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Abstract: Accurate methods that can continuously detect low concentrations of hydrogen 

peroxide (H2O2) have a huge application potential in biological, pharmaceutical, clinical 

and environmental analysis. Luminescent probes and nanomaterials are used for fabrication 

of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews 

focusing on the chemical design of molecular probes for H2O2, this mini-review highlights 

the latest luminescent nanoparticular materials and new luminescent optical sensors for 

H2O2 in terms of the nanomaterial composition and luminescent receptor used in the 

sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, 

polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced 

emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based 

nanomaterials, respectively. Moreover, the sensors are ordered according to the type of 

luminescent receptor used within the sensor membranes. Among them are lanthanide 

complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the 

optical sensors are confined to those that are capable to monitor the concentration of H2O2 

in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not 

covered. All nanomaterials and sensors are characterized with respect to the analytical 

reaction towards H2O2, limit of detection (LOD), analytical range, electrolyte, pH and 

response time/incubation time. Applications to real samples are given. Finally, we assess 
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the suitability of the nanomaterials to be used in membrane-based sensors and discuss 

future trends and perspectives of these sensors in biomedical research. 

Keywords: sensor; optical; hydrogen peroxide; luminescence; fluorescence; membrane; 

nanoparticle; microplate; nanodot; quantum dots 

 

1. Introduction 

The measurement of hydrogen peroxide (H2O2) concentrations is important in various points of 

view. First of all, monitoring of so-called reactive oxygen species that include e.g., singlet oxygen, 

H2O2, hydroxyl radicals, superoxide anions, or nitric oxide is of vital importance to control and 

understand numerous processes in biological systems. In recent years, various reports discussed the 

role of H2O2 in (patho)physiological processes [1–3], in oxidative stress [4] and as a messenger in cellular 

signaling [5–7]. The other reason of interest in H2O2 detection is the fact that the enzyme-activity of the 

huge class of oxidases or the concentration of their substrates or released products, respectively, can be 

measured via the amount of H2O2 produced. Finally, H2O2 is a widely used industry chemical. The 

current global production of hydrogen peroxide is millions of tons per annum and it is used in many 

areas including bleaching of wood pulp and paper, the treatment of industrial wastewaters and 

effluents, and in the food and pharmaceutical industry as a bleach and disinfectant. 

It is therefore not surprising that numerous analytical approaches have been employed for quantitation 

of H2O2 in complex sample matrices including titrimetry, electrochemistry, chromatography and 

spectroscopy (photometry, chemiluminescence, fluorescence and phosphorescence). The state of 

electrochemical sensing of H2O2 was reviewed recently [8,9]. It has been shown that various types of 

electrochemical sensors can be used for fast measurements in both, the laboratory and the field. The 

specificity and sensitivity of the electrochemical sensors can be improved by the immobilization of 

enzymes or of nanoparticles on the surface of the electrode. Nevertheless, the application of electrodes 

is neither suitable for multiplexed measurements in high-throughput screening nor for intracellular 

assays or for in vivo imaging. The other drawback of electrochemical determinations of H2O2 is 

unreliability if other electroactive species are present in the sample. 

In recent years, intensive research has evolved to design sensors that allow accurate and sensitive 

detection of H2O2 with high sensitivity and selectivity, that have a fast response, a simple setup and  

low-cost and are convenient to operate. Optical biosensors based on organic dyes and nanomaterials [10] 

that respond selectively to H2O2 are an attractive alternative for these purposes. Absorption, 

luminescence and chemiluminescence can be used as output signals to receive real-time and on-line 

information on the H2O2 concentration. On the one hand, this requires probes that optically respond to 

hydrogen peroxide. Those have been reviewed recently [11]. 

As a considerable amount of new probes for H2O2 based on luminescent nanomaterials have been 

published over the past years since the review of Schäferling et al., we cover those in the first section 

of this review. The nanomaterial section is substructured into gold nanomaterials, polymeric and 

quantum dot nanomaterials, lanthanide nanomaterials and carbon nanomaterials. The most common 

detection format of these nanomaterials naturally is in solution in cuvettes but also a lateral flow assay 
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is shown and an assay where nanomaterials are stacked to a solid support made of a 

polydimethylsiloxane (PDMS) mold on a glass surface. Nanomaterials represent probes that are 

perspective with respect to a future use in optical luminescent sensors for H2O2 for continuous 

measurements. 

However, while most of the nanomaterial probes are shown to be suitable for a single-use, the 

fabrication of an optical sensor requires considerably more knowledge in material chemistry to 

construct a system that works continuously and reversibly over time. Here, one needs to select 

appropriate materials to firmly embed the probe, prevent probe leaching and permit easy diffusion of 

the analyte to the receptor to warrant a short response time. Moreover, the receptor-transducer couple 

should work continuously over time in a real sample under potentially harsh conditions. Finally, the 

sensor should be inexpensive and have low production costs. 

We therefore present the latest luminescent optical sensors for H2O2 in a second section of this 

review to open a perspective field for new applications of the nanomaterials referred to in the previous 

section. Most of the optical sensors presented are based on sensor membranes or sensor films and they 

are ordered in terms of the classes of the luminescent probes used as the receptor. Here, lanthanide 

complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes are shown to reversibly 

work in solution over time. Moreover, several different formats are presented that range from the 

classical flow-through cell sensors (to continuously interrogate an analyte concentration e.g., in an 

analyte flow or in a by-pass of a bioreactor) to fiber-optic sensors with the film being immobilized at 

the tip of a fiber for high local resolution of concentration measurements. Finally, reusable sensor 

microplates are shown to offer a more green way to high-throughput measurements with less plastic 

waste incurred. 

Commonly, new materials rapidly find their way into sensor development. Therefore, the merits of 

the nanomaterials are reviewed with respect to potential applications in sensors in a third section.  

Finally, we briefly discuss future trends and perspectives of these sensors in biomedical and 

bioanalytical research. 

2. Probes for H2O2 Based on Nanomaterials 

Recent developments in the field of nanotechnology have paved the way for numerous new  

materials with unique morphologies and physico–chemical properties to be used in sensor fabrication. 

Nanomaterials such as gold and silver nanoclusters, quantum dots, lanthanide-based nanoparticles, 

magnetic nanocomposites, polymeric nanoparticles and carbon materials have received enormous 

attention as promising tools in sensing of H2O2. The analytical figures of merits of H2O2 sensors and 

probes based on those types of nanomaterials are presented in Table 1.  



Chemosensors 2015, 3 256 

 

 

Table 1. Optical Sensors and Probes for Hydrogen Peroxide Based on Nanomaterials. 

Material and Type  

of Nanostructure 
Detected Signal 

Analytical Range (LOD), 

μM 
Incubation Time and Conditions Application to Real Sample Ref. 

Gold Nanoparticles 

Au nanodots 
Luminescence quenching of Au nanodots 

with 11-mercapto-undecanoic acid 
0.1–1  103 (0.03) 

10 min in 10 mM sodium phosphate 

buffer (PB) of pH 5.0 at 65 °C 
Glucose in serum sample [12] 

Dye-doped silica nanoparticles with 

Au nanoparticles on surface 

Luminescence quenching of  

fluorescein isothiocyanate 
0.1–15 10 min in 10 mM PB of pH 7.0 at 37 °C 

Detection of H2O2, 

hydroquinone, glucose, 

acetylthiocholine and paraoxon 

[13] 

Au nanoclusters stabilized  

by glutathione with  

peroxidase-like activity 

Colorimetric and visual assay  

based on detection of oxidized  

3,3′,5,5′-tetramethyl-benzidine (TMB) 

1–10  

(0.032) 
15 min in 0.1 M PB of pH 6.0 at 30 °C Glucose in human serum 

[14] 

Luminescence quenching of Au 

nanoclusters in presence of oxidized TMB 

2  10−3–610−4 (4.9  

10−7) 
15 min in 0.1 M PB of pH 6.0 at 30 °C  

Au nanoclusters bioconjugated with 

Horseradish peroxidase (HRP) 

Luminescence quenching  

of Au nanoclusters 

0.1–100  

(0.03) 

10 min in 50 mM glycine buffer of  

pH 9.0 at 25 °C 
 [15] 

Polymer-Nanoparticles with Embedded Enzymes 

HRP co-entrapped with Texas  

Red-dextran inside porous 

polyacrylamide nanoparticles 

Fluorescence quenching of  

Texas Red due to oxidation 
1–25 

5 min in 0.01 M phosphate-buffered 

saline (PBS) of pH 7.4 

Cell culture medium containing 

10% blood serum 
[16] 

Aggregation-Induced Emission Enhancement 

Fluorescent dye entrapped  

in CTAB micelles 

Aggregation induced ratiometric  

(510/405 nm) fluorescence switched on by 

excited-state intramolecular proton transfer 

up to 1  103 

11 min in 0.3 mM CTAB solution  

(20 mM HEPES buffer of pH 7.4  

at 25 °C) 

 [17] 

Quantum Dots 

Nanocomposites with Fe3O4  

core and CdTe shell 

Quenching of luminescence of quantum dots 

(QD) due to etching of surface 

1  102–1  103  

(35) 
15 min in water Human urine [18] 

CdTe@ZnS QDs conjugated to 

metal tetraamino-phthalocyanines 

(Metal: Al, Ni, Zn) 

Increasing fluorescence of QDs 

(9.8  10−3  

4.4  10−3  

2.2  10−3) 

15 min in 50 mM PBS of pH 7.4 at RT  [19] 
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Table 1. Cont. 

Material and Type  

of Nanostructure 
Detected Signal 

Analytical Range (LOD), 

μM 
Incubation Time and Conditions Application to Real Sample Ref. 

Lanthanide-Based Nanoparticles 

Poly(methyl methacrylate)-Eu3+ 

nanospheres 

Luminescence quenching with biocatalytic 

growth of Au nanoparticles (AuNPs) 
4.0–16 (2.0) 

5 h growth of AuNPs in 0.01 M PBS  

of pH 7.05 in ice–water, luminescence 

after 20 min at RT 

 [20] 

Coordination polymer nanoparticles 

(phenylalanine/Tb3+) coordinated 

with carboxyphenyl-boronic acids 

Quenching of fluorescence of nanoparticles 

due to intramolecular charge transfer from 

4-oxo anions to emissive state of Tb3+ 

6–1  103 (2) 
20 min in HEPES buffer of  

pH 7.0 at RT 
Urine samples [21] 

Upconversion photoluminescence 

nanoparticles NaYF4:Yb3+/Er3+ 

Quenching of luminescence of nanoparticles 

in presence of oxidized TMB 

0.1–4.0  

(0.045) 

10 min in 0.02 M acetate buffer of  

pH 5.0 at 25 °C 
Glucose in human serum [22] 

Carbon Based Nanomaterials 

Carbon nanodots 
Fluorescence quenching of nanodots in the 

presence of H2O2/Fe2+ 
0.025–50 (0.01) 10 min in HCl of pH 3.0  [23] 

Graphene quantum dots  

(GQDs) coupled with  

2,2′-azino-bis(3-ethylbenzo-

thiazoline-6-sulfonic acid (ABTS) 

Absorbance change of ABTS 
102–104  

(20) 

2 min in 10 mM Tris–HCl of  

pH 5.0 at 37 °C 
 [24] 

GQDs noncovalently  

labeled with hemin 
Quenching of luminescence of GQDs 

1–100  

(0.1) 
10 min in 20 mM PBS of pH 7.0 at RT Glucose in human serum [25] 

Carboxyl-functionalized 

multiwalled carbon nanotubes 

Fluorescence of tetraguaiacol formed from 

guaiacol oxidation in presence HRP 
(1.2 μM  s−1) 100 s  [26] 
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2.1. Gold Nanoparticles 

Gold and silver nanoclusters have been widely used in biological sensing due to their low toxicity, 

excellent biocompatibility and stability, good solubility, and favorable luminescence properties [27,28]. 

Shiang et al. [12] fabricated water-soluble 11-mercaptoundecanoic acid-bound gold nanodots  

(11-MUA-AuNDs) of 2 nm size and applied them for highly selective and sensitive luminescent 

detection of H2O2 and glucose. In the presence of H2O2, 11-MUA units that are bound to AuNDs 

through Au–S bonding are oxidized to form an organic disulfide product (RS–SR), which is released 

into solution. The fewer 11-MUA molecules remaining bound to the AuNDs lead to a reduced 

luminescence. As a result, the presence of H2O2 induces a slight decrease in the absorbance at 375 nm 

and significant quenching of the luminescence of 11-MUA-AuNDs at 522 nm (Figure 1). The  

pH-optimum is 5.0 and a temperature of 65 °C provides a 10 min incubation time. The luminescence 

of 11-MUA-Au NDs can be restored upon adding of 11-MUA solution because new 11-MUA 

molecules are bound to the 11-MUA-Au NDs. Hence, a 10 times reusability of the luminescence 

quenching of the 11-MUA-AuNDs is observed after adding H2O2 and 11-MUA alternately and 

repeatedly. The nanodots could be used for the determination of glucose in a serum sample and 

showed a reusability of more than 10 times. 

 

Figure 1. Schematic representation of 11-MUA-Au NDs responding to H2O2 based on the 

luminescence quenching by ligand release. Reproduced from [12] with permission of The 

Royal Society of Chemistry. 

The absorbance increase, accompanied by the growth of gold nanoparticles (AuNPs) through the 

reduction of Au(III) ions in the presence of a reducing agent can quench the fluorescence of a dye if its 

emission spectrum overlaps with the absorbance spectrum of the AuNPs. This can be useful as an 

optical sensing platform for H2O2 and its enzyme-related analytes. For example, Lim et al. [13] 

synthesized fluorescein isothiocyanate (FITC)-doped silica nanoparticles (FSNs) with AuNP seeds. 

The fluorescence decrease caused by the growth of AuNPs on FSNs induced by the reducing reagent 

H2O2 is attributed to the inner filter effect of the AuNPs on the surface of the FSN on FITC emission at 

520 nm. The utility of FSN-AuNPs as a facile platform for solid-phase optical biosensors by the 

development of multi-layer stacked FSN-Au NP on ultraviolet-ozone-treated glass slides was 

demonstrated (Figure 2). 
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Figure 2. Schematic diagram of Au NP enlargement-based detection of target analytes 

using the fluorescence change of FITC-doped silica NPs. Reproduced from [13] with 

permission of The Royal Society of Chemistry. 

Ultra-sensitive colorimetric determination of H2O2 and glucose based on the intrinsic peroxidase-

like activity of Au nanoclusters (AuNCs) stabilized by glutathione (GSH) was proposed by  

Zhao et al. [14]. The analyte concentrations are monitored indirectly via the color change of 3,3,5,5-

tetramethylbenzidine (TMB) upon oxidation by H2O2 catalyzed by AuNCs. Here, the color change in 

an aqueous solution under visible light or photometry at 652 nm or the fluorescence resonance energy 

transfer between the AuNCs and oxidized TMB may be exploited for quantitation of H2O2 (Figure 3). 

The emission of the AuNCs can serve for quantitation of H2O2 down to picomolar concentrations and for 

glucose at nM levels. 

 

Figure 3. Schematic diagram of detection of H2O2 using the peroxidase-like activity of 

AuNPs. Reproduced from [14] with permission of The Royal Society of Chemistry. 

A biochemical receptor/optical transducer scheme which can be used for a device permitting the 

continuous monitoring of a chemical compound in clinical or environmental samples should contain 

biochemical receptors that, in the appropriate concentration range, easily give reversible reactions and 

have autoindicating optical properties. Enzymes, mainly those having flavin or heme groups as 

cofactors have a potential for being used in this respect. In [15], the authors report horseradish 

peroxidase (HRP) functionalized fluorescent gold nanoclusters (AuNCs) via biomineralization. The 
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HRP retains its activity and the detection of H2O2 is accompanied by a decrease of the luminescence of 

the NCs at 650 nm and a small increase at 450 nm. Hence, H2O2 can be detected ratiometrically in the 

higher nM-μM range after 10 min incubation at pH 9. Other reactive oxygen species induce a similar 

response. The luminescence quenching at 650 nm is mostly due to the growth of AuNCs upon addition 

of hydrogen peroxide. 

2.2. Polymer-Nanoparticles with Embedded Enzymes 

Analytical measurements using enzymes embedded in nano or microparticles have attracted great 

interest in various applications such as medical diagnosis, environmental monitoring and biological 

metabolite monitoring [29]. Here, the embedding of an enzyme (HRP) into a nanoparticle is combined 

with a lateral flow assay (LFAs) to improve the quality of signaling in LFAs when used with biological 

samples [16]. The rapid and sensitive LFA for quantification of H2O2 is based on HRP which is  

co-entrapped with Texas Red-dextran inside porous polyacrylamide NPs (Figure 4). The NPs were 

covalently immobilized on the test line of a lateral flow stripe (a nitrocellulose membrane) via avidin-biotin 

coupling. Texas Red dye (a rhodamine derivative) is oxidized by HRP/H2O2 and its luminescence is 

quenched (λexc = 535 nm, λem = 600 nm). The fluorescence readout of the LFA sensor was done in a 

commercial laser scanner. The LFA enables fast, selective, sensitive and point-of-care quantification of 

hydrogen peroxide in biological samples in concentrations of 1–25 μM. It was successfully 

demonstrated that enzyme and fluorophores (if protected in a porous NP) can advantageously work in 

enzyme-based LFA applications even in complex matrices like Dulbecco’s Modified Eagle (DMEM) 

cell culture medium containing 10% blood serum. 

 

Figure 4. (A) A typical lateral flow test strip with pads of sample, conjugate, absorbent 

and nitrocellulose membrane; (B) HRP enzyme and Texas Red dextran were entrapped 

inside a PAA nanoparticle of 46 nm in diameter; (C) Nanoparticle embedded HRP can 

oxidize Texas Red dye in the presence of hydrogen peroxide, when immobilized on the test 

line of a lateral flow strip via a protein linker. Reproduced from [16] with permission of 

The Royal Society of Chemistry. 
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2.3. Aggregation-Induced Emission Enhancement 

A new ratiometric (510/405 nm) fluorescent probe for rapid detection of H2O2 via aggregation 

induced emission enhancement (AIEE) in surfactant buffer solution was designed, recently [17].  

The authors use the modification of a traditional fluorophore (2-(2′-hydroxyphenyl)benzoxazole) 

exhibiting AIEE with a boronate based benzyl cleavable group. A C9-alkyl chain is included in the 

probe as the hydrophobic tail (Figure 5). Upon cleavage by H2O2 the probe D-HBO is obtained which 

can easily aggregate into particles of 195 nm size in a 0.3 mM cetyl trimethylammonium bromide 

(CATB) surfactant solution in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer  

(20 mM, pH 7.4, 25 °C) and emits green fluorescence (λexc = 341 nm) due to an excited-state 

intramolecular proton transfer (ESIPT). The D-BBO is encapsulated and restricted in rotation by the 

surfactant molecules. The cationic aggregates apparently accelerate the reaction (11 min incubation) of 

the probe with H2O2 at μM concentrations. Furthermore, D-BBO displays a highly selective response 

to H2O2 over other reactive oxygen species under identical conditions. 

 

 

Figure 5. Structural formula of D-BBO and proposed mechanism for the detection of 

H2O2, based on an excited-state intramolecular proton transfer (ESIPT) process. Reprinted 

with permission from [17]. Copyright (2013) American Chemical Society. 

2.4. Quantum Dots 

Luminescent quantum dots (QDs) have been investigated in recent years as target-specific probes to 

develop various sensors and biosensors [30]. However, the separation and recovery of potentially toxic 

Cd-based QDs is difficult in practical applications. Multifunctional nanoprobes allow for combining 

the favorable properties of Cd-based QDs and of magnetic NPs. As a result, reusable QDs with a 

magnetic core can be produced to reduce the discharge of toxic NPs into the environment. This type of 

novel magnetic luminescent nanocomposites (Fe3O4@CdTe) have been successfully fabricated 

through layer-by-layer (LBL) self-assembly [18]. In the core–shell system, Fe3O4 nanoparticles have 

little impact on the luminescence signal from the surface of the CdTe QDs. H2O2 induces surface 

defects on the QD shell by chemically etching. The quenchiometric assay allows for quantitation of 

H2O2 in the higher μM-range. Although the quantitation range is comparatively high, the NPs can be 

easily separated after a reaction with a common magnet. Then, they are recycled by washing with 

water (attracted by a magnet) and released off the magnet into a new sample. This way, the NPs can be 

reused three times. Furthermore, the NPs were shown to enable glucose detection in human urine 

samples with red 651 nm luminescence (λexc = 450 nm). 
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Nanoprobes for H2O2 sensing based on the covalent conjugation of different metal  

tetraamino-phthalocyanines (MTAPc: M = Al, Ni or Zn) to thiolated CdTe@ZnS QDs was developed 

by Adegoke et al. [19]. Upon coordination of the QDs to the MTAPc the luminescence of the linked 

QDs is switched off which is associated with Förster resonance energy transfer (FRET). H2O2 could 

switch on the luminescence of the linked QDs in a concentration-dependent manner because the FRET 

between the QDs and the MTAPc was disrupted. The order of the selectivity of the nanoprobes is:  

QD-NiTAPc > QD-AlTAPc > QD-ZnTAPc while the best limit of detection is offered by  

QDs-ZnTAPc (2.2 μM). The emission spectra were excited at 490 nm and the emission at 590 nm was 

found to concomitantly increase with the lifetimes (in the ns-range) in relation to the concentration  

of H2O2. 

2.5. Lanthanide-Based Nanoparticles 

The other major type of inorganic nanoparticles which are used for H2O2 sensing are lanthanide-

based NPs [31]. Luminescence of lanthanide complexes is widely used in analytical applications 

because it displays unique properties like narrow bands of the emission spectra, a large Stokes’ shift, 

high quantum efficiencies, and long lifetimes [32]. However, despite their good luminescence features, 

their sometimes poor water solubility, temperature-dependent emission and quenching of luminescence 

by water molecules have limited their practical applications. To overcome these disadvantages,  

some researchers have incorporated these complexes into various host matrices for preparing 

lanthanide-complex-based NPs. 

The simple and effective solvent swelling method (also called the soaking method) was employed 

by Li et al. [20] for the incorporation of a europium complex into poly(methyl methacrylate)  

(PMMA-Eu). The Eu complex contained 2-thenoyltrifluoroacetone and isonicotinic acid in molar 

ratios of 1:3:1. The protocol for determination of H2O2 includes the formation of AuNPs upon 

reduction of Au(III) salts by H2O2 under the catalysis of Au nanoparticle seeds (in 0.01 M PBS, pH 7.05 

in an ice-water bath for 5 h). The assay of H2O2 involves the fluorescence resonance energy transfer 

from the PMMA–Eu nanospheres to the AuNPs. The decrease of the luminescence intensity of the  

PMMA–Eu nanospheres at 612 nm (λexc = 365 nm) results from the changes in the concentrations of 

HAuCl4 and Au nanoparticles (and their enlargement) during the growth process. 

Coordination polymers constructed from metal ions and organic bridging ligands have recently 

emerged as very interesting functional materials due to their tunable structures and properties. In [21] 

functionalized lanthanide coordination polymer nanoparticles (CPNPs) were grown by a direct  

post-modification strategy to receive selectivity with respect to H2O2. The CPNPs contain terbium ions 

(Tb3+) as metal nodes and phenylalanine (Phe) as bridging ligands. Then 4-carboxyphenylboronic acid 

(CPBAs) is coordinated to the free coordination sites of Tb3+ to yield a nanoparticular material. Upon the 

complexation of CPBA with parent CPNPs a strong green fluorescence (545 nm) of Tb3+ is observed 

(λexc = 240 nm). The addition of H2O2 in μM-mM concentrations probably hydrolyses the boronic acid 

group of CPBA and a 4-oxo anion at the CPBA residue is formed. The intramolecular charge transfer 

process from the formed 4-oxo anions to the emissive state of Tb3+ quenches the luminescence of the 

lanthanide ions (Figure 6). The applicability to real samples is confirmed by quantitation of H2O2 in 

spiked urine samples in the range of 0 to 1 mM with good recovery and precision. 
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Figure 6. Luminescence response of lanthanide coordination polymer nanoparticles to 

H2O2. Reproduced from [21] with permission of The Royal Society of Chemistry. 

The use of upconversion photoluminescence (UCPL; an anti-Stokes emission) of nanoparticles 

avoids many disadvantages associated with fluorescence measurements in biological media like 

scattered light, autofluorescence and photobleaching. This results in high sensitivity and low damage 

to samples (due to the NIR excitation) when using UCPL for the simultaneous detection of H2O2 and 

glucose in human blood [22]. The approach is based on the selective quenching of the green UCPL of 

NaYF4 nanoparticles co-doped with Yb3+ and Er3+ (NaYF4:Yb3+/Er3+) by blue 3,3′,5,5′-

tetramethylbenzidine (TMB). TMB is oxidized by H2O2 in presence of HRP and its blue oxidation 

product decreases both the red (659 nm) and the green UCPL (543 nm) of the NaYF4:Yb3+/Er3+ 

nanoparticles. H2O2 could be detected from 0.1–4 μM with a 45 nM LOD (λexc = 543 nm,  

λem = 980 nm). Upon coupling, the NaYF4:Yb3+/Er3+-TMB system with glucose oxidase (GOx)-based 

oxidation of glucose into H2O2, a sensitive glucose assay was set up. Concentrations in the range of 

0.1–5.0 μM with a LOD of 64.0 nM in diluted human serum were found and satisfactorily validated 

against a clinical method. 

2.6. Carbon Based Nanomaterials 

Extraordinary electrical, chemical, optical, mechanical and structural properties of graphene and its 

derivatives have stimulated the exploration of their potential sensor applications [33]. Moreover, 

carbon materials are chemically inert and thus low toxic in most cases. However, there are not so many 

examples of using carbon materials in H2O2 sensing. Water-soluble carbon nanodots (C-dots) were 

prepared using a hydrothermal method and characterized by [23]. These C-dots were used as a 

fluorescence probe for the quenchiometric detection of H2O2 at 410 nm (λexc = 330 nm) in the presence 

of Fe2+ in a Fenton-like mixture. Moreover, glucose could be monitored via the amount of the 

enzymatically generated H2O2. Upon comparing the C-dot-based detection of H2O2 (and glucose) with 

other methods using metallic clusters and/or QDs as probes, the proposed method seems to be more 

ecofriendly, has a large (0.025–50 μM) dynamic range and works at a low pH of 3. 

The facile one-step pyrolysis of L-glutamic acid can yield nitrogen-doped graphene quantum dots 

(GQDs) that are highly fluorescent and have an intrinsic peroxidase-like catalytic activity [24]. The 

GQDs display various fluorescence peaks the main one being at 440 nm (λexc = 360 nm) and a  

near-infrared fluorescence (NIR) at >800 nm depending on the excitation wavelength (Figure 7). All 

lifetimes (measured at different emission wavelengths) are about 2 ns. The peroxidase-like catalytic 
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activity was used for the colorimetric detection of H2O2 in presence of 2,2′-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS). The reduction of H2O2 at low mM concentrations  

(10 mM Tris–HCl pH 5.0, 37 °C) by the GQDs is accompanied by a color change (λ = 416 nm) to 

green in the presence of ABTS. 

 

Figure 7. (A) Absorption (a), excitation (b) and emission spectra (c) of nitrogen-doped 

GQDs showing an intrinsic peroxidase-like catalytic activity. Inset: (from left to right) 

GQD solutions under bright light, violet, blue and green irradiation, respectively;  

(B) Luminescence emission spectra of the GQDs with different excitation wavelengths. 

Reproduced from [24] with permission of The Royal Society of Chemistry. 

Another group [25] used GQDs that had adsorbed hemin by π-π stacking and electrostatic 

interactions. H2O2 oxidizes surface-bound hemin, which leads to luminescence quenching of the  

471 nm emission concomitantly with a decrease of the absorption at 362 nm. The reaction requires  

10 min at room temperature and pH 7.0 (in 20 mM PBS) and additional 30 min of pre-incubation at  

37 °C, if coupled to GOx for glucose detection. Glucose can then be detected in concentrations very 

similar to those of H2O2. Validation of glucose levels found in human serum samples against those 

obtained with a spectrophotometric method yielded a good agreement. The GQDs show the advantages 

of carbon nanodot materials with respect to environmental and health amenity and therefore seem to be 

promising for applications in the clinical field. 

Carboxyl-functionalized multiwalled carbon nanotubes (MWNTs) were covalently conjugated to 

HRP to build a hydrogen peroxide biosensor [26]. First, the initial rate of the decomposition of H2O2 

was calculated from the change of the absorption at 470 nm. The rate of the concentration dependence 

in mM H2O2·s−1·nM−1 HRP was calculated and used for calibrating the fluorescence measurements.  

The activity of the enzyme was then determined by measuring the fluorescence of tetraguaiacol at  

350 nm, which is released as a colored product from HRP by oxidation of guaiacol as a function of 

time. The hydrogen peroxide biosensor exhibited a detection limit of 1.2 μM H2O2·s−1 and hence 

provided an increased resolution compared to the solution assay by a factor of 8. 

3. Sensors, Sensing Membranes and Films for H2O2 Detection 

Much research has been performed over the last few years on the fabrication of new sensor films 

made from a wide variety of materials. The interest in sensor membranes is due their simple, low-cost 
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and rapid production. They also permit monitoring analyte concentrations in a flow-through cell over 

time or in flow injection analysis (FIA). Moreover, screening of analytes in a highly parallelized 

manner in high-throughput in standard luminescence readers is feasible when using sensor microtiter 

plates in which sensor foils are deposited on the bottom of each well. Another option is the coating of 

the tip of an optical fiber with a sensor cocktail so to form an analyte-responsive membrane. This 

yields sensors with a highly local resolution that are even capable of remote sensing. The various 

analytical methods using sensor membranes for determination of H2O2 are presented in Table 2. 

A reversible optical non-enzymatic sensor membrane for H2O2 and glucose was described in [34]. 

The fluorescence of the europium tetracycline complex (EuTc) which is incorporated into a 

polyacrylonitrile-co-polyacrylamide membrane increases if the sensor membrane is exposed to 

solutions containing H2O2 in concentrations of 0.3–10 mM (5 mM MOPS buffer of pH 6.9). The 

increase of luminescence at 616 nm (λexc = 405 nm) is due to a reversible complexation of H2O2 to 

Eu3+ in the inner coordination sphere. The coordinative binding of H2O2 expels water off the inner 

coordination sphere and the strong quenching of the luminescence of the lanthanide ion is reduced. 

The response time is 10 min and the sensor membrane is reversible by flushing with water or (more 

rapidly) with thiosulfate. Phosphate and citrate and Cu2+ interfere in μM concentrations and should 

therefore be avoided. 

Reversible fluorimetric detection of H2O2 based on the fluorescence quenching of oxygen sensitive 

dyes (for example [Ru(2,2′-bipyridyl)3]2+) upon decomposition of H2O2 is well-known and was utilized 

earlier for different types of optical sensors [35]. Voraberger et al. [36] used a three layer  

sensor membrane which has a support made of a poly(ethylene terephthalate). On the top, the  

oxygen-sensitive [Ru(dpp)3]2+(ClO4)2] complex as the luminophore is coated in polystyrene. Then, a 

layer of MnO2 in a silicone membrane is used as catalyst and a polyetherimide is used to prevent water 

ingress and dye leaching (see Figure 8a). The sensor membrane reversibly responds (t90) within 60 s to 

60–300 mM of H2O2 detected via luminescence lifetime by the phase-modulation technique upon 

excitation with a blue LED. The three-layer optode is stable over 5 days. The catalytic membrane is 

detaching at higher concentrations of hydrogen peroxide which is compensated by addition of an 

adhesion promoter. The introduction of the catalytic layers increases resistance against harsh chemical 

conditions and high temperatures which are not accessible with enzymes. The black color of these 

membranes provides an excellent optical insulation against effects from sample luminescence, 

background stray light or ambient light. 

Recently, a new robust and reversible optical sensor for H2O2 was described based on an ion pair 

containing [Ru(2,2′-bipyridyl)3]2+ as an oxygen probe and RuO2 as catalyst for the decomposition of 

H2O2. [37]. The luminescence of the dye ion-pair complex with tetraphenylborate [Ru(bpy)3(Ph4B)2] is 

quenched by O2 produced by the catalytic breakdown of H2O2 utilizing inorganic RuO2·H2O as catalyst. 

The sensor cocktail (coating ink) is just a one-pot formulation that, when dried, forms an active  

single-layer luminescent H2O2 sensor membrane (see Figure 8b). The membrane is less sensitive  

(10 mM−1 M of H2O2) compared to the previous sensor but much simpler to be produced. Moreover, the 

sensor tolerates dry-heat sterilization for 2.5 h in an oven at 150 °C without loss of sensitivity. The 

forward response time (t90) is 309 s and the back response is 98 s (using 455 nm excitation and collecting 

emission at 585 nm). The sensor works steadily over 40 days (one daily measurement and storage in 

deionized water), without exhibiting any loss in sensitivity, recovery or response characteristics. 
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Table 2. Optical Sensor Films for Hydrogen Peroxide. 

Composition of Film Detected Signal Analytical Range (LOD), mM Response Time  Conditions and Electrolyte Ref. 

Eu3+-tetracycline complex incorporated into a 

polyacrylonitrile- polyacrylamide co-polymer 
Luminescence increase 

0.45–10  

(0.45) 
10 min  MOPS buffer of pH 6.9 at RT [34] 

[Ru(dpp)3
2+] and MnO2 as catalyst 

Quenching of luminescence Ru complex due 

to O2 via phase angle measurement 
60–300 1 min  aqueous solutions at 25 °C [36] 

[Ru(bpy)3
2+(Ph4B2)2] 

Luminescence quenching of the dye  

ion-pair due to O2 

10–1  103  

(1) 
5.2 min deionized water [37] 

Immobilization of catalase conjugated to  

O2-sensitive Ru-complex in polyacrylamide 

Quenching of luminescence Ru complex due 

to O2 formation 

0.5–14  

(0.001) 

 0.1 M carbonate buffer of pH 9 [38] 

Disks of TiO2/SiO2 NP powder in flow-through cell 
Phosphorescence quenching due to superoxide 

coordination to Ti 

7  10−4–70  

1.6  10−4 
few seconds water [39] 

HP Green incorporated into a polyurethane polymer 
Photoinduced electron transfer of 

enzymatically oxidized HP Green 

0.03–0.3  

(8  10−3) 
10 min 10 mM PBS of pH 7.4 at RT [40] 
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Figure 8. Composition of a typical (a) multilayer sensor membrane as used in [36] and  

(b) of a single-layer sensor membrane for reversible luminescence detection of H2O2 via 

O2. Former multilayer schemes have the catalyst () and luminophore () encapsulated in 

different layers, whereas in [37] a single-layer system catalyst and luminophore are 

encapsulated in the same polymer matrix. Reproduced from [37] with permission of The 

Royal Society of Chemistry. 

Ortega et al. [38] also proposed reversible optical biosensors based on an O2-sensitive ruthenium 

complex for continuous monitoring of H2O2. Unlike in the previous papers, one bpy ligand of the 

complex was substituted by 4-methyl-4-carboxy-2,2′-bipyridine to covalently link the complex to 

catalase (Cat–Ru). After entrapment into a polyacrylamide (PAA) membrane H2O2 can be determined 

after conversion into water and O2 by action of catalase: 

22

Catalase

22 OOHOH     

As an alternative to the sensor membrane a fiber-optical sensor was designed which can be used as 

immersion probe. The excitation light was produced by a blue LED (450 nm) and the fluorescence 

intensity was monitored at 600 nm. In both cases, the sensors work in the low mM-range at pH 9 and 

are fully reversible without chemical regeneration. Organic peroxides show little interferences and the 

senor shows an operational lifetime for at least one month. The senor behavior was modelled 

mathematically to allow the judgement on critical experimental parameters. The change of the sensor 

properties upon use of other luminophores could be predicted, as well. Upon coupling oxidases (which 

generate H2O2) with this catalase-coupled oxygen sensor, access to concentrations of substrates or 

products of oxidase-type enzymatic reactions is permitted. Potential substrates of interest could be 

(among glucose) cholesterol, lactic acid, superoxide anions, monoamines and others provided that the 

enzymes tolerate the conditions required for conjugation with the oxygen probe (20%–44% dimethyl 

sulfoxide in carbonate buffer pH 8.5). 

Shu et al. [39] show that a nanoparticular TiO2/SiO2-composite obtained from a sol-gel has 

phosphorescence emission at room temperature at 535 nm when excited at 403 nm. Upon reaction with 

H2O2, superoxide radicals coordinate to Ti as shown by electron spin resonance spectroscopy (ESR). 

The emission intensity is quenched by H2O2 at concentrations over a range of 5 orders of magnitude  

(7 × 10−7–7 × 10−2 M) and this is also reflected by the phosphorescence lifetime (3.3–0.4 s). If 

combined with GOx, glucose can be determined in the mM-range after a few minutes incubation time.  
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The TiO2/SiO2-composite powder was pressed into round disks that were mounted into a flow-cell. 

Therein, a very short response time of few seconds towards H2O2 was found and the sensor discs can 

be used repeatedly using hydroxylamine chloride as reductant. Finally, a semiquantitative 

determination of H2O2 is possible by eye-vision at mM levels from a color change from white over 

yellow to orange. The discs were applied to the quantitation of H2O2 in a disinfectant and a contact 

lens solution as real samples. 

A reversible optical sensor microplate was described for high-throughput screening of H2O2 [40]. It 

uses the fluorescent probe HP Green which is a naphthalimide dye. In presence of H2O2 at 

physiological pH, the quenched fluorescence of HP Green (by a photoinduced electron transfer (PET)) 

is terminated. Hence, a rapid “switch-on” of the luminescence at 535 nm (λexc = 430 nm) is found 

which is accompanied by an up to eleven-fold increase of the quantum yield [41]. HP Green was 

incorporated into a polymeric matrix of a D4 polyurethane which was deposited on the bottom of 

microplate wells. Enzymatic oxidation of HP Green in the presence of HRP enables the determination 

of H2O2 in the μM-range in solutions of physiological pH. Most notably is the fact that the sensor plate 

can easily be chemically regenerated with sodium dithionite and reused for quantitation of H2O2 up to 

five times. The sensor microplate has successfully been applied to the determination of H2O2 in 

colored cell nutrition medium as a real sample with a strong matrix load. 

4. Assessment of Nanomaterials for Potential Use in Optical Sensors 

Schemes like sensor membranes, fiber optic sensors or sensor microplates address a promising 

width of analytical problems from continuous monitoring over high local resolution to remote sensing 

and high-throughput or multiple sensing. If one compares the fewer sensors published with the much 

higher numbers of luminescent probes that have been published at the same time, there is a clear 

difference. The reason is mostly that after having a probe at hand and developed an assay in solution 

the construction work for a sensor just starts. Here, many additional factors need to be considered like 

the choice of a supporting material and a suitable polymer (for immobilization of the probe) that also 

warrants rapid access of the analyte and prevents leaching of the probe. Moreover, the concentration of 

the probe in the senor film as well as film thickness and layer composition need to be optimized. This 

still remains to be done for the new nanoparticular materials presented in Section 2 and therefore, this 

chapter gives suggestions of which ways could be promising to yield a working optical sensor. 

The 11-MUA–Au NDs used in [12] are quite promising for building a sensor in that just a ligand 

binding/unbinding to the NPs is involved in analyte recognition which is connected to an oxidation 

reaction. As the reversibility of these processes were already demonstrated, the major task to build a 

sensor would be to find a suitable polymer that is well permeable for small polar analytes to prevent 

the 11-MUA from leaching off the sensor membrane. Polyurethane polymers like HydroMed D4 [40] 

are a good example. Then, intermittent addition of a small amount of reductant could regenerate the 

sensor membrane and provide a repetitive quasi-continuous measurement in certain small intervals. 

The same regeneration scheme could be useful for [15] where a reductant would need to restore the 

original size of the HRP-Au NCs. A similar scheme could work for [14] and [22] where repetitive 

addition of TMB would be required for regeneration. For [21] a complete ligand exchange at the  

Tb3+-ions would be required to substitute the carboxyphenyl-4-oxo anions with carboxyphenyl-4-
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boronic acid groups. The introduction of reversibility is seen to be less easy for other probes [13,16,17] 

because it would be critical to achieve a reproducible regeneration step i.e., to restore the original 

particle size and regain the initial luminescence intensity. In case that an enzyme should be  

co-embedded [15], one might need to consider its lower tolerance towards variations towards buffer, 

pH and temperature. 

QD-based sensors from nanomaterials used in [18] seem possible provided an appropriate surface 

modification is found that enables a firm anchoring of the particles in the sensor layer. This could be 

achieved by using copolymers containing nonpolar domains (for particle embedding) and polar 

domains to allow a rapid access for hydrogen peroxide. Hypan HN80 [42] is a polyacrylamide-

polyacrylonitrile copolymer that should be useful for this purpose. It contains hard (polyacrylonitrile 

domains, lipophilic) and soft blocks (polyacrylamide domains, hydrophilic). Moreover, Hypan can 

take-up water in fractions up to 80% of its weight and has excellent ion permeability. The reproducible 

restoring of the particle surface remains an issue to be tested for. The same is true for the C-dots shown 

in [23]. Here, an intermittent reduction step might be required, as well. 

The lanthanide particle probes [20] could be easily embedded into a suitable polymer foil. A 

continuous operation could be achieved by simultaneously feeding H2O2 and the Au-NP growth 

solution. However, the incubation time for the analytical reaction to proceed would need to become 

much shorter. The graphene QDs (GQDs) presented in [24] would also require a simultaneous supply 

of H2O2 and ABTS to the QDs immobilized in a sensor foil to then work as a nice continuous sensor 

both with photometric and luminescence detection. 

Another continuous sensing scheme represents flow injection analysis (FIA). Here, reagent 

solutions and analyte solutions are fed to mixing and detection cells by carrier streams in tubes of few 

mm of diameter by means of a multichannel peristaltic pump. This could be an option for the assay 

presented in [25]. Here, the GQDs could premix with and adsorb to hemin in one carrier stream which 

is then added to the analyte stream. After a further mixing loop, the resulting product stream would be 

measured via fluorescence spectroscopy. FIA-sensors could also be designed for the nanomaterials 

presented in [12,14,15,20–22,24] if their synthesis can be easily performed and is not too expensive. The 

continuous feeding of the nanomaterial as required by a FIA instrument would rise the costs for 

continuous operation, otherwise. 

From all this, it is obvious that sensor design is far beyond having a luminescent probe because it 

requires careful matching of the properties of many materials, the optical probe and the detection 

format to yield a system that meets the target figures. 

5. Conclusions 

This review shows that a wide variety of new luminescent nanomaterials for quantitation of 

hydrogen peroxide was published over the last five years. These nanomaterials hold great promise for 

future sensor development. Therefore, the considerable amount of luminescent sensors for H2O2 and 

their various detection formats that have been developed over the past 15 years are discussed. If a 

sensor is to be developed containing nanomaterials it is frequently important that their surface can be 

regenerated or reversibly oxidized. Moreover, appropriate embedding of the nanomaterials is required 

for reliable sensors to be constructed. Hence, additional suggestions of how to fabricate new sensors 
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for hydrogen peroxide from the nanomaterials are presented. This should inspire scientists to further 

develop new optical sensors for this important analyte rather than adding just another one to the 

hundreds of optical glucose assays found in literature. It is therefore desirable that research groups 

working in probe design and using the many fascinating nanomaterials should acquire additional 

knowledge in material science to publish new exciting optical sensors for H2O2. 
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