migration under the influence of an
applied electric field. The diffusion mechanism depends on the concentration gradient of
the metal ions, whereas the migration mechanism depends on the electrical field strength
and the charge of the metal ions. Once the metal ions reach the electrode surface, they are
reduced to form a metallic deposit. The reduction of the metal ions occurs through the
transfer of electrons from the electrode to the metal ions, resulting in the formation of a
metal atom or cluster on the electrode surface. The reduction process can be influenced by
the electrode potential, which is the electrical potential difference between the electrode and
the electrolyte. The electrode potential can affect the kinetics and thermodynamics of the
reduction reaction, leading to changes in the morphology and properties of the deposited
material [77,78]. The deposition time also plays a crucial role in the electrodeposition
mechanism. It affects the amount and thickness of the deposited material, as well as its
uniformity and morphology. Long deposition times can lead to the formation of larger
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and more complex structures, whereas short deposition times can lead to the formation of
thinner film but with non-uniform coverage, whether the growth time is insufficient [78–80].

Zhang et al. [81] have employed this technique to grow NiO nano-flowers on an ITO
glass substrate. The electrodeposition was performed at a constant current (−0.5 mA) using
a three-electrode setup, with the ITO glass as the working electrode, nickel plate (99.9 wt%)
as the counter electrode, and saturated calomel as the reference electrode. The electrolyte
contained 0.05 mol/L NiSO4·6H2O (pH = 5) and deionized water as the solvent. The NiO
film was deposited for a duration of 200 s at 20 ± 3 ◦C. The final deposits were rinsed with
ethanol and deionized water, oxidized at 350 ◦C for 2 h in air, and then allowed to cool to
room temperature naturally to form the rose-type structure NiO nanoparticles [81].

Shahzad et al. [82] have also used electrodeposition to prepare NiO film. The synthesis
of one-dimensional nickel nanowires (Ni-NWs) using anodic aluminum oxide (AAO)
templates is described in Figure 16. The electrolyte solution used for the electrodeposition
process was prepared by dissolving nickel sulfate hexahydrate in deionized water to make
a 1 M solution, which was buffered with 0.2 M boric acid and adjusted to pH = 3 with
0.1 M sulfuric acid. The Ni-NWs were electrodeposited by using a pure nickel wire as
the anode and the coated side of the AAO template as the cathode, with a pure Cu sheet
attached to the backside of the conducting layer for support and electric current. The
deposition time was fixed at 120 min, and the deposition potential and current density were
adjusted to 2.1 V and 1.5 mA/cm2, respectively. The green color in Figure 16a represents
the development of pure Ni-NWs grown preferably along (220) orientation as proved by
XRD (See Figure 16b), which were formed because of the reduction of Ni2+ ions in the
electrolyte and their deposition into the pores of the AAO template.
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2.2.3. Electrospinning

The electrospinning process has emerged as a technique used for the growth of fibers
at submicron to nanometer scales. It involves the use of an electric field to generate a
charged polymer solution, which is then ejected through a spinneret to produce a jet of
fluid. The jet is then subjected to an electric field that causes the formation of a Taylor cone,
from which a charged droplet is ejected. As the droplet moves towards the collector, it
undergoes stretching and bending due to the electric field, causing the formation of fibrous



Chemosensors 2024, 12, 45 20 of 76

material which is collected on a substrate, forming a nanofiber mat [83]. By incorporating
metal oxide precursors into the polymer solution, metal oxide nanofibers can be produced
by electrospinning. Calcining the as-spun nanofibers can introduce pores and increase the
specific surface area [84], making them suitable for gas sensing.

The electrospinning process is influenced by several parameters that can affect the
morphology and characteristics of the resulting nanofibers. These parameters include
the polymer solution properties (viscosity, surface tension, conductivity), the electrospin-
ning conditions (applied voltage, distance between the spinneret and collector, and flow
rate of the polymer solution), the environmental factors (higher temperature and lower
humidity can lead to faster solvent evaporation and smaller fiber diameter). The design
of the electrospinning apparatus, such as the shape and size of the spinneret and col-
lector, can also influence the as-spun material. Different designs can produce different
morphologies of nanofibers. Optimizing these parameters is important for controlling the
morphology and properties of the nanofibers and for achieving the desired characteristics
for specific applications.

The electrospinning process for the growth of metal oxide nanofibers typically involves
the electrospinning of metal precursor with a carrier polymer to obtain salt/polymer
structure, followed by calcination of the as-spun materials in air to remove the polymer
from the metal oxide fibers. During the first step, the metal precursor is typically dissolved
in a polymer solution, and an electric field is applied to create a charged jet of the solution
that is collected on a substrate to form nanofibers. The resulting nanofibers are then heated
in air to remove the polymer and convert the metal precursor into a metal oxide. The
calcination process can be optimized to control the morphology and properties of the
metal oxide with fibrous morphology [83]. In an interesting work, Ercolano et al. [85]
have prepared one-dimensional Ni-based as-spun nanofibers using different Ni precursors,
carrier polymers, solvents, target distances at different voltages and flow rates, thermally
treated in various atmospheres. They have obtained nickel with possible phases of nickel
oxide, nickel nitride, metallic nickel, nickel/carbon, and other mixed phases and possible
structures such as nanoribbons, nanofibers, and sponge-like architecture. Figure 17 shows
the SEM pictorial representation of different structures at different experimental conditions.

The nickel nitrate used as Ni precursor dissolved in water/ethanol using poly(vinyl
alcohol) (PVA) polymer demonstrated an average diameter of 58 nm for the nanofibers,
which is three-fold smaller than the fibers prepared in other solvents and can be explained
by the high dynamic viscosity, the high surface tension, and the high conductivity of the so-
lution (water/ethanol). The calcination in air allowed the formation of NiO nanofibers from
Ni/salt polymer. However, there is an alternative process to modify their morphological
aspect, which is the reduction process and the thermal decomposition at high temperatures
to change the NiO into Ni3N for investigation in supercapacitors, Li-ion batteries, and
photovoltaic applications [86].

In another experiment, a PolyVinylPyrrolidone–Nickel acetate (PVP)/Ni(CH3COO)2
solution was electrospun to fabricate NiO nanofibers on a glass substrate. The electrospin-
ning was performed using a syringe pump to continuously provide the PVP/Ni(CH3COO)2
solution at a flow rate of 20 L/h. A high voltage of 9 kV was applied to the nozzle, and
a grounded steel substrate was used as the cathode for the electrospinning process. A
glass slide with patterned Au electrodes was attached to the steel substrate to collect the
electrospun nanofibers. After collection, the nanofibers were sintered in air at 480 ◦C for
1 h to remove the PVP and obtain NiO nanofibers on the glass substrate, devoted to gas
sensing application [87].
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Figure 17. SEM micrographs of (a) 12 wt% PVA and 12 wt% nickel acetate in water, (b) 11 wt%
PVA and 11 wt% nickel nitrate in water/ethanol and (c) 9 wt% PVA and 9 wt% nickel nitrate in
DMF/ethanol, (d–f) 9, 10, 11 wt% PVP and 9, 10, 11 wt% nickel acetate in pure ethanol and (g) 10 wt%
PVP and 10 wt% nickel acetate in ethanol:DMF (7:3 vol) prepared by electrospinning, reproduced
from reference [85] MDPI publisher (Copyright 2016).

Electrospinning of NiO was also investigated by using a slurry poured into a clinical
syringe connected to a needle and collector. The collector was a copper wire mesh, and
an electric field was generated between the needle and the mesh. The fibers were formed
between the needle and collector at a voltage of 18 kV for 1 h. The resulting fiber films were
sintered at temperatures ranging from 500 to 1400 ◦C. Factors such as viscosity, conductivity,
and surface tension of the precursor solution could affect the fiber morphology by changing
the diameter. The nanoparticle and polymer content in the solution were varied, while
the concentration of nanoparticles was adjusted between 0 and 2 wt% with PVP content
of 6 wt%. Figure 18 represents four SEM images of the nanofiber film of NiO-8YSZ using
different nanoparticle contents [88].
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(b) 0.5 wt% and (c) 1 wt% and (d) 2 wt%, prepared by (e) electrospinning method (schematic
illustration), reproduced from reference [88] Elsevier publisher (Copyright 2017).

2.2.4. Spin Coating

Spin coating is a liquid-deposition technique that involves the application of a liquid
precursor material onto a substrate, followed by spinning the substrate rapidly to spread
the liquid precursor material evenly over the substrate surface. The spinning process helps
to remove excess solvent and create a uniform thin film. The widespread use of spin coating
in nanotechnology and organic electronics refers to its quick and simple processing to apply
a uniform thin film to substrates. Its working area ranges from a few millimeters square
to one meter square or more. The film thickness varies from a few nanometers to a few
microns. Its general concept is based on dispensing the precursor solution at high speed
over the edge of a solid surface driven by the centrifugal forces, the viscous forces, and the
surface tension forces. Once the solution is spread and evaporated, we obtain a uniform
coating of the substrate by a thin film of 1–10 µm in thickness [62].

There are three main stages governing the spin coating process and repeated several
times to coat the substrate: (1) static/dynamic spin deposition, (2) Spin up and off, and
(3) evaporation.

Indeed, the solution is suspended onto the substrate, which is already spinning (dy-
namic) or set on spin after the deposition (static). By speeding up the rotation disc with
well-defined velocity and making the solution also spin at different rates, the centrifugal
forces balance the rotational acceleration, resulting in producing a fluid layer driven by
viscous forces, which fling off the substrate surface and is influenced by interference phe-
nomenon that changes the film color and reveals the dry aspect. Thereby, the evaporation
of the solvent occurs to enable the thinning of the coating, depending on the temperature,
pressure, and volatility of the solvent.

Haider et al. [89] have prepared the NiO colloid by sol–gel method to be deposited on
a glass substrate via spin coating at 3000 rpm for 40 s, followed by thermal annealing at
450 ◦C and 500 ◦C of two thin films of 120 nm in thickness, [15–30 nm] in grain size and
[8–12 nm] in roughness coefficient. The schematic of their spin coating of NiO is shown in
Figure 19.
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Using the same technique, Chtouki et al. investigated NiO thin film deposited on a
glass substrate at 3600 rpm for 30 s, dried at 150 ◦C for 15 min, and annealed at 350 ◦C for
45 min. Its microstructural analysis reveals a cubic phase crystallinity and a roughness
coefficient of 7.76 nm [90].

The deposition of nickel oxide (NiO) was carried out by two methods: thermal evapora-
tion and spin-coating. For thermal-NiO, NiO granules were evaporated at a low deposition
rate under high vacuum conditions to deposit a 5 nm thick film. The thermal-NiO was
grown with different thicknesses. Spin-NiO, on the other hand, was deposited by spin-
coating a solution of NiO nanoparticles and annealing the film at 300 ◦C for 30 min in
air. The microstructural analysis of the two grown-NiO is shown in Figure 20, proving a
higher surface area of spin-NiO than that of thermal-NiO. These deposition techniques and
thickness optimization studies are important for improving the structural properties of
NiO and its performance [91].

Despite the fast, sharp, and low-cost deposition of a uniform thin film with good
quality, spin coating is unfit for large substrates due to the difficult spinning at high speeds
and still suffers from the lack of material efficiency; the coating defects related to centrifugal
forces, the high solubility of the layers after the deposition of a multi-layered film, etc. [92].
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Figure 20. Comparative representation of thermal-NiO and spin-NiO morphologies using (a) SEM
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2.2.5. Dip Coating

Dip coating is a widely used and versatile coating method in both laboratory and
industrial settings. The process involves immersing a substrate into a solution containing
the precursor of the desired material and then withdrawing it at a controlled rate. This
results in the deposition of a liquid phase onto the surface of the substrate, which is then
evaporated to create a dry film. The thickness and morphology of the film depend on
various factors, including substrate surface, solution density and viscosity, surface tension,
immersion time, withdrawal speed, dip-coating cycles, and evaporation conditions. Photo-
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assisted dip-coating is also used to control the evaporation process and improve film
disposition. The process typically involves four stages: immersion, dwelling, withdrawal,
and drying, as shown in Figure 21. It is worth noting that withdrawal and drying stages are
critical for determining the properties of the final film, as different sets of forces (entraining
forces and draining forces) interact with the solution residues on the substrate surface. In
addition to the conventional dip-coating technique, photo-assisted dip-coating is utilized
to improve the control over the evaporation process of the coated solution and facilitate the
film disposition. Multi-layered dip-coating is also applied to increase the uniformity and
thickness of the film [62,93].
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Simiari et al. has deposited NiO on a glass substrate via the dip coating method [94].
They dissolved 2.489 gr of nickel acetate tetrahydrate (C4H6NiO4·4H2O) in 20 mL of
2-methoxyethanol at 70 ◦C for 15 min. Then, they immersed the substrate vertically and
removed it out of the solution several times at a speed of 100 mm/min. The deposited
film was dried at 300 ◦C for 15 min each cycle until it reached the desired thickness, and
then it was annealed in an air environment for 1 h at 600 ◦C. The roughness, the wetting
behavior, and the crystallinity of the coating film are investigated in reference [94]. The
AFM allows measuring the surface roughness of NiO film RMS = 6.57 nm. The wettability
of NiO was also studied, proving a hydrophilic characteristic as the water contact angle
is 57◦ < 90◦. The XRD patterns show a cubic structure with crystal lattice planes of (111),
(200), and (220), in good agreement with JCPDS No.73–1519.

2.2.6. Spray Coating

Spray coating is a versatile and widely used technique in the field of materials science
for depositing thin films of metal oxide onto a substrate. The process involves the atomiza-
tion of a metal oxide precursor solution into fine droplets, which are then directed onto a
substrate by means of a spray gun utilizing a jet stream of carrier gas. The evaporation of
the solvent in the droplets is linked to several factors. The rate at which they dry depends
on variables such as the size of the droplets, the boiling point of the solvent within them,
the temperature of the substrate, and the environmental conditions of the surrounding air.
These elements collectively dictate the time it takes for the droplets to transition from a
liquid to a solid state, thereby influencing the final characteristics of the thin film coating
that is formed [95].

Spray coating is a highly controllable and adaptable process that can be used to deposit
metal oxide coatings onto a wide range of substrate materials, including glass, ceramics, and
metals. It is commonly used in the production of a range of functional coatings, including
photocatalytic, anti-corrosion, and gas-sensing coatings. Some of the critical parameters
that impact the spray coating process can be the precursor solution composition, solvent
type and properties, spray parameters, substrate properties, distance from the nozzle to the
substrate, etc. [95–97].
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The spray deposition method, such as electrostatic spray, ultrasonic spray, or airbrush
spray, can also influence the coating’s morphology, thickness, and uniformity.

Desai et al. have prepared NiO with a thickness of 530 nm by spray pyrolysis technique
using nickel nitrate as precursor dissolved in water to be deposited on ITO-coated glass
heated at 370–420 ◦C following four steps: (i) separation of water from Ni nitrate; (ii) partial
decomposition of Ni nitrate; (iii) decomposition to oxide; (iv) decomposition of oxide to
nickel oxide. The optimization of the spray parameters for the preparation of NiO film
led to a substrate temperature of 460 ◦C, an aqueous solution concentration of 0.1 M, a
nozzle-to-substrate distance of 25 cm, a total spray time of 210 s, and a solution flow
rate of 10 mL/min in an air carrier gas environment at 250 kPa [98]. J.D. Desai used the
same spray technique to deposit NiO film by changing the precursor to nickel acetate [97].
Using the nickel acetate as precursor demonstrates good coverage of the whole surface
of the substrate by smooth NiO, whereas the use of nickel nitrate reveals closely packed,
nanosized grains with irregular shapes but nearly uniform sizes, which is rougher than
the latter one. Each research work shows the cubic phase of NiO (Bunsenite). However,
the use of nickel acetate precursor results in a coating film 165 nm thinner than the film
prepared by nickel nitrate precursor (530 nm).

The XRD patterns and SEM image are shown in Figure 22, proving the cubic crys-
tallinity of the NiO film.
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The properties of the resulting coatings can be finely tuned by adjusting the com-
position of the precursor solution, the spray parameters, and the annealing conditions.
By controlling these parameters, researchers can tailor the properties of the metal oxide
coatings to achieve the desired functionality for various applications.

2.2.7. Inkjet Printing

Growing films over large areas is one of the most advantageous properties of inkjet
printing technology, compared to spin coating. The inkjet printer deposits precise amounts
of ink under atmospheric pressure at room temperature that results in uniform and contin-
uous film using two approaches: thermal approach and piezoelectric approach. Figure 23
illustrates the schematic representation of an inkjet printer where a low-viscous ink should
fill the chamber till reaching the nozzle by keeping high surface tension to avoid the
dripping phenomenon. Then, ink droplets can be produced by heat to make volume
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expansion–contraction or by piezoelectricity by applying voltage pulses to change the
volume via mechanical forces [99]. After their ejection, the droplets will spread, allowing
their fusion with neighboring droplets, and evaporate until drying, thereby producing the
formation of the desired thin film. During the inkjet processing, the substrate is monitored
by moving it along a specific direction and speed to ensure its coating by ink droplets
according to the optimal conditions. The well-definition of printed films depends on surface
tension and viscosity of ink, and droplet velocity and volume, which, in turn, depend on the
nozzle size, the pulse amplitude and width (piezoelectric approach) and the temperature
(thermal approach) [62].
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In an interesting work, Huang et al. have produced NiO by inkjet printing for tem-
perature sensing applications, as illustrated in Figure 24 [100]. They mixed 0.5 g of NiO
nanopowder (particles’ diameter of 50 nm) with 1 g of ethylene glycol and 9 g of deionized
water, resulting in an aqueous mixture sonicated for 10 min. A suspension of the NiO
nanoparticles in 10 wt% ethylene glycol aqueous solution at pH = 6 to form a stable particle
ink. A centrifugation at 3000 rpm for 10 min is performed to remove the aggregation of
large particles and to prepare the ink that will be printed with a viscosity of 5.92 cP and
surface tension of 63.4 mN/m. The NiO inkjet printing onto polyimide films or glass
plates is developed at room temperature using a piezoelectric configuration where the
droplets with a diameter of 55 µm are ejected at a speed of 2.5 m/s. It is noteworthy that
the printing was made at a speed of 0.025 m/s with dot spacing of 50 µm, followed by
thermal annealing at 200 ◦C of NiO film for calcination. The printing of square NiO thin
film in between two parallel conductive tracks on polyimide or film glass plates shows
great sensitivity to temperature and applicability for flexible and miniaturized temperature
sensors [100]. SEM characterization demonstrates a granular and compact thin film of 13.5
and 16 nm in thickness with NiO nanoparticles of 50 nm in diameter. (See Figure 24).
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2.3. Solution Processing
2.3.1. Hydrothermal

Hydrothermal processes refer to the chemical reactions that take place in water under
high temperatures and pressure. These processes occur naturally in the Earth’s crust, where
they play a significant role in the formation of minerals and rocks [101]. Hydrothermal
processes also have a wide range of industrial applications, such as the production of
nanomaterials and the treatment of waste materials [102,103].

The high temperature and pressure alter the properties of water, making it an excellent
solvent for many substances. This condition also increases the rate of chemical reactions
by accelerating the collision frequency between molecules. The main mechanisms of
hydrothermal processes include hydrolysis and condensation reactions [104,105].

Hydrolysis is a chemical reaction in which water is used to break down a compound
into two or more components. This mechanism is essential in hydrothermal processes
because it helps to dissolve minerals in water, leading to the formation of new minerals. For
example, the hydrolysis of silicate minerals can lead to the formation of clay minerals [106].
However, condensation is a process in which dissolved substances in a solution form
solid particles. It occurs when the concentration of dissolved minerals exceeds their
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solubility limits. The solubility of the precursors increases with temperature, leading to
supersaturation of the solution. As the temperature and pressure are lowered, the solubility
decreases, resulting in the nucleation and growth of the solid phase. These reactions
can be controlled by varying the temperature, pressure, reaction time, and precursor
concentration. In addition, the resulting particles’ size and morphology can be tailored by
adjusting the reaction conditions, including the use of surfactants or templates to direct the
crystal growth.

Calcination can be a subsequent step in the hydrothermal process for the synthesis
of various nanomaterials. It involves heating the material in air to remove any organic
or inorganic impurities and promote crystal growth. The temperature and duration of
the calcination process play a crucial role in determining the physical and chemical prop-
erties of the final product. During the calcination process, the organic ligands, surfac-
tants, or capping agents used in the synthesis process are removed, resulting in a pure
inorganic material. Calcining at specific temperatures can facilitate the formation of in-
terparticle bonds and promote grain growth, leading to the formation of a crystalline
material [107–109]. Moreover, the calcination temperature [110] and ramping rate [111]
affect the degree of crystallinity, phase composition, and particle size distribution of the syn-
thesized material. Therefore, careful optimization of the calcination conditions is essential
to obtain the desired morphology, crystal structure, and size of the material.

NiO nanostructures were synthesized using the hydrothermal method by Mokoena
et al., employing nickel nitrate and hexamethylenetetramine (HMT) as precursors. Initially,
2.908 g of nickel nitrate hexahydrate was dissolved in 50 mL of deionized water, while
4.206 g of HMT was prepared in another 50 mL of DI water. The two solutions were mixed
and stirred for 4 h to obtain a uniform solution, which was then poured into Teflon-coated
stainless-steel autoclaves. The autoclaves were subjected to 150 ◦C for 14 h, followed by
washing with ethanol and DI water several times. The collected powders were dried in an
oven at 80 ◦C for 15 h and then calcined at 400 ◦C for 2 h in air. The calcination process
was carried out at various ramping rates ranging from 1 to 3 ◦C/min. The resulting NiO
nanostructures were obtained in the form of powder, suitable for further analysis and use
in various applications (refer to Figure 25a for the graphical representation of the synthesis
process) [111].
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The morphology of NiO nanostructures calcined at various ramping rates was in-
vestigated using SEM micrographs, as shown in Figure 25a–d. The as-grown sample
exhibited agglomerated nanoparticles, whereas the samples calcined at 400 ◦C showed
smaller nanoparticles at various ramping rates. These results indicate that heat treatment
and/or ramping rate can alter the properties of nanomaterials. Specifically, the size and
agglomeration of nanoparticles were found to be dependent on the ramping rate during cal-
cination. These findings highlight the importance of carefully controlling the heat treatment
conditions to achieve the desired morphological properties in nanomaterials.

The effects of different ramping rates on the size, shape, and distribution of particles
in NiO were studied. It was observed that the sample annealed at a slow ramping rate of
1 ◦C/min had the most uniform distribution of particles in terms of both size and shape.
Furthermore, the smallest particle size showed minimal variation with different ramping
rates. On the other hand, the sample annealed at a faster ramping rate of 3 ◦C/min exhibited
more cracks on its surface. Additionally, a relatively non-uniform distribution of the size
and shape of particles was observed at this ramping rate despite an improvement in the
crystallinity of the sample when compared to other ramping rates. These findings suggest
that the ramping rate during calcination plays a critical role in determining the uniformity
of the particle size and shape in the sample, as well as the quality of its crystallinity.

2.3.2. Sol–Gel

The sol–gel method involves the preparation of a sol, which is a colloidal suspension
of a precursor in a liquid solvent. This is followed by aging, gelation, and drying to obtain
the final product. For metal oxide synthesis, metal alkoxides are used to form the solution.
In the first step, the metal alkoxides are dissolved in a suitable solvent, such as water or
organic solvents, and stirred for several hours to form a clear solution. The molar ratio
of metal precursor to solvent should be tuned based on the desired properties of the final
product. In the next step, the sol is subjected to gelation by adding a suitable gelation agent
such as ammonia, acetic acid, or hydrogen peroxide. The gelation time and temperature
are varied to optimize the size and morphology of the resulting metal oxide particles.
The gel is then washed, dried, and calcined to obtain the final product in the form of a
powder [112,113].

Aerogels, xerogels, and cryogels are all types of solid gels, but they differ in how they
are formed and their physical properties [112].

Aerogel is formed by extracting the liquid from a gel at a supercritical state, which
means that the liquid is heated and pressurized to a point where it has the properties of
both a gas and a liquid. The resulting material is a highly porous and lightweight solid that
has excellent thermal insulation properties.

Xerogel, on the other hand, is formed by evaporating the liquid from a gel at room
temperature. This process leads to the formation of a solid material that has a high
surface area.

Cryogel is formed by freezing a gel and then removing the ice by sublimation. This
results in a highly porous and interconnected solid material that is used for a variety of
applications, including tissue engineering, drug delivery, gas sensing, and catalysis.

Figure 26 represents the different solid gels formed by the sol–gel technique [114].
Several key parameters influence the outcome and properties of materials produced

using the sol–gel derived materials, including precursor chemicals (metal alkoxides, chlo-
rides, etc.), solvent type (affects the solubility of precursors and the reaction kinetics),
catalyst/surfactant (control reaction rates, homogeneity, particle size, surface area, dis-
persion), pH level of the solution (influence the hydrolysis and condensation reactions),
stirring and mixing, aging time, reaction temperature during gel formation, drying method
(type of the gel), and calcination at specific temperatures and durations [115–118].

The precise control and optimization of these parameters allow researchers to tailor
the properties of materials synthesized via the sol–gel method to meet specific application
requirements.



Chemosensors 2024, 12, 45 31 of 76

Chemosensors 2024, 12, x FOR PEER REVIEW 32 of 81 
 

 

 
Figure 26. Schema of various solid gels, reproduced from reference [114] MDPI publisher (Copy-
right 2021). 

Several key parameters influence the outcome and properties of materials produced 
using the sol–gel derived materials, including precursor chemicals (metal alkoxides, chlo-
rides, etc.), solvent type (affects the solubility of precursors and the reaction kinetics), cat-
alyst/surfactant (control reaction rates, homogeneity, particle size, surface area, disper-
sion), pH level of the solution (influence the hydrolysis and condensation reactions), stir-
ring and mixing, aging time, reaction temperature during gel formation, drying method 
(type of the gel), and calcination at specific temperatures and durations [115–118]. 

The precise control and optimization of these parameters allow researchers to tailor 
the properties of materials synthesized via the sol–gel method to meet specific application 
requirements.  

Babei et al. [119] synthesized NiO gel by dissolving 2.0 g (8.41 mmol) of NiCl2 6H2O 
in 13.5 mL of absolute ethanol, resulting in a homogeneous and clear solution. Next, 5.37 
g (92.5 mmol) of propylene oxide was added dropwise to the solution while stirring, re-
sulting in a PO:Ni molar ratio of 11:1. The solution was stirred for 10 min and then trans-
ferred into a syringe. After approximately 30 min, a uniform, light green opaque nickel 
oxide gel was formed. The wet gel was then aged for 24 h under ambient conditions. The 
gels were kept in a CO2 dryer chamber at a pressure of 110 bar and a temperature of 50 °C 
for 3 h, followed by releasing the pressure at a rate of 6 bar/min to be dried. Then, they 
were calcined for 4 h at different temperatures (250–600 °C) with a heating rate of 3 
°C/min. The as-synthesized gels were dried at room temperature for 30 days/80 °C over-
night. On the other hand, xerogels have been calcined at the same temperatures. SEM 
characterization reveals spherical NiO nanoparticles that agglomerate to form larger par-
ticles (See Figure 27a–f). Xerogels were found to have a more compact structure compared 
to aerogels, which was reflected in their lower mesopore volume and specific surface area. 
However, aerogels had a more porous structure and smaller particle sizes than xerogels. 
This was attributed to the collapse of the pore structure during the evaporation drying 
process that led to the formation of dense clusters of xerogel particles and loss of specific 
surface area and pore volume. This collapse was caused by the formation of a liquid–
vapor interface within the gel during evaporation that generated surface tension, leading 
to pore shrinkage. However, this effect was avoided when the solvent was removed under 
supercritical conditions, which allowed for the gel to be dried without pore shrinkage. 
The calcination process of both nickel oxide aerogels and xerogels resulted in the for-
mation of a pure NiO phase with characteristic peaks that corresponded to the (111), (200), 
(220), (311), and (222) crystal planes, as indicated by the JCPDS card 04-0835 (See Figure 
27g). As the calcination temperature was increased from 300 °C to 600 °C, the XRD reflec-
tions became narrower and sharper, indicating the sintering of small NiO nanoparticles. 
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right 2021).

Babei et al. [119] synthesized NiO gel by dissolving 2.0 g (8.41 mmol) of NiCl2 6H2O
in 13.5 mL of absolute ethanol, resulting in a homogeneous and clear solution. Next, 5.37 g
(92.5 mmol) of propylene oxide was added dropwise to the solution while stirring, resulting
in a PO:Ni molar ratio of 11:1. The solution was stirred for 10 min and then transferred into
a syringe. After approximately 30 min, a uniform, light green opaque nickel oxide gel was
formed. The wet gel was then aged for 24 h under ambient conditions. The gels were kept
in a CO2 dryer chamber at a pressure of 110 bar and a temperature of 50 ◦C for 3 h, followed
by releasing the pressure at a rate of 6 bar/min to be dried. Then, they were calcined
for 4 h at different temperatures (250–600 ◦C) with a heating rate of 3 ◦C/min. The as-
synthesized gels were dried at room temperature for 30 days/80 ◦C overnight. On the other
hand, xerogels have been calcined at the same temperatures. SEM characterization reveals
spherical NiO nanoparticles that agglomerate to form larger particles (See Figure 27a–f).
Xerogels were found to have a more compact structure compared to aerogels, which was
reflected in their lower mesopore volume and specific surface area. However, aerogels had
a more porous structure and smaller particle sizes than xerogels. This was attributed to
the collapse of the pore structure during the evaporation drying process that led to the
formation of dense clusters of xerogel particles and loss of specific surface area and pore
volume. This collapse was caused by the formation of a liquid–vapor interface within the
gel during evaporation that generated surface tension, leading to pore shrinkage. However,
this effect was avoided when the solvent was removed under supercritical conditions,
which allowed for the gel to be dried without pore shrinkage. The calcination process of
both nickel oxide aerogels and xerogels resulted in the formation of a pure NiO phase
with characteristic peaks that corresponded to the (111), (200), (220), (311), and (222)
crystal planes, as indicated by the JCPDS card 04-0835 (See Figure 27g). As the calcination
temperature was increased from 300 ◦C to 600 ◦C, the XRD reflections became narrower and
sharper, indicating the sintering of small NiO nanoparticles. One can note that sintering
is less pronounced for NiO aerogels compared to xerogels despite having almost similar
peak intensities.
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2.3.3. Micro-Emulsion

In a micro-emulsion system, a surfactant is used to form micelles in a solution of water
and oil or other organic solvents. The micelles act as nanoreactors, allowing the precursors
to diffuse into the core of the micelle, where they can undergo chemical reactions to form
nanoparticles. By controlling the size and shape of the micelles, it is possible to control
those of the resulting nanoparticles. At a macroscopic level, the mixture of oil, water, and
surfactant appears homogeneous, seamlessly combining these components. However, at
a microscopic scale, it reveals a captivating structure comprising water or oil droplets
intricately enveloped by a layer of surfactant molecules [120].

The micro-emulsion technique offers several advantages over other methods, includ-
ing the ability to produce monodisperse nanoparticles with a narrow size distribution,
high yields, and the ability to tune the properties of the nanoparticles by varying the
reaction conditions [121,122]. It has been successfully applied to the synthesis of a wide
range of nanomaterials, including metals and metal oxides, making it an important tool for
nanoparticle synthesis with a typical size of between 30 nm and 100 nm [122–124].

Several parameters can influence the properties of the synthesized nanoparticles, such
as surfactant, which is crucial for forming the micelles (it should be chosen such that it can
stabilize the micelles and prevent conglomerate and coalescence during the reaction [125]),
solvent (it depends on the solubility of the precursors and surfactants), water-to-surfactant
molar ratio (it can influence the stoichiometry of the reaction, leading to differences in the
composition, size, and morphology of the nanoparticles), temperature and reaction time
(they can influence the kinetics of the reaction and affect the size, the morphology and the
crystallinity of the nanoparticles produced [126]) [120]. Finally, the choice of co-surfactants,
pH, and ionic strength can also influence the micro-emulsion technique’s outcome [127,128].
The addition of co-surfactants can affect the micelle size and shape and, hence, the resulting
nanoparticles. The pH and ionic strength can influence the electrostatic interactions [129]
between the reactants and surfactants, leading to differences in the size and morphology of
the nanoparticles.

Figure 28 shows a diagram of the micro-emulsion setup.
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Figure 28. Schematic representation of micro-emulsion setup, reproduced from reference [130] Intech
publisher (Copyright 2012).

T. Elayampallayam used ethylene glycol to dissolve 2.5 mM of NiCl2. Hydrazine and
NaOH were added as a reducing agent and as a catalyst, respectively, to form nickel ions.
The resulting mixture was stirred well. At a temperature exceeding 90 ◦C, a bluish-green-
colored precipitate slowly changed to black, indicating the formation of Ni nanoparticles
related to reducing Ni2+ ions to Ni(0). The NiO nanoparticles’ size is averaged to 12 nm
with FCC crystallinity [131].
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In another work, the synthesis of nickel oxide involves two steps: the synthesis of
nickel oxalate dihydrate nanoparticles and their subsequent thermal decomposition. To
synthesize the nickel oxalate dihydrate, two micro-emulsions (I and II) were prepared.
Micro-emulsion (I) contained cetyltrimethylammonium bromide (CTAB) as the surfactant,
n-butanol as the co-surfactant, isooctane as the hydrocarbon phase, and a 0.1 M nickel
nitrate solution as the aqueous phase. Micro-emulsion (II) contained the same constituents
except for having 0.1 M ammonium oxalate instead of nickel nitrate as the aqueous phase.
The weight fractions of the various constituents in these micro-emulsions were carefully
controlled. After slow mixing and stirring overnight, the precipitate was separated from the
solvent and surfactant by centrifugation and washing with a 1:1 mixture of methanol and
chloroform. The resulting precipitate was then dried at 120 ◦C for 1 h. Finally, the precursor
was heated in air at 450 ◦C for 6 h to yield monophasic nickel oxide nanoparticles [132].
XRD patterns show growth preferability along the (200) orientation of NiO powder, whereas
the TEM and electron diffraction prove homogeneous NiO nanoparticles of 25 nm with
narrow size distribution.

2.3.4. Successive Ionic Layer Adsorption and Reaction Method (SILAR)

The SILAR method involves the deposition of ionic species onto a substrate in al-
ternating cycles of adsorption and reaction. The adsorption step involves immersing the
substrate in a solution containing a metal precursor, followed by rinsing with a suitable
solvent. The reaction step involves exposure to a second solution containing a reactive
agent, followed by rinsing. The process is repeated for several cycles until the desired
thickness of the metal oxide film is achieved [133,134].

Taşdemirci et al. have deposited NiO films on a glass substrate using the SILAR
method, described in Figure 29 [135]. The SILAR cycle for the fabrication process involved
four stages. In the first stage, the glass substrate was immersed in the ([Ni(NH3)4]2+)
solution for 30 s. In the second stage, the substrate was removed from the solution and
kept in hot water, boiling at 90 ◦C for 7 s. In the third stage, the substrate was air-dried for
60 s. In the fourth stage, the substrate was rinsed in pure water for 30 s, and the large and
weakly bonded NiO particles were removed from the surface. The cycle was repeated until
the entire surface was homogeneously coated with the NiO thin films.
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The microstructure analysis obtained by SEM reveals properly coated films. The
as-grown NiO shows a uniform coating, whereas the annealed NiO at 200 ◦C and 300 ◦C
keeps the structure homogeneous. Whilst annealing NiO at 400 ◦C disrupts the structure by
creating cracks on the surface. The surface roughness was also examined by AFM, proving
that annealing made the sample smoother.

3. Gas Sensing Mechanism

Gas sensors based on semiconductor metal oxides operate by monitoring the change
in electrical resistance of the sensing material in response to the presence of chemical com-
pounds in the vapor phase. The physical and chemical processes involved in detecting the
target gas are complex and include charge carrier transfer, surface reactions, gas transport,
and diffusion. Despite significant research efforts, the sensing mechanisms of metal oxide
gas sensors have not been fully understood. However, some models have been proposed
to explain the mechanisms, such as the surface reaction model, the bulk diffusion model,
and the spillover model [136,137].

Regarding NiO gas sensors, they operate by controlling mobile charge carriers to detect
changes in their conductivity. When exposed to air, oxygen molecules are adsorbed and
oxidized on the surface of the NiO by capturing conduction band electrons, forming O−

2
(T < 100 ◦C), O− (100 ◦C < T < 300 ◦C), and O2− ions (T > 300 ◦C). This transfer of electrons
generated holes, causing the resistance to decrease. In the presence of reducing gases,
the chemisorbed oxygen anions on the surface of NiO may react with the gas, removing
the anions and oxidizing the gas. The gas-sensing mechanism can be elucidated using
Figure 30: Initially, oxygen molecules are adsorbed onto the surface of NiO, leading to the
formation of adsorbed oxygen. Then, an electron accumulation layer (EAL) is created on
its surface, thereby increasing the surface barrier. When NiO is exposed to a reducing gas
like hydrogen, H2 molecules release electrons that subsequently combine with the existing
holes within the NiO material. This interaction results in a narrower EAL and an elevation
in the barrier height. Consequently, the resistance of the NiO material increases. This
change in resistance can be measured and utilized to detect the presence or concentration
of hydrogen gas. However, a decrease in the NiO resistance is recorded under exposure to
oxidizing gases, which reduces the nickel ions from (II) to (I) by donating electrons to the
NiO lattice [138,139].

Wang et al. [140] tried to study the gas sensing mechanism of the NiO (100) surface
by examining its energetic and electronic properties after exposure to NO2, H2S, and NH3
gases, based on density functional theory (DFT) calculations (See Figure 31). It was found
that the chemisorption of NO2 on the NiO surface is stronger than that of H2S and NH3,
so the removal of NO2 molecules from the surface is very difficult compared to the other
gases, which can lead to prolonged recovery time and incomplete recovery, as proven in
many research works [141–144]. However, NiO exhibits full recovery when testing against
ammonia and hydrogen sulfide [145,146].

3.1. Impact of Growth Method on Gas Sensing Performances

The gas sensing performance of metal oxides is highly influenced by morphology and
low dimensionality of materials due to several key factors. First, the surface-to-volume
ratio increases as the size of the material decreases, resulting in a larger active surface
area available for interaction with gas molecules. This surface enhancement results in
good sensitivity to gas adsorption and improves the overall sensing response. Second,
morphology, including the shape and structure of the metal oxide nanoparticles, plays a
crucial role in determining the gas-sensing properties. Different morphologies can offer
various surface sites and crystal facets, affecting the adsorption and desorption of gas
molecules. This can lead to improvements in selectivity and sensitivity towards specific
gas species. Additionally, low-dimensional nanomaterials, such as nanowires, nanotubes,
or nanosheets, exhibit unique electronic and structural properties. These features can
contribute to more efficient charge transfer and better interaction with gas molecules,
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resulting in better sensitivity. One can note that the growth method, which is primarily
responsible for obtaining specific structure and morphology (as mentioned in Section 2),
plays a crucial role in tuning the gas-sensing properties of metal oxides.
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The morphology of NiO structures strongly impacts the sensing performances, such
as sensitivity, selectivity, response time, and working temperature, as mentioned in the
literature [147,148]. Consider the case of pure and hydrothermally grown NiO nanostruc-
tures [149]; three distinct structures are derived through the following:

• Dissolving tri-sodium citrate dihydrate (0.588 g) and nickel chloride hexahydrate
(0.475 g) in 40 mL of deionized water and stirring them vigorously until reaching a
clear green solution into which 20 mL of ethanol was added under stirring to make
a transparent mixture that is transferred to the lined-autoclave at 190 ◦C for 8 h and
12 h, resulting in NiO solid spheres.

• Dissolving the same amount of nickel chloride with urea (0.6 g) in 40 mL of deionized
water and 10 mL of ethanol to which 0.002 mol of CTAB agent was added and stirred
until the solution was clear and transferred to the autoclave at 200 ◦C for 8 h and 12 h,
resulting in NiO porous spheres.

• Dissolving the same amount of nickel chloride with urea (3.5 g) in 20 mL of deionized
water and 20 mL of ethanol under stirring to obtain a clear blue solution that is
transferred to the autoclave at 140 ◦C for 8 h and 12 h, resulting in NiO hollow spheres.
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associated to atoms: Grey: Nickel, Red: Oxygen, Navy blue: Nitrogen, Light violet: Hydrogen,
Green: Sulfur.

The 2 h-calcination of the products is performed in air at 400 ◦C for solid and porous
spheres and 500 ◦C for the hollow spheres to transform Ni(OH)2 to pure NiO.

The gas testing of these structures reveals that hollow spheres provide the highest
response toward 400 ppm of ethanol at an optimum temperature of 350 ◦C. Porous structure
also presents a higher response than solid spheres. This enhancement is ascribed to the
increased specific surface area and smaller Debye length associated with the porous and
hollow structures. Notably, the investigation shows that ethanol molecules can efficiently
penetrate the interior of the NiO hollow sphere (or pores within the microsphere) where
the adsorption sites’ density is higher, facilitating complete gas-sensing reactions and
enhancing the ethanol response.

Other NiO nanostructures grown by hydrothermal process show sensitivity to H2S
gas with high selectivity at 250 ◦C [150]. 11.64 g of Ni(NO3)2 6 H2O and 2 g of NaOH
were dissolved in 40 mL distilled water for 10 min before being transferred into a 50 mL
Teflon-lined stainless-steel autoclave. The mixture was subsequently aged at 185 ◦C for
varying durations (2, 4, 6, and 8 h). The resulting Ni(OH)2 nanoplates were then subjected
to centrifugation and washed with distilled H2O and ethanol multiple times. The obtained
powders were dried at 60 ◦C for 24 h, followed by calcination at 600 ◦C. They proved
the presence of local p–n homojunction in hexagonal-annular NiO material by positron
annihilation experiments after calcining the β-Ni(OH)2 nanoplates for 5 h. One can see
the morphological transformation of the precursor in Figure 32a. Annealing for 1 h allows
the formation of discrete, small hollows within the β-Ni(OH)2 plates while maintaining
their initial hexagonal shape. With a 3 h annealing time, these small hollows expand and
concentrate around the central region, evolving into larger hollows. Intriguingly, increasing
the time to 5 h leads to the disappearance of small hollows, replaced by an open-hexagonal
hollow at the particle’s center. The initial hexagonal shape remains, but the inner and
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outer hexagons align parallelly, resulting in a symmetrical hexagonal NiO with a local
p–n homojunction: NiO is conventionally known as a p-type semiconductor, attributed to
the deficiency of metal ions in the material (p), whereas the number of VO exceeds that
of VNi, suggesting a potential n-type semiconductor behavior (n). The identification of
these vacancy clusters containing both VO and VNi, with an average size of approximately
11 atoms within NiO nanostructures, is shown in Figure 32d. The authors suggest that
the active sensing site for interaction with H2S molecules in the annular NiO sensor is
the O-deficient vacancy clusters. The heightened sensitivity and superior selectivity to
H2S, in comparison to other hexagonal NiO nanostructured sensors, may be attributed
not only to higher specific surface area but also to the increased concentration of vacancy
clusters within the hexagonal-annular NiO architecture. Additionally, the formation of a
local p–n homojunction in NiO likely contributes as another crucial factor in enhancing the
H2S-sensing capabilities.
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The solution processing methods, such as the hydrothermal approach, result in various
morphologies of NiO at the microscale and nanoscale, including hierarchical structures.
This allows the enhancement of specific surface area and gas-sensing properties [151–153].

Zhao et al. prepared NiO nanomaterials from one dimension to three dimensions
through the hydrothermal method, resulting in NiO nanowires, nanosheets, ‘nanobulks’,
and nanospheres when varying the active agents PEG, EG, and glycine. Their sens-
ing response to ethanol gas are ranked in descending order as follows: NiO nanowires,
nanospheres, nanosheets, and ‘nanobulks’ due to the porosity and large surface area that
nanowires provide over other structures which can adsorb more gas molecules [154].

However, this method is time-consuming and requires concentrated chemicals, high
temperature, and pressure. On the other hand, sol–gel provides high control and high sur-
face area at low temperatures and can be environment-friendly by adapting green synthesis.
Despite its cost-effectiveness, sol–gel method is sensitive to reaction conditions, needs post-
treatments like rinsing, centrifuge process, drying, and calcination [152], and does not show
high porosity or hierarchical structures for NiO material [155,156] without combination
with other approaches, which can drastically affect the efficiency of gas sensors.

The electrodeposition technique can provide NiO hierarchical structures, such as
flower-like morphologies, where its control is ensured easily by adjusting the applied
current and the reaction time. Two flower-like NiO sensors show sensitivity toward 5 ppm
of ethanol at 250 ◦C with responses of 6.5 (current: −0.5 mA; time: 200 s) [81] and 3.75
(current: −0.6 mA; time: 150 s) [157]. This variation is due to the short reaction time that
inhibits the nanosheets from completing their assembling and increasing their distribution
on the surface area [158].

Table 3 reports the variation of sensing properties toward hydrogen and ethanol gases
as an example, using different growth techniques.

Table 3. Gas sensing response to hydrogen and ethanol using different growth techniques.

Gas Species Gas Concentration
(ppm) Experiment Morphology Operating

Temperature
Sensitivity ( ∆R

R ) or
Gas Response

Hydrogen

200 Hydrothermal
approach [159] Nanoparticles 250 ◦C 97.2%

50 Ultrasonic spray
pyrolysis [160] Angular grains 250 ◦C ∼17

5000 Sputtering + Plasma
oxidation [21] Nanobeam 25 ◦C ∼45%

5000 Sputtering + thermal
oxidation [21] Nanobeam 25 ◦C ∼9

Ethanol

5
DC reactive
magnetron

sputtering [20]
Granular film 250 ◦C 6%

5 Electrodeposition [81] Nano-roses 230 ◦C 9.11 *

100 Solvothermal
reaction [161] Nanorod-flowers 200 ◦C 1.9 *

* Gas response: Rgas/Rair

The thermal evaporation–condensation process (VLS) provides unique nanowire
morphology for NiO material, as reported in the literature. Kaur et al. have demonstrated
high response to NO2 analyte with sensitivity of 54.8 (1 ppm) at 200 ◦C that outperforms
sol–gel spin coated NiO’s sensitivity of 0.233 (200 ppm) at 200 ◦C, hydrothermal NiO
nanosheets’ sensitivity of 0.8 (20 ppm) at 250 ◦C, and sputtered NiO film’s sensitivity of 2.6
(5 ppm) at 160 ◦C [162]. VLS process can also ensure the growth of heterojunction materials
such as NiO/ZnO (p–n type), NiO/WO3 (p–n type), NiO/NiWO4/WO3 (p–p–n–type)
that exhibit sensitivity toward different gases with changing selectivity and sensitivity.
These last parameters are influenced not only by the morphology of NiO, surface area, and
heterojunction effects but also by the operating temperature of the sensor device, which
modulates gas species adsorption/desorption and charge–carrier transport, the analyte
nature (reducing or oxidizing) [162–164]. It is worth noting that the operating temperature
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can enhance the NiO nanowires selectivity that changes from hydrogen at 300 ◦C to acetone
at 500 ◦C [42]. The same NiO nanowires show selectivity toward NO2 with optimum
response at 200 ◦C [162].

The gas response and selectivity of the NiO-based sensors depend on various factors,
including the gas itself, the type of crystal structure, its surface area, particle size, morphol-
ogy, operating temperature, surface modification, and composition moderation, as will be
discussed in the following.

3.2. Inorganic Composites NiO–X
3.2.1. X = ZnO

Recent research into heterogeneous oxide sensors composed of ZnO and NiO has
shown that these sensors exhibit superior gas-sensing performance when compared to their
individual counterparts. One such example is a gas sensor that utilizes ZnO–NiO hetero-
junction microflowers, which demonstrated a larger sensing response to formaldehyde
than a gas sensor composed solely of pristine ZnO microflowers [165]. In addition, ZnO
nanorod arrays have shown an improved response to H2S gas-sensing when decorated
with NiO [166]. These studies have shown the potential for ZnO–NiO heterogeneous
oxide sensors to be used in a wide range of gas-sensing applications due to their enhanced
performance when compared to individual oxide sensors.

By using the sol–gel method, Zhou et al. [167] prepared ZnO–NiO composites with
different molar ratios of Ni/Zn. The ratio xNi/Zn plays a pivotal role in modulating the
n-type or p-type concentration in p–n composite where the gas sensing test against CO
and H2 shows n-type for xNi/Zn < 0.425 (dominated by n–n homojunctions) and p-type for
xNi/Zn > 0.425 (dominated by p–p homojunctions), obeying to the model of depletion layer
and the model of the accumulation layer, respectively. However, the ratio xNi/Zn = 0.425
represents opposite responses to CO and H2; therefore, it can accurately differentiate
individual CO and H2, hence enhancing the poor discriminability of ZnO. Including NiO
in the gas sensing layer of ZnO at this concentration forms heterojunctions at the interfaces
between ZnO and NiO, resulting in a potential barrier through which electrons flow from n-
type ZnO to p-type NiO, reaching the same Fermi energy level. These electrons transfer back
into the conduction band of ZnO and NiO, causing the potential barrier height of both ZnO
and NiO to decrease. The thickness of the electron depletion layer and the accumulation
layer becomes thinner, allowing a decrease in the hole concentration of NiO and an increase
in the electron concentration of ZnO. The abnormal sensing behavior of the ZnO–NiO
composite (xNi/Zn = 0.425) can be explained by the different adsorbability of CO and H2 on
the surface of ZnO and NiO, leading to a discrepancy in content changes between the hole
concentration decrease on the surface of NiO and the electron concentration increase on
the surface of ZnO. It is worth noting that the sensing response of pristine ZnO is higher
than the composite one due to the preferability of H2 adsorption on ZnO. In addition to the
molar ratio, post-annealing and operating temperature can also influence the sensitivity of
this composite against reducing gases, as mentioned in Figure 33.

In another work, the co-sputtered thin film of ZnO–NiO as a heterogeneous composite
gas sensor is investigated toward several gases at 300 ◦C and proves higher responsive-
ness to ethanol when compared to pure NiO responsiveness with good repeatability and
stability [168].

Moreover, Zhao et al. [169] fabricated a nanostructured ZnO–NiO composite that
demonstrates high sensitivity towards ethanol, a fast response/recovery rate, good re-
versibility, reproducibility, and robustness towards humidity at an optimum temperature
of 300 ◦C, as can be seen in Figure 34.
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Hydrothermal preparation of pristine NiO and ZnO–NiO composite devoted to testing
their gas sensitivities are reported in the literature and described in Figure 35, indicating
that the composite is highly more efficient than the pristine NiO with the highest sensitivity
and suitable selectivity towards acetone [170].
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Figure 35. (a) SEM images and (b) TEM images of (I) pristine NiO and (II) ZnO–NiO composite,
reproduced from reference [170] Elsevier publisher (Copyright 2017).

3.2.2. X = SnO2

The hydrothermal growth of SnO2–NiO nanocomposite has been made by Wei et al. [171]
for gas sensing applications. They have demonstrated that the addition of tin dioxide
allows reducing the operating temperature of pristine nickel oxide from 320 ◦C to 230 ◦C
and enhances its sensitivity towards NO2 11-fold. This excellent response proves efficiency
when increasing the gas concentration and good stability for 30 days, as shown in Figure 36.

Sputtering mixed composite of SnO2–NiO on a glass substrate for sensor device
fabrication is investigated in the reference [172], showing high sensing performances
towards NO2 at 200 ◦C, high selectivity against CO and NH3, good reproducibility, and
cyclic response stability over its single layer counterpart (NiO) (see Figure 37).
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Figure 36. Sensing properties of pristine NiO and SnO2–NiO composite: (a) gas response towards
20 ppm of NO2 at different operating temperatures, (b) gas response at 230 ◦C to different gas
concentrations, (c) dynamic curves at 230 ◦C under exposure to 20 ppm of NO2, (d) stability test of
the samples for 30 days, and schematic description of the sensing mechanism in the samples (e) NiO
and (f) SnO2–NiO in air and in gas with representation of band bending diagram, reproduced from
reference [171] MDPI publisher (Copyright 2019).
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Another study reported an improvement in NiO sensitivity by changing its structure 
from pristine to SnO2–NiO composite [173]. It demonstrates that the response of the com-
posite is higher than the pristine NiO towards triethylamine (TEA). The widening of the 
depletion layer at the interface between the two oxides (NiO and SnO2) has been found to 
increase the composite resistance in air. However, when the composite is exposed to TEA 
gas, a chemical reaction occurs where the adsorbed oxygen ions on the material surface 
react with gas molecules, releasing electrons and causing a decrease in interface depletion. 
This results in a reduction in the composite resistance. These findings suggest that the 
interaction between the composite and TEA gas can be utilized to control the electrical 
properties of the material and thus optimize its sensitivity towards gas species [173]. 

Figure 37. Schematic illustration of (a,b) sensing mechanism in the heterogeneous SnO2–NiO
composite and (c,d) band bending at the heterointerface in air and oxidizing gas environment, (e) gas
response towards various concentrations of NO2 at 200 ◦C for (e) NiO, (f) SnO2–NiO composite,
inset describes the sensing profile for a single NO2 concentration and (g) its cyclic dynamic curves at
6 ppm, reproduced from reference [172] Elsevier publisher (Copyright 2020).

Another study reported an improvement in NiO sensitivity by changing its structure
from pristine to SnO2–NiO composite [173]. It demonstrates that the response of the
composite is higher than the pristine NiO towards triethylamine (TEA). The widening of
the depletion layer at the interface between the two oxides (NiO and SnO2) has been found
to increase the composite resistance in air. However, when the composite is exposed to TEA
gas, a chemical reaction occurs where the adsorbed oxygen ions on the material surface
react with gas molecules, releasing electrons and causing a decrease in interface depletion.
This results in a reduction in the composite resistance. These findings suggest that the
interaction between the composite and TEA gas can be utilized to control the electrical
properties of the material and thus optimize its sensitivity towards gas species [173].

3.2.3. X = In2O3

Indium trioxide is sensitive to a variety of gases, including CO, H2, NOx, and VOCs.
Gas sensing with In2O3 typically involves the measurement of changes in electrical conduc-
tivity upon exposure to the target gas. The high electron mobility and low electron trapping
in In2O3 result in a high sensitivity to changes in gas concentrations. The combination of
In2O3 and NiO results in a composite material that exhibits high sensitivity toward both
reducing and oxidizing gases, making it a suitable material for gas-sensing applications
in various environments. Yan et al. have investigated such composite and have revealed
higher sensitivity against ethanol, compared to NiO, as mentioned in Figure 38 [174].
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Figure 38. (a) Recovery time and (b) sensing response of pristine NiO and In2O3–NiO composite
towards various concentrations of ethanol, (c) repeatability of composite sensor operating at 380 ◦C
to 50 ppm, 100 ppm, and 200 ppm of ethanol, (d) TEM and (e) HRTEM images of the composite, and
schematic illustration of (f) In2O3 nanoparticles on NiO nanosheets and (g) energetic diagram at the
heterointerface In2O3–NiO, reproduced from reference [174] Elsevier publisher (Copyright 2022).

Another research group has studied the In2O3–NiO composite and has recorded
higher sensitivity towards TEA when combining NiO with In2O3 with good repeatability,
as mentioned in Figure 39 [175]. The excellent sensitivity of the composite is due to the
larger specific surface area, which is 3.9 times higher than that of the pure NiO, and
abundant mesopores contribute to enhancing the gas adsorption and diffusion.



Chemosensors 2024, 12, 45 47 of 76

Chemosensors 2024, 12, x FOR PEER REVIEW 49 of 81 
 

 

Figure 38. (a) Recovery time and (b) sensing response of pristine NiO and In2O3–NiO composite 
towards various concentrations of ethanol, (c) repeatability of composite sensor operating at 380 °C 
to 50 ppm, 100 ppm, and 200 ppm of ethanol, (d) TEM and (e) HRTEM images of the composite, 
and schematic illustration of (f) In2O3 nanoparticles on NiO nanosheets and (g) energetic diagram 
at the heterointerface In2O3–NiO, reproduced from reference [174] Elsevier publisher (Copyright 
2022). 

Another research group has studied the In2O3–NiO composite and has recorded 
higher sensitivity towards TEA when combining NiO with In2O3 with good repeatability, 
as mentioned in Figure 39 [175]. The excellent sensitivity of the composite is due to the 
larger specific surface area, which is 3.9 times higher than that of the pure NiO, and abun-
dant mesopores contribute to enhancing the gas adsorption and diffusion. 

 

Figure 39. Transient resistance curves under exposure to various concentrations of TEA gas at 200 ◦C
for (a,b) pristine NiO and (c,d) In2O3–NiO composite whose repeatability is evaluated in (f) and
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3.2.4. X = CeO2

Ceria also proves its promotion in gas sensing applications [176] by operating at
relatively low temperatures (100–150◦ C) and detecting different gases such as H2, NO2,
CO2, etc. [177,178]. Thanks to its properties, researchers devoted their studies to combining
it with other materials, we mention here nickel oxide. Kabure et al. [179] have studied
CeO2–NiO composite, grown by microwave-assisted sol–gel synthesis, that shows high
sensitivity towards NO2 at 125 ◦C, in contrast with pure NiO that presents lower sensitivity
and operates at higher temperature (175 ◦C). (See Figure 40).
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Liu et al. give an interpretation to make the sensing mechanism more understanda-
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ceria and partially reduced NiO in the backbone with the formation of Ni nanoparticles 
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Figure 40. (A) Gas responsiveness of (a) CeO2, (b) NiO, and (c) their composite towards NO2 at
different operating temperatures, and (B) (d) selectivity of CeO2–NiO composite towards different
gases at 125 ◦C, reproduced from reference [179] Elsevier publisher (Copyright 2022).

The as-spun Ce1−xNixO2 nanocomposite led to the conception of a proficient gas
sensor that is ultra-sensitive to propane with limited responsiveness to CO and CH4 and
operates at extremely high temperatures with an n-type sensing aspect. Its high selectivity
is proved when compared to pure ceria and pure NiO and boosted by the independence of
NiO on propane gas concentration. The selective C3H8 detection implies that the reaction
kinetics with propane species is very fast. In such a reducing environment, the composite’s
resistance decrease indicates the n-type of Ce1−xNixO2 [180].

Liu et al. give an interpretation to make the sensing mechanism more understandable.
Under the first exposure to propane, the nanocomposite releases the adsorbed oxygen
species and reduces the cerium and nickel ions to Ce3+ and Ni0, leading to highly reduced
ceria and partially reduced NiO in the backbone with the formation of Ni nanoparticles
on the surface of the sensing material when further expose it to reducing gases which can
demonstrate its high responsiveness. Increasing the exposure time allows the material
species reduction in the opposite direction and maintains a relatively high sensitivity
towards all three gases.

3.2.5. X = Fe2O3

Iron oxide is a prominent example of n-type metal oxides that have garnered significant
attention in gas sensing applications [181,182]. Its inclusion can substantially augment
the sensitivity and performance of NiO-based sensors, making it a valuable component
in the quest for enhanced gas detection capabilities. Pan et al. [183] have improved the
sensitivity towards n-butanol of NiO sample three-fold by loading Fe2O3 nanosheets that
also enhance the selectivity of such material towards several gases: ethanol, methanol,
formaldehyde, TEA, acetone, NO2, and n-butanol, decrease the detection limit of n-butanol
from 296 ppb to 48 ppb, reduce the operating temperature from 230 ◦C to 200 ◦C due to
surface activity improvements, and maintain high stability and good reproducibility at
200 ◦C (see Figure 41).

The Fe2O3–NiO composite, hydrothermally-grown, has also been investigated in
Wang’s work [184], showing high responsiveness towards toluene at 300 ◦C. Compared to
the NiO sensor, the composite’s sensitivity is 19-fold higher (See Figure 42). This can be
attributable to the high surface area, the good permeability, and the p–n junction formation
that creates a hole depletion layer and hence increases the adsorbed oxygen species, leading
to releasing back the electrons to the composite.
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tions at 300 ◦C. Dynamic response of the Fe2O3–NiO composite (b) and the pure NiO (c) to different
concentrations of toluene. (d,e) SEM images and schematic representation of carrier transport at the
interface for (f) NiO and (g) Fe2O3–NiO composite, reproduced from reference [184] ACS publisher
(Copyright 2014).
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Using LJS, Hernández et al. prepared a nanocomposite of Fe–Ni oxide that shows good
sensitivity towards acetone, ethanol, and toluene, behaving as n-type metal oxide. However,
under its exposure to 200 ppb concentrations of NO2, the composite NiFe2O4 shows noisy
responsiveness that might be related to the poor connectivity of the nanoparticles [58].

3.2.6. X = Co3O4

To our knowledge, the catalytic effect and the abundant oxygen adsorption of sev-
eral p-type metal oxides promote the selective oxidation of volatile organic compounds,
especially the oxidizing gases, and ensure better sensitivity at low operating tempera-
tures [185]. Therefore, making cobalt oxide and nickel oxide in the composite will enhance
the sensitivity toward various gases, as can be seen in Figure 43 [186]. In fact, the isotype
p–p heterojunction is more favorable than the p–n heterojunction as it allows the spatial
separation of charge carriers and keeps the majority of the carriers’ densities unvaried, max-
imizing the gas interaction with the sensing layer and improving its responsiveness [187].
In the Co3O4–NiO composite, the Ni ions provide electrons to Co3O4; hence, the density of
electrons will be enhanced, leading to higher sensitivity.
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Figure 43. Responsiveness of pure NiO, Co3O4, and their composites towards ethanol (a) at different
operating temperatures and (b) at various concentrations at 250 ◦C, (c) Dynamic resistance of the
composite towards 100 ppm of ethanol, and (d) its selectivity against several gases, reproduced from
reference [186] Elsevier publisher (Copyright 2022).
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Another work has designed hierarchical nanostructures of NiO, Co3O4, and their
composite to evaluate their responsiveness toward hydrogen [188]. Govindhan et al. have
proved high H2 sensitivity for nickel–cobalt oxide sensors working at elevated temperatures
in contrast to the two pure oxides. They have ascribed this excellent performance to the
architecture, the nanosized pores, and the large surface area of the p-type composite that
also shows high selectivity toward H2. The surface-dependent sensing mechanism is
subject to the chemisorption of oxygen and hydrogen on the composite oxide’s surface,
allowing its resistance to increase. Further increases in temperature (up to 600 ◦C) induce
donor-like oxygen vacancies in NiO and change the p-type doping to n-type doping so
that the isotype heterojunction is transformed to p–n heterojunction with high sensitivity
and selectivity toward hydrogen, which can provide practical functionality for advanced
combustion monitoring. Such properties are exhibited in Figure 44.
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reproduced from reference [188] ACS publisher (Copyright 2018). Sensor response to H2 with
different concentrations at 600 ◦C for (A): NiO, (B): NixCo3–xO4 (I), and (C): Co3O4, (D): histogram
representation of sensing response to different gas concentrations at 600 ◦C for * NiO, ** NixCo3–xO4

(I), *** NixCo3–xO4 (II), **** NixCo3–xO4 (III), and ***** Co3O4, (E): stability performance of NixCo3–xO4

(I), (F): gas response toward CO, NO, and CO2, (G): relative response toward CO, NO, and CO2,
and (H): schematic illustration of hierarchical nanostructured NixCo3–xO4 materials prepared by
hydrothermal and calcination methods.

3.2.7. X = CuO

The addition of CuO to the NiO sample results in improved sensing properties of the
sensor compared to bare NiO. This finding is reported in the literature, where Sui et al. [189]
proved enhanced properties of such a composite, which include higher response and faster
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recovery time when detecting 5 ppm of H2S at 133 ◦C (See Figure 45). These improvements
can be explained by the chemical and electronic sensitization induced by the CuO addition.
The catalytic activity of CuO primarily dominates the chemical sensitization process. When
the NiO nanowall arrays are decorated with CuO, the surface of CuO/NiO can adsorb more
oxygen molecules, which are more easily dissociated into reactive chemisorbed oxygen.
Additionally, CuO can moderately enhance the chemical activity of H2S and increase its
chances of adsorption on the surface, resulting in greater gas adsorption. Furthermore, the
presence of CuO also contributes to a faster recovery speed due to its role as a catalyst,
promoting the recovery processes that involve adsorption, dissociation, and ionization of
oxygen molecules.

Chemosensors 2024, 12, x FOR PEER REVIEW 55 of 81 
 

 

 
Figure 45. SEM image of (a) CuO–NiO composite precursor and (b) CuO–NiO composite nanowall 
arrays on ceramic tube, (c) selectivity performance of the composite compared to pristine NiO to-
wards various gases, and (d) evaluation of composite sensor stability, reproduced from reference 
[189] Elsevier publisher (Copyright 2020). 

The CuO–NiO composite shows its promotion in the gas sensing field thanks to its 
structural properties and its reactivity with several gases, such as H2S, as presented in 
Figure 46. 

Figure 45. SEM image of (a) CuO–NiO composite precursor and (b) CuO–NiO composite nanowall
arrays on ceramic tube, (c) selectivity performance of the composite compared to pristine NiO towards
various gases, and (d) evaluation of composite sensor stability, reproduced from reference [189]
Elsevier publisher (Copyright 2020).

The CuO–NiO composite shows its promotion in the gas sensing field thanks to its
structural properties and its reactivity with several gases, such as H2S, as presented in
Figure 46.

To interpret the sensing mechanism in such a composite whose interface differs from
the previous composites’ interfaces by the type of junction, Figure 47g–j shows that NiO
and CuO form p–p heterojunctions, noting that the NiO work function is higher than the
CuO one, which causes holes to migrate from NiO to CuO through the heterojunction
to equalize the Fermi levels. This results in the creation of a hole depletion layer and
hole accumulation layer at the interface on the side of NiO and CuO, respectively. The
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enrichment of holes reduces the adsorption of oxygen, weakening the oxidation of H2S on
the surface of CuO, as per the following equation: O2(ads) → O−

2 + h+ . Additionally, the
catalytic activity of NiO strengthens the synergetic effects in such composite by enhancing
the oxygen chemisorption that increases the oxidation rate of the gas species (NiO role).
It is worth noting the role of CuO in maximizing the adsorption of gas molecules on the
metal oxide surface where the potential barrier hinders the transport of electrons through
the composite and consequently provides extra electrons for oxygen species to be adsorbed
on the sensing surface, hence improving the gas detection performance [187–191].
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Figure 46. Dynamic responses towards 10 ppm-H2S at room temperature of CuO–NiO composite
at different ratios (a) 1:1, (b) 2:1, (c) 3:1, and (d) pristine NiO. (e) Repeatability of the composite
sensor at a ratio of 2:1 and its (f) transient resistance to various gas concentrations (inset: response
towards 1–10 ppm H2S). (g) SEM image, (h) TEM image, and (i) elemental mapping of the composite,
reproduced from reference [190] Elsevier publisher (Copyright 2023).
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Figure 47. Dynamic response towards 100 ppm of glycol for (a) CuO-NiO composite at different
ratios and (b) CuO–NiO (13:7) at different operating temperatures, its selectivity (c) and its transient
resistance curves (d) against various gases, (e,f) TEM images of CuO–NiO (13:7) at different magnifi-
cations, (g–j) illustrative representation of sensing mechanism in the p–p heterojunction before and
after gas exposure, reproduced from reference [187] Elsevier publisher (Copyright 2020).

Also, CuO–NiO nanotubes demonstrate the highest sensitivity toward glycol at 110 ◦C
as the optimum operating temperature, as shown in Figure 47a–c [187].

Table 4 summarizes the sensing properties of X–NiO composites recently reported in
the litterature.

Table 4. Summary of X–NiO composite gas sensors, reported since 2022.

X-NiO Structure Target Gas Operating
Temperature (◦C) Response Response Time/Recovery

Time (s/s)

X = ZnO

Hollow microspheres [192] Toluene (100 ppm) 300 240 2/33

NPs-decorated
hierarchical structure [193] Isopropanol (100 ppm) 280 52.4 8/50

Multi-junction interconnected structure [194] Acetone (100 ppm) RT 6.06 28/34

NPs [195] Ammonia (3000 ppm) RT 0.278 50/5–7

Nanofibers [196] Ammonia (300 ppm) RT 0.46 100/25

Nanosheets [197] Ammonia (18 ppm) 35 0.558 8/28

X = SnO2

One-dimensional nanorods/two-dimensional
porous nanosheets heterostructure [198] Ethanol (100 ppm) 300 25.7 17/23

NPs-decorated thin film [199] Formaldehyde (50 ppm) 210 31.04 18/105

Double-layered heterostructure [200] Sulfur dioxide (2 ppm) 250 0.3 48/51

Composite [201] Carbon oxide (400 ppm) 350 NA 63/77

Nanocrystals/porous nanosheets structure [202] Hydrogen (400 ppm) 350 NA 29/49

NPs/nanocuboids [203] Triethylamine (100 ppm) 400 78.5 <3/120

NPs-decorated thin film [199] Ethanol (100 ppm) 350 84 3/NA
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Table 4. Cont.

X-NiO Structure Target Gas Operating
Temperature (◦C) Response Response Time/Recovery

Time (s/s)

X = Fe2O3

Nanosheets/nano-prisms [183] n-butanol (100 ppm) 200 24.15 120/6

NPS/nanofibers [204] Hydrogen (1000 ppm) 250 199.24 11/105

Hollow-out loaded nanorods [205] Ethanol (10 ppm) 150 51.2 NA

X = NiFe2O4
Nanocubes with porous heterostructure [206]

Fiber-in-tube heterostructure [207]

Trimethylamine
(100 ppm) 170 10.7 28.8/20.8

Toluene (100 ppm) 170 19 19.6/81.3

Formaldehyde
(100 ppm) 170 24.9 10/11.6

Triethylamine (100 ppm) 170 56.4 11.2/14.4

Ethanol (100 ppm) 170 58.4 16.8/13.7

Aniline (100 ppm) 170 96.8 29.4/164.6

Ethyl acetate (100 ppm) 170 129 26/15.8

Acetone (100 ppm) 170 150.3 12.8/15.6

Triethylamine (50 ppm) 300 8.93 16/3

X = In2O3

Cuboid heterostructure [208] n-butanol (100 ppm) 350 412 6/<2500

Nanowires/three-dimensional porous
foam [209]

Ethylene glycol
(100 ppm) 125 160.72 8.7/19.3

Porous nanoflower-like composite [210] Methane (4000 ppm) 340 ∼2 NA

Nanospheric composite [211] Carbon oxide (300 ppm) 280 ∼8 NA

Flower-like microspheres with
nanoneedles [212] N-propanol (100 ppm) 250 NA NA

Nanowires/three-dimensional porous
foam [209]

Trimethylamine
(10 ppm) 200 20.51 39/43

X = TiO2
Nanosheets/nano-rods [213]

NPs [214]

Hydrogen (1000 ppm)
Carbon oxide

(1000 ppm)
Acetone (50 ppm)

25
25

25 (under UV)
300

2.09
0.06
<6
∼25

NA
NA
NA
NA

X = CuO Hydrangea-like composite [190] Hydrogen sulfide
(1 ppm) 25 11 NA

X = MnO2 Nanosheets [215] Allyl Mercaptan
(40 ppm) 275 11.28 115/25

X = In2S3 Foam/thin film [216] Ethylene glycol
(100 ppm) 150 180.39 11.43/6.16

X = Ti3C2Tx
MXene NPs/stacked accordion-like structure [217] Ammonia (50 ppm) RT 6.13 60/19

X = WO3 Ball-flower-like composite [218] Nitrogen dioxide
(10 ppm) 200 16.06 9/13

X = MoO3

Nanolamella [219] Hydrogen (200 ppm) RT <1.5 60/148

Core-shell heterostructure
(nanorods/nanosheets) [220] Ethyl acetate (100 ppm) 250 34.91 67/82

3.3. Modified NiO Structure with
3.3.1. Noble Metal Nanoparticles NPs

The enhancement of gas sensitivity of metal oxides by noble metals is attributed to
their catalytic properties. Noble metals such as gold, platinum, silver, and palladium have
high catalytic activity due to their ability to adsorb and dissociate gas molecules on their
surface. When these noble metals are decorated on the surface of metal oxides such as
nickel oxide, they act as catalytic sites for gas reactions, promoting the dissociation and
adsorption of gas molecules on the surface of the sensor. The decoration of noble metals on
the surface of metal oxide gas sensors can enhance the sensing mechanism in several ways.
Firstly, noble metals can increase the surface area and modify the surface properties of the
metal oxide, leading to a higher number of active sites for gas adsorption and reaction.
Secondly, noble metals can modify the electronic structure of the metal oxide, leading to
a change in its electrical conductivity upon gas exposure. Finally, noble metals can act as
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electron acceptors or donors, modifying the electrical conductivity of the metal oxide and
enhancing its sensitivity to gases.

Briefly, there are two main phenomena that shape the metallic decoration of nickel
oxide: (i) electronic sensitization [221] (Fermi level shifting) and (ii) chemical sensitization
(spillover effect) [222].

• The electronic sensitization mechanism in NiO decorated with noble metals can be
explained using the Schottky barrier theory. According to this theory, when a metal is
in contact with NiO, a potential barrier is formed at the interface due to the difference
in work function between the metal and the semiconductor. The transfer of electrons
from the noble metal to the NiO surface or vice versa depends on the work function of
each component, leading to the formation of a depletion layer at the NiO/noble metal
interface. The presence of the depletion layer increases the surface reactivity of the
NiO, so it enhances its gas-sensing performance.

• Upon exposure to a gas, the noble metals catalyze the oxidation or reduction of gas
molecules on the surface of the sensor, leading to a change in its electrical conductivity.
The change in conductivity is proportional to the gas concentration, allowing the
sensor to detect the presence and concentration of the gas. The chemical sensitization
mechanism in nickel oxide decorated with noble metals can be explained based on the
Langmuir–Hinshelwood (LH) model. According to this model, the reaction between
the gas molecule and the surface of the sensor occurs in two steps: adsorption and
reaction. The reactant molecules are first adsorbed onto the sensing surface, where
they form reactive intermediates that can subsequently react with other adsorbed
species or desorb back into the gas phase.

Rai et al. have studied Au-functionalized NiO nanoparticles as Au–NiO yolk–shell
nanostructure with a response to H2S approximately four times higher than that of bare
NiO hollow nanospheres [223].

To better understand the effect of noble metals on the NiO sensing performances, a
schematic representation of the band alignment of NiO and Pd in air and in a reducing
environment is shown in Figure 48. Due to the difference in work functions between NiO
and Pd, a potential barrier exists at the interface, resulting in the formation of a depletion
layer at the interface. The Fermi level of NiO is higher than that of Pd due to the difference
in work functions, and electrons tend to flow from Pd to NiO to establish an equilibrium.
As a result, the depletion layer is enriched in positive charges on the NiO side and negative
charges on the Pd side.

After exposure to a reducing gas, such as hydrogen (H2), Pd metal interacts with
the target gas, leading to a formation of the PdH component and a decrease in the work
function from 5.6 eV to 3.2 eV. The reduction of Pd and the consequent increase in electron
concentration at the interface NiO/Pd in a gas environment leads to a shift in the Fermi
level of Pd towards the conduction band of NiO. On the NiO side of the interface, the
electrons that are transferred from the Pd side combine with the holes in the valence band
of NiO, leading to the formation of a hole accumulation layer (HAL). This process is driven
by the formation of an electric field at the interface due to the difference in Fermi levels
between NiO and Pd.

The HAL is typically characterized by a high concentration of holes, which are trapped
at defects and impurities in the NiO lattice. The presence of the HAL enhances the sensitiv-
ity of NiO/Pd-based gas sensors to reducing gases, as the holes in the HAL can react with
the reducing gas species and lead to a significant increase in sensor resistance.

Ahmad et al. have also shown how the surface modification of NiO nanosheets by
Au NPs enhances the synergetic effect and enlarges the surface area, thereby ensuring
high sensitivity next to good reproducibility and selectivity toward hydrazine [224] (see
Figure 49).
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Elsevier publisher (Copyright 2019).

Another interesting research report is that silver nanoparticles play the role of bridge
between NiO and TiO2 nanostructures, leading to combining the effects of p–n heterojunc-
tion and Schottky potential barrier to enhance the sensor’s response to acetone gas [225].
In fact, Ag NPs formed at the granular interfaces of NiO–TiO2 heterojunction accumulate
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electrons and induce a Schottky barrier at the p–n interfaces, which increases the sensor
resistance in air. Under its exposure to acetone, the interaction between gas molecules
and the surface-adsorbed oxygen species causes electron transfer and lowers the charge
carrier’s density in the p-type NiO domains, resulting in an increase in the resistance of
the sensor since the height of the Schottky barrier is significantly increased. In Figure 50,
a comparative study of the sensing response of different sensors assigns the highest re-
sponse toward acetone to the Ag-decorated sensor at 90 ◦C (see Figure 50a) justified by
the smallest diameter of the arc semicircle in the Nyquist-plot (see Figure 50b) that implies
an improvement in the charge transfer across the interface, compared to the other curves.
The Ag NPs act as an intermediate layer between the two semiconductors, responsible for
slowing the electron recombination at the p–n heterointerface (see Figure 50c). Figure 50d
clearly shows the role of Ag NPs in an acetone environment.

In Table 5, we cite some research works studying the sensing properties of NiO
functionalized by metallic nanoparticles.

Table 5. Application of metallic NPs-functionalized NiO in gas sensing devices.

Structure Noble Metal Gas Species Temperature (◦C) Response Response Time/Recovery
Time (s/s)

NiO yolk–shell
nanoparticles [223] Au H2S (5 ppm) 300 108.92 NA

NiO microspheres [226] Pd NO2 (1.8 ppm) 50 1.33 430/936

NiO nanotubes [227] Pt Ethanol (100 ppm) 200 20.85 NA

NiO thin film [228] Au H2 (2000 ppm) 128 <20 NA

NiO thin film [229] Pt H2 (3% H2/air) 45 305 * NA

NiO–TiO2 composite [225] Ag Acetone (100 ppm) 90 ∼0.70 25/40

NiO–Co3O4
composite [230] Pt H2S (100 ppm) 200 250 213/135

NiO microspheres [226] Pd NO2 (1.8 ppm) 250 203 73/169

NiO thin film [231] Pt NH3 (1000 ppm) 300 1278 15/76 (at 350 ◦C)

NiO nanoparticles [232] Au Ethanol (100 ppm) 200 2.54 250/420

NiO nanoparticles [233] Ru Ethanol (2000 ppm) 350 35.9 35/NA

NiO nanoparticles [234] Pd 2-methoxy ethanol
(100 ppm) 25 4882 3.68/3.76

NiO–ZnO
nanocomposite [235] Pd H2 (100 ppm) 225 0.72 NA

NiO film [236] Pd H2 (0.7 ppm) 130 0.135 600/NA

* denotes the selectivity of H2 against CO in air mixture [229].

To summarize, the addition of noble metallic nanoparticles can enhance the gas
sensitivity of NiO-based sensors in several ways:

1. Increased surface area: The addition of such nanoparticles increases the surface area
of the sensor, providing more sites for gas molecules to interact with the NiO surface.

2. Improved catalytic activity: Noble metallic nanoparticles act as a catalyst for the
reaction between reducing gas molecules and oxygen species on the NiO surface,
leading to an increase in the sensitivity of the sensor towards reducing gases.

3. Enhanced charge transfer: The addition of such nanoparticles can improve the charge
transfer between the NiO and the gas molecules, leading to a more significant change
in the electrical conductivity of the sensor upon exposure to reducing gases/oxidizing
gases.

4. Reduced operating temperature: The presence of these metallic nanoparticles can
lower the operating temperature of the sensor, allowing it to be used in applications
where high temperatures are not practical.
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Figure 50. (a) Sensing performances towards acetone of three sensors (TiO2, TiO2–NiO, and TiO2–Ag–
NiO) at different operating temperatures, (b) their Nyquist-plots, mechanism of surface interaction of
(c) TiO2, and the composite NiO–TiO2 before (d) and after (e) Ag–decoration in air and in reducing
environment, and (f) band diagram of the composite NiO–TiO2 before and after Ag-decoration,
reproduced from reference [225] Elsevier publisher (Copyright 2022).

3.3.2. Carbon-Based Nanomaterials

The incorporation of carbon-based materials with NiO has been extensively researched
in various fields: solar cells [237], batteries [238], supercapacitors [239], electrolytic cells [240],
fuel cells [241], catalysts [242], biosensors [243–245], etc. Surprisingly, only a limited
number of studies have explored the use of these composites in gas-sensing applications
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despite their exceptional properties. In this context, we present the recent advancements in
enhancing the gas sensitivity of NiO as a p-type chemo-resistive sensor.

Graphitic-based two-dimensional nanomaterials can enhance the gas-sensing perfor-
mance of metal oxides in several ways. First, the large surface area of two-dimensional
nanomaterials provides more active sites for gas adsorption and reaction compared to bulk
materials. It is also worth mentioning their high carrier mobility at room temperature,
next to the high carrier density and low resistivity. This can increase the sensitivity of gas
sensors and lower the detection limit since their high electrical conductivity allows for
efficient electron transfer between the gas molecules and the metal oxide, resulting in faster
response times and improved sensitivity added to the low electrical noises [246]. Second,
the unique electronic structure of two-dimensional nanomaterials, such as graphene or
graphene oxide, can interact with gas molecules through π–π interactions or hydrogen
bonding, resulting in enhanced selectivity towards specific gas molecules [247,248]. Finally,
its incorporation into metal oxide-based gas sensors can also improve the stability and
durability of the sensor [249].

Carbon soot is a material that holds promise as an integral component of gas sensors
due to its desirable properties. It is highly conductive, porous, inexpensive, non-toxic, and
stable. Carbon soot is composed of carbon nanoparticles which have an onion ring-like
structure. Malepe et al. [250] used such material in optimizing NiO sensitivity towards
mesitylene gas. They have proved mesitylene detection at low ppm-level at room temper-
ature with short response/recovery times around 84 s/51 s. The unique properties of C
nanoparticles, such as their high activity in transferring charges, their ultrahigh specific
surface area, surface reactivity, and their highly disordered structure, make them effective
not only at promoting chemisorption but also at providing ambient functionality to NiO
sensor devices. This allows for a greater number of analyte molecules to be adsorbed onto
the sensor surface, resulting in a more significant change in resistance and better sensitivity
at room temperature (see Figure 51).
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Figure 51. (a) SEM image and (b) dynamic response of carbon soot towards mesitylene gas at different
concentrations, operating at room temperature, reproduced from reference [250] MDPI publisher
(Copyright 2022).

Graphene is composed of a single layer of carbon atoms arranged in a hexagonal
lattice structure and used as a functionalizing material for metal oxide gas sensors. In a
metal oxide frame, graphene is reduced by being functionalized with oxygen-containing
groups, known as rGO.



Chemosensors 2024, 12, 45 61 of 76

A low-temperature operable sensor with rapid response time is produced hydrother-
mally to give a hierarchical NiO and rGO hybrid structure. This composite shows ultra-high
selectivity toward NO2 with different responses at different weight fractions of GO, where
the highest value is recorded at 21%, as can be seen in Figure 52. Indeed, under exposure to
target gas, the NO2 adsorption/desorption occurs faster due to the high electron affinity
of gas molecules and the large specific surface area of the sensing composite, which leads
to rapid electron transfer. Based on the low conductivity of NiO, the accumulation of
further NO2 molecules is restricted due to the presence of holes. In contrast, the transfer of
hole carriers from the valence band of NiO to the rGO might help to decrease the holes’
accumulation layer in NiO, thereby increasing the adsorption of NO2. This ultimately leads
to improved responsiveness and sensitivity of the material. Additionally, the rapid hole
transfer from NiO to rGO improves the sensitivity by reducing the response time of the
sensor [251].
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Figure 52. Hydrothermal growth of NiO–rGO nanocomposites devoted to efficient NO2 sensor
with high selectivity: (a) schematic illustration of growth process, (b) SEM image of pristine NiO,
(c) SEM image of NiO–rGO, (d) dynamic response of pure NiO and NiO–rGO composites to NO2

(e) responsivity of pure NiO and hybrid composites of NiO–rGO to 100 ppm of NO2, and (f) energetic
diagram of hole transfer from NiO to rGO, reproduced from reference [251] Elsevier publisher
(Copyright 2016).

By using a facile solution-based process, another NiO–rGO sensor toward NO2 is
also made by Hoa et al. [252], showing high selectivity toward the oxidizing gas, as we
described above, and very poor sensitivity toward reducing gases (See Figure 53). The
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latter can be explained by the fact that when reducing gases interact with adsorbed oxygen
on the surface of NiO, they release free electrons that neutralize the holes in NiO, therefore
increasing the sensor resistance.
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Figure 53. Preparation of NiO–rGO nanosheet composite by spray coating: (a) schematic illustration,
SEM images of (b) NiO nanosheet structure and (c) NiO–rGO nanosheet structure, inset: cross-section
SEM image, (d) dynamic response curve toward NO2 at different concentrations, inset: energetic
diagram of carrier transfer between graphene and NiO, (e) responsivity to different concentrations of
NO2 gas, reproduced from reference [252] Elsevier publisher (Copyright 2013).

The hydrothermal synthesized NiO–rGO hybrid nanocomposite shows high perfor-
mance in gas sensing applications, as reported by Zhang et al. in 2016 [253]. The isotype
heterojunction NiO–rGO enhances the NiO sensor’s response toward methane six-fold due
to not only the enlarged surface area but also the potential barrier at the heterointerface,
which facilitates the adsorption and diffusion of methane molecules. The oxidation reaction
between target gas molecules and oxygen species decreases the hole concentration as well
as increases the sensor resistance. This sensor exhibits high selectivity toward methane at
260 ◦C [253].

Another study has focused on the rGO effect on NiO sensors operating at room
temperature in two different NO2 concentration ranges [142]. At concentrations between
0.25–1 ppm of NO2, the sensitivity of pristine NiO was slightly higher compared to that of
the NiO–rGO nanocomposite since some NO2 molecules are physically adsorbed onto the
rGO, preventing them from taking part in electron exchange with the NiO–rGO nanocom-
posite and subsequently decreasing its sensitivity. The high concentration range (7–60 ppm)
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exhibited a remarkable improvement in the sensitivity of rGO–NiO. This increase in sensi-
tivity was explained by the effective electron transfer between NiO and rGO, as well as
by the increase in the specific surface area of NiO–rGO. Additionally, the nanocomposite
displayed an accelerated recovery rate compared to pristine NiO, which was attributed
to the higher electron mobility of rGO and the effective electron transfer between NiO
and rGO.

Recently, graphene nickel oxide composite has been studied and proposed as a can-
didate for humidity sensors where a DFT calculation predicts its ability to interact highly
with humidity [254].

Additionally, cylindrical tubes made of graphene sheets rolled up into a tube prove
their ability to enhance the gas sensitivity of NiO.

Single-walled carbon nanotubes (SWCNT) combined with NiO have demonstrated
room temperature operation, the highest sensitivity with a detection limit of 97 ppb, and
the fastest response at the same level of NO concentration when comparing it to pristine
NiO and SWCNT sensors. Good selectivity toward NO is also proven [255].

Multi-walled carbon nanotubes (MWCNT)–NiO composite have also shown an en-
hancement in sensor response compared to pristine NiO, operating at relatively low tem-
peratures (180 ◦C) [256].

The improvement in the sensor response is often attributed to the higher surface area
and interconnections of the metal oxide and carbon nanotubes. This composite structure
provides more active sites for the adsorption of gas molecules, facilitating the transfer of
the gas molecules over the barriers and ultimately decreasing the operating temperature.
The enhanced sensitivity of the composite can be attributed to the synergistic effect of the
two materials, whereby the carbon nanotubes facilitate electron transfer and provide a
conductive pathway, while NiO provides a high surface area for gas adsorption [257–259]
(see Figure 54).
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Figure 54. (a) Dynamic curve at different NO concentrations, (b) gas sensing mechanism in car-
bon nanotubes–NiO composite after exposure to NO gas and (c) its selectivity to different gases,
reproduced from references [255] Elsevier publisher (Copyright 2013).

Like graphene, carbon nitride is composed of carbon and nitrogen atoms arranged in a
two-dimensional honeycomb lattice structure and used for functionalizing NiO sensors and
enhancing its gas responsiveness since it showed ultrahigh sensing performance mostly
toward NO2 [260]. Li et al. prepared the graphitic carbon nitride (g–C3N4) nanosheets
decorated with a three-dimensional hierarchical flower-like NiO composite (NiO/g–C3N4).
It was observed that the composite with 10 wt% g–C3N4 exhibited a sensing response to
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500 ppm of TEA three-fold higher than pristine NiO at 280 ◦C. Additionally, the composite
showed good selectivity towards TEA among ethanol, methanol, acetone, formaldehyde,
and methylbenzene. The improved gas sensitivity can be referred to as the internal charge
transfer within the p–n heterojunction and the high specific surface area of the Ni/C3N4
composite, which promotes adequate contact and chemical reaction between the sensing
material surface and gas species [261]. In Table 6, we show the gas sensing response of
NiO-carbon material composites.

Table 6. Gas sensing response of NiO combined with carbonaceous materials.

Structure Carbon Compound Gas Species Temperature (◦C) Response

NiO nanoparticles [250] Carbon soot Mesitylene (43.9 ppm) RT NA

NiO granular structure [253] rGO Methane (1000 ppm) 260 0.15

NiO nanoparticles [262] rGO NH3 (100 ppm) RT 4.14

NiO nanosheets [252] rGO NO2 (15 ppm) N/A <7

NiO hierarchical cubes [263] N-doped rGO H2S (50 ppm) 92 31.95

Hexagonal NiO nanosheets [142] rGO NO2 (60 ppm) RT >7

Flower-like NiO microspheres [251] rGO NO2 (100 ppm) 100 NA

NiO rod-shaped particles [264] Graphene H2 (2000 ppm) 200 0.524

NiO nanoparticles [265] Graphene oxide Ethanol (500 ppm) RT >0.2

NiO nanoparticles [255] SWCNT NO (97 ppb) 18 0.05

Aggregated flake-like NiO [256] MWCNT Ethanol (500 ppm) 180 3

NiO particles [266] Carbon nanotubes H2 (5 sccm) RT <0.03

Flower-like NiO [261] Carbon nitride TEA (500 ppm) 280 20.03

3.3.3. Conducting Polymers

Conducting polymers have emerged as promising materials for gas sensor functional-
ization thanks to their tunable conductivity: they can be a semiconductor, a conductor, a
superconductor, or even a magnetic material. Its unique properties due to the delocalized
π–electrons on its backbone make it a satisfactory solution to enhance the gas sensing
of metal oxide semiconductors (MOX). As most MOX-based gas sensors operate at ele-
vated temperatures, structural modifications can occur, causing instability problems and
response/recovery variations next to the possible auto-ignition of combustible gases. Poly-
mers can offer a reliable solution to bypass these issues by ensuring safer detection of gases
under mixture conditions and ambient temperature. Generally, the most known polymers
used for functionalization of MOX gas sensors are poly(3–hexylthiophene-2,5-diyl) (P3HT),
polythiophene (PTh), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), and
polyaniline (PANI) [267,268]. Regarding NiO, the conducting polymers’ effects on gas
sensing have rarely been studied.

Hu et al. [269] have investigated PANI and PANI–NiO compounds and proved that
hollow NiO/PANI composite possesses higher responsiveness to ammonia at room tem-
perature. However, the highest value can be attained with a hollow morphology of NiO
around 43.1%, presenting a larger surface area, unlike the PANI–NiO with a spherical form,
which demonstrated 28.7%. The outstanding sensitivity upon ammonia with fast times of
response and recovery (149 s and 257 s, respectively) finds its origin in two key factors:

• The hollow structure on which aniline can be polymerized provides a larger specific
surface area, facilitating increased adsorption of target gas molecules;

• The p–p heterojunction resulted from the difference in work functions between the
two materials inducing holes’ transfer from PANI to NiO, leading to the formation of
a hole depletion layer (HDL) on the PANI side and a hole accumulation layer (HAL)
on the NiO side. This configuration results in higher initial resistance and enhances
the sensitivity of the gas-sensing behavior of the h–NiO–PANI composite.
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Similar results are also found in the research work [270], showing that the NiO–PANI
composite sensitivity varies increasingly in humidity.

In the report [271], NiO–Polyindole/Phenothiazine (NiO–PIN/PTZ) nanocompos-
ites have been investigated for gas sensing applications at different loading percentages,
demonstrating the highest sensitivity upon ammonia at 10 wt% at room temperature. It is
evident that the sensing ability of the composite diminishes with higher loading of filler
particles, particularly at 15 wt%. This decrease in sensitivity is primarily attributed to the
agglomeration of nanoparticles within the polymer matrix [272]. Consequently, it can be
concluded that NiO nanoparticles have the potential to enhance the gas-sensing proper-
ties of the polymer matrix, provided that appropriate loading and dispersion techniques
are employed to minimize agglomeration and ensure a favorable nanoparticle–polymer
interaction.

All the research papers reported in this section show an operation at room temperature,
which represents a challenging issue for environmental monitoring applications.

In Table 7, we summarize the gas sensing response of different NiO–polymer composites.

Table 7. Gas responsiveness of NiO–polymer composite-based sensors.

Structure Conducting Polymer Gas Species Temperature Response

NiO hollow spheres [269] PANI NH3 (10 ppm) RT 0.431

NiO spheres [269] PANI NH3 (10 ppm) RT 0.287

NiO nanoparticles [271] PIN/PTZ blend NH3 (100 ppm) RT >0.9

Ag–NiO nanoparticles [272] PPy NH3 (100 ppm) RT <0.5

Mesoporous NiO nanosheets [273] PPy NO2 (60 ppm) RT 45

4. Conclusions and Outlooks

Sensors play a pivotal role in our ability to discern pertinent information from our
surroundings and subsequently transform this information into discernible electric signals.
Among the various sensor types, gas sensors have garnered significant attention for their
extensive applications in industrial and domestic environments. Metal oxide gas sensors
offer a multitude of advantages, including low power consumption, compact dimensions,
cost-effectiveness, and a high degree of reliability. Their capacity to detect and quantify
specific gases within a given environment has proven invaluable in numerous contexts,
contributing to enhanced safety, environmental monitoring, and the optimization of various
industrial processes. This review has placed a particular emphasis on nickel oxide due to its
properties as well as its efficiency in gas detection by reporting recent advances in its sensi-
tivity towards various gases, particularly ethanol, acetone, formaldehyde, benzene, and
toluene which were cited as the top five gases detected by NiO within the last three years.

A specific focus on the different growth approaches used for preparing NiO structures,
including vapor-phase deposition, liquid-phase deposition, and solution processing, has
been discussed, and the key parameters of each technique impacting the morphology and
physical properties of nickel oxide have been discussed. The hierarchical morphology and
nanostructures with high specific surface area showed higher gas responses than other
structures due to the increased adsorption sites that enhance the chemisorption of oxygen
species and adsorption of target gas molecules in different environments.

Despite the correspondence of p-type MOX gas response to the square root of that
exhibited by n-type MOX with identical morphologies, NiO showed good gas response
in dry and humid conditions, which makes it a moisture-tolerant sensor used in real-time
monitoring applications.

As a p-type material, NiO, often integrated into novel nanostructures and p–n hetero-
junctions, offers benefits such as wide band gaps, low current operation, increased durabil-
ity, and resilience to humidity. The combination of NiO with n-type or p-type metal oxides
in heterojunctions enhances adsorption sites, leading to superior sensing performance
when compared to pristine material. Moreover, the catalytic activity of NiO fortifies the
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synergistic effects within hybrid structures by amplifying oxygen chemisorption, thereby
the reduction or oxidation of various volatile organic compounds. Functionalization of
NiO by noble metals can also enhance its gas sensing capabilities by increasing adsorption
sites, improving catalytic activity, boosting charge transfer between NiO and target gas
species, and reducing operating temperature. Carbon-based materials play an important
role in reducing the working temperature of NiO, optimizing its gas response towards
several gases, and shortening the response/recovery time due to high carrier density and
mobility at room temperature and low resistivity that offer efficient electron transfer, added
to porosity that provides more specific surface area for gas adsorption. Polymers are
commonly used for the same purpose, providing an operation at room temperature of NiO
combined with PANI, PPy, and PIN/PTZ blend. Notably, the agglomeration phenomenon
should be avoided when combining polymers with MOXs to keep a higher specific surface
area by tuning the MOX loading and controlling the interactions between MOX particles
and polymer chains.

More accurate and reliable gas detection can be admitted for NiO sensors by further
optimizing the growth conditions, tuning the surface morphology, and combining it with
other compounds to highly reduce the working temperature. Real-time is also a challenge
for such material to make more advanced gas sensing systems that can address emerging
challenges in environmental and industrial monitoring. The development of uniform gas
sensor arrays and the application of deep learning algorithms to analyze the data from
these arrays hold promise for resolving these challenges. By overcoming these obstacles, im-
proved selectivity, enhanced accuracy, and real-time monitoring can be achieved, enabling
more effective and reliable gas sensing capabilities in NiO-based devices.
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