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Abstract: This article presents a review of recent research efforts and developments for the fabrication
of metal-oxide gas sensors using chemical vapour deposition (CVD), presenting its potential
advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing
performance. Thin films typically have poorer gas sensing performance compared to traditional screen
printed equivalents, attributed to reduced porosity, but the ability to integrate materials directly with
the sensor platform provides important process benefits compared to competing synthetic techniques.
We conclude that these advantages are likely to drive increased interest in the use of CVD for gas
sensor materials over the next decade, whilst the ability to manipulate deposition conditions to alter
microstructure can help mitigate the potentially reduced performance in thin films, hence the current
prospects for use of CVD in this field look excellent.
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1. Introduction

Gas detection, and determining the composition of gas mixtures, is necessary in many different
fields, for example environmental monitoring, vehicle and industrial emission control and household
security. Most studies have focused on the detection of H2, CO2, CO, O2, O3 or NH3, because of
their toxicity, their relation with atmospheric composition or the fact that they can be found at high
levels in some environments. Detection of organic vapors such as methanol, ethanol, isopropanol,
benzene and amines are also of great interest [1]. Metal oxides were some of the first materials used in
chemoresistive gas sensors and are still the most widely used gas sensing materials. Numerous metal
oxide semiconductor materials, including both single (e.g., ZnO, SnO2, WO3, TiO2 and Fe2O3) and
multi-component (BiFeO3, MgAl2O4, SrTiO3, and Sr1´yCayFeO3´x) oxides, have been reported for use
as the active layer [2,3]. The mechanism for gas detection in these materials is based on reactions that
occur at the sensor surface, resulting in a change in the concentration of adsorbed oxygen. Oxygen
ions adsorb onto the material’s surface, removing electrons from the bulk and creating a potential
barrier that limits electron movement and conductivity. When reactive gases combine with this oxygen
the height of the barrier is altered, changing conductivity. This change in conductivity is directly
related to the composition of the gaseous environment allowing a quantitative determination of the
gases present (under certain conditions) [4]. Metal oxide semiconductor sensors have proved to be
sensitive to a large range of gases and studies have focused on understanding the relationship between
sensor response and materials processing and chemistry, e.g., dopant level, synthesis and annealing
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temperature. These parameters can have a profound effect on the materials chemistry and structure,
which in turn dramatically affect the gas sensing properties of the sensor device [2]. Currently the
potential of metal oxide semiconductor sensors has not been fully realised, with other types of sensors
(e.g., electrochemical or those based on optical or photo-ionisation principles) still favored for many
industrial applications. However, new materials and techniques continue to be developed to improve
the abilities and properties of metal oxide gas sensors, and with recent advances in understanding of
materials chemistry and synthetic techniques their intrinsically favourable properties, coupled with
their relative low cost and potential for miniaturization and portability, should mean they become ever
more important tools in environmental monitoring.

Development of synthetic methods for producing materials for use in metal oxide gas sensors has
been a major focus in the field and many routes have been investigated including hydrothermal [5],
sol-gel [6], solid-state chemical reaction [7], thermal evaporation [8], vapor-phase transport [9], RF
sputtering [10] and molecular beam epitaxy [11]. Two common preparative routes are solid-state
and sol-gel; solid-state reactions allow for relatively simple synthesis but for complex materials can
lead to poor chemical homogeneity, whilst sol-gel reactions provide very good homogeneity and
small particle size dispersion but the process can be difficult to control reproducibly. An alternative
synthesis technique is chemical vapour deposition (CVD), which is a process for the deposition of
films of various materials via chemical reactions of gaseous reactants in an activated environment
(e.g., temperature, light or plasma). In general, a CVD system consists of three main components:

1. Precursor supply system
2. CVD reactor
3. Exhaust system.

The role of the precursor supply system is to generate precursors in the vapour phase and deliver
them to the reactor, normally with the help of carrier gas, where the CVD reaction takes place. Typically,
liquid precursors are used in order to generate sufficient vapour pressure when heated to intermediate
temperature (<200 ˝C) with mixing of multiple precursor streams used to produce complex mixtures.
Variants on this system such as liquid injection- and aerosol assisted-(AA)CVD [12] are typically used
to introduce low volatility/solid precursors, with precursor evaporation only occurring inside the CVD
reactor, although they also afford great opportunities in synthesizing doped or ternary/quaternary
materials due to the relative ease of controlling stoichiometry through the precursor solution.

The reactor is where external energy is added to the system, in the form of heat, light or plasma, to
initiate the deposition reaction(s). Deposition involves two principal types of reactions, homogenous
and heterogeneous; homogeneous reactions occur exclusively in the gas phase whilst heterogeneous
reactions occur between gas phase species and a solid substrate (although frequently involving an
initial gas phase reaction resulting in the formation of reactive intermediate species). In the case of
homogeneous reaction the precursor/intermediate species undergo further gas phase decomposition
resulting in the formation of a powder and by-products. This powder is typically non-adherent
and these reactions are undesirable in CVD (although in pyrolysis reactions the powder may be the
target and collected via a powder capture system), whilst the by-products are removed from the
reaction chamber through the exhaust system. In the case of heterogeneous reactions diffusion of the
precursor/intermediate species occurs at an interfacial gas/solid boundary layer, forming nucleation
sites on the solid substrate. Subsequent nucleation processes take place on the surface of substrate
resulting in the deposition of solid material, and manipulation of the reaction conditions can be used
to promote the formation of either planar films or nanostructures [13]. It is also worth noting that
the nature of the heterogeneous reactions means that the materials are atomically mixed, and under
well-controlled conditions are homogeneous in composition across the deposition area. Hence CVD
offers several potential advantages over other synthesis processes for the preparation of gas sensing
materials and sensors, which include:
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‚ A single step for gas sensor processing which combines both materials synthesis and integration
of the material with the sensor platform.

‚ Production of atomically mixed homogenous materials, including complex stoichiometries, with
good reproducibility.

‚ Ability to influence crystal structure and surface morphology.

This article presents a review of recent research efforts and developments for the fabrication of
metal-oxide gas sensors using chemical vapour deposition (CVD), presenting its potential advantages
as a materials synthesis technique for gas sensors along with a discussion of their sensing performance.
In considering the literature we have compiled tables of sensing data, however we note that these are
only a qualitative comparison as the response of metal oxide semiconductors in general is dependent
not only on the material properties but also on the conditions used to test these materials towards
the analytes.

2. Gas Sensing Materials

2.1. Tungsten Oxide

Tungsten oxide, WO3, is a wide-bandgap n-type semiconductor, with bandgaps reported in
the range of approximately 2.6–3.2 eV dependent on crystallinity and oxygen deficiency. WO3

crystals are generally formed by corner and edge sharing of WO6 octahedra, with various crystal
phases dependent on temperature; monoclinic II (ε-WO3, < ´43 ˝C) Ñ triclinic (δ-WO3, ´43 ˝ C to
17 ˝C) Ñ monoclinic I (γ-WO3, 17 ˝C to 330 ˝C) Ñ orthorhombic (β-WO3, 330 ˝ C to 740 ˝C) Ñ
tetragonal (α-WO3, > 740 ˝C). Tungsten oxide can also possess non-stoichiometric properties because
its rhenium oxide-like lattice can withstand a considerable amount of oxygen deficiency. Some of the
better known non-stoichiometric tungsten oxides are W20O58, W18O49 and W24O68 [14].

Vapour deposited WO3 and WOx have both been used for gas sensing. These materials are
typically monoclinic or tetragonal phases with a variety of morphologies reported including films,
particles and low dimensional structures, with the formation of nanostructures (NS) demonstrated
below 600 ˝C for AACVD [15] and at 800 ˝C for hot filament CVD. The starting materials reported
in the production of gas sensitive tungsten oxide include metallic W [16,17], WO3 (powder,
pellet) [18,19], WCl6 [20], W(OCl4) [21], W(CO)6 [22–24], or complexes such as [W(OPh)6] [25,26],
[NH4][W12O39], [NH4]10H2[W2O7]6 or [nBu4N]2[W10O32] [27]. Most commonly planar films of vapour
deposited tungsten oxide have been employed and integrated directly into ceramic- [20,21,26,27],
silicon- [16,22,23,25] or polymer-based [28] gas sensing devices. The localized CVD of tungsten oxide
nanostructures on Si-based microhotplates (Figure 1) via heating provided from the sensor platform
itself, rather than from the reactor chamber, has also been demonstrated as a viable method for the
fabrication of gas sensors based on tungsten oxide [23], which provides interesting new possibilities
for sensor processing.

Figure 1. Scanning electron microscope images of WO3 nanostructures grown at (a) low and (b,c) high
magnification grown localized on microhotplates via AACVD. Adapted from [23].
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As with other metal oxides, tungsten oxide deposited via CVD has been used in resistive mode,
with demonstrated sensitivity to NO2 [16,21,26], N2O [17], C2H5OH [20,27], CO [23,25], NH3 [18],
H2 [22], humidity [19] and aromatic compounds such as benzene [29] and toluene [30] (Table 1). The
relative sensor response (R) to ppm concentrations (C) of CO, C2H5OH and NO2 (Table 1) are plotted
in Figure 2. This relative value (i.e., Response/Concentration) was used as a quantitative factor to
compare the sensitivity of the most common CVD-deposited tungsten oxide morphologies reported
in the literature, although it is worth noting that strictly sensitivity is defined as the slope of the
calibration curve (calibration curves were not available in most of the reports summarized in Table 1).
It is apparent from Figure 2 that tungsten oxide has a notable sensitivity to NO2 and this characteristic
is generally observed for tungsten oxide making it a good candidate to selectively detect NO2 in the
presence of gases such as C2H5OH, CH4, CO, NH3, H2, C6H6 and H2S [21,24].

Table 1. Summary of the features and sensing properties reported for chemical vapour deposited
tungsten oxide.

Prec. CVD
method

Tdep
˝C Form Features

nm
Sensor

type Top
˝C ppm Gas R tres

s Ref.

W(OCl4) PE - film - Ω 200 10 NO2 48 - [21]
WCl6 AP 625 film 3600T Ω 400 20 C2H5OH 8.5 - [20]

W(CO)6 LP 500 NPs 140Ø Ω >450 5000 H2 *** - [22]
W HF - NPs 100Ø Ω 50 1 NO2 4701 - [16]

WO3 EB - NPs 9Ø

200T NS* 100 10 NH3 - - [18]

WCMPLX AA 500 P 1000Ø

30,000T Ω 550 20 C2H5OH 5.1 - [27]

W HF 800 NWs - Ω 450 1 N2O 4.41 175 [17]
W(OPh)6 AAEF - NWs ´ Ω 250 0.8 NO2 120 - [26]
W(CO)6 AAL˝c 580 NWs 100–400Ø Ω 375 80 CO 8 - [23]

W(OPh)6 AA 400 NWs 60–120Ø

7000L Ω 150 100 CO 5 - [25]

W(OPh)6 AA 400 NWs 60–120Ø

7000L Ω 200 1 C6H6 2 1114 [29]

W(CO)6 AA 500 NWs 50–100Ø

11000L Ω 390 0.4 NO2 250 - [24]

W(CO)6 AA 390 NWs 50–100Ø

10,000L Ω 190
220

100
100

C7H8
C2H5OH

3
3.5

450
- [30]

WO2.9 CVD 400 NRs 30–110Ø

1000T O RT 65** H2O 2.16 - [19]

Prec: precursors, Tdep: temperature of deposition, Top: operating temperature, tres: response time, ppm: parts
per millon, R = Ra/Rg (oxidative gas), R = Rg/Ra (reductive gas), CMPLX: [nBu4N]2[W10O32], PE: plasma
enhanced, AP: atmospheric pressure, LP: low pressure, HF: Hot Filament, EB: Electron Beam, AA: Aerosol
assisted, EF: Electric field, L˝c: Localized, O: optical, Ω: resistive, NS: noise spectroscopy, *: gas sensing assisted
by Blue-LED, **: % Relative humidity, ***: low response and not stable, NPs: nanoparticles, NWs: nanowires,
NRs: nanorods, Ø: diameter, T: film thickness, L: length.

Figure 2. Relative sensor response (R) to ppm concentration (C) of NO2, C2H5OH and CO against
operating temperature for different tungsten oxide morphologies (based on the maximum response for
the minimum concentration in Table 1 for each morphology/gas combination).
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The properties of CVD have been used to enhance the performance of thin film tungsten
oxide-based resistive sensors in several ways. For instance, the sensing properties to ethanol were
improved by a change in microstructure that occurred by controlling film thickness in the range
6700 nm to 3600 nm. These changes produced a reduction in the baseline resistance of the sensors,
with resistance decreasing with decreasing film thickness, with an attendant modification of the
activation energy of conductance [20]. We note a similar study has demonstrated improved sensor
performance in thicker films (30,000 nm) compared to thinner films (15,000 nm) [27], but it is likely
that these results are influenced by the properties of the electrodes, specifically the electrode thickness,
which need to have a similar thickness to that of the thin film sensor material in order to achieve
optimum sensor performance [31]. For NP tungsten oxide, CVD has been used to control the size of
NPs to improve sensor performance, with particles with sizes below 100 nm having better sensing
properties to NO2 regardless of processing parameters such as the oxygen pressure during CVD or the
subsequent annealing temperature. This was attributed to the depletion layer extending throughout
the material in small particles hence providing a larger conductivity change than for large particles
that which are depleted only at the surface [16]. In addition, by manipulating CVD conditions to
favour formation of networked nanowire mats rather than NPs the sensitivity of tungsten oxide to
N2O was improved by an order of magnitude compared to NP films (Figure 3). This was related to
the higher surface-to-volume ratio of NS compared to NPs, although this study also highlights the
need to use highly networked nanowires as opposed to (quasi) aligned nanowires for optimum gas
sensing performance, as these behave similarly to single nanowire or parallel nanowire arrays [17].
Similar observations were also reported for gas microsensors based on tungsten oxide nanoparticles
and nanowires grown via AACVD (Figure 3) [32].

Figure 3. Scanning electron microscope images of (a) nanowire mat (b) NP films. Adapted from [32].

CVD has also been demonstrated to simplify sensor processing by providing direct integration of
tungsten oxide sensor materials with the sensor platform. This has been demonstrated particularly
for aerosol assisted CVD, which has shown the selective deposition of networked or quasi-aligned
tungsten oxide NS on ceramic- [33], silicon- [32] and polymer-based platforms [28].

2.2. Zinc Oxide

Zinc oxide (ZnO) is a II-VI semiconductor with a wide direct band gap (3.37 eV), large exciton
binding energy (60 meV), spontaneous polarization and piezoelectric constants which make it an
attractive material for electronic, optoelectronic, energy generator and photocatalytic applications [34].
This material has been widely used for gas detection since the early 1960s, and it is still among the most
reported metal oxide materials used for gas sensing. Most of the interesting functionalities of ZnO
originate from its wurtzite crystal structure, which can be described as a number of alternating planes
composed of tetrahedrally coordinated O2´ and Zn2+ ions, stacked along the c-axis. This crystal does
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not possess inversion symmetry, having a large spontaneous polarization along the [0001] crystalline
direction [34,35].

Metallic Zn [36–43] or diethylzinc (Et2Zn) [44–47], both with O2 as carrier (reactive) gas, have
been used as precursors for the formation of ZnO via CVD, although other simple precursors such as
zinc nitrate (Zn(NO3)2) [48] and organometallic complexes (e.g., Zn(II) ketoiminate) [49,50], have also
been reported. ZnO films or NPs have been typically achieved at deposition temperatures between
350 and 450 ˝C, whereas NS of this material have been reported at deposition temperatures exceeding
450˝C, either with or without the use of gold (catalytic) seeds to encourage NS formation. Similarly to
tungsten oxide, CVD has been used to facilitate processing of sensors with the deposited zinc oxide
often integrated directly onto planar ceramic- or silicon-based gas sensing devices, with the exception
of structures in the form of wires which apparently have been exclusively used as single structures
integrated into the device after a post-transfer process (i.e., single wire sensors) (Table 2).

Table 2. Summary of the features and sensing properties reported for chemical vapour deposited
zinc oxide.

Prec. CVD
method

Tdep
˝C Form Features

nm
Sensor
Type

Top
˝C ppm gas R tres

s Ref.

Et2Zn MO - Film 130FT Ω 300 1660 CO 1.6 - [44]

Et2Zn PE - Film 500 FT

38 CZ Ω +O RT 200000 O2 1.8 - [45]

ZnCMPLX AA 450 Film 25CZ Ω 60 500 C2H5OH 2 10 [51]
Et2Zn MO 450 NPs - Ω 300 1000 CO 1.53 - [46]

Zn(OAc)2 AA 350 NPs 12CZ Ω 300 10000 DMA 1.7 240 [52]
Zn CVD 550 NWs 30000Ø Ω+OSNW RT 200 C2H5OH 2 - [36]

ZnO CVD - NWs 130Ø

4000L Ω+OSNW 200 1ˆ106 CO 4 - [53]

Zn CVD - NWs 80Ø

3500L FETSNW - 400 CO 3 - [37]

Zn UHV 650 NWs 100Ø Ω+OSNW RT 100 H2 1.35 3 [38]
Et2Zn MO 500 NRs 100Ø Ω 300 500 O2 3.5 - [47]

Zn CVD 600 NRs - Ω+O RT 2.5 O3 1300 45 [39]

Zn PE - NRs 100Ø

2000L Ω 400 CH2O 100 - [40]

Zn CVD 700 HS - Ω RT 250 CO 1.8 - [41]

Zn VT 700 HS 800TB

150TC FETSNW 200 1 NO2 2 - [42]

ZnCMPLX PE 300 HS Ω 100 0.28 O3 1000 - [49]
Zn VT 410 HS 5000Ø Ω 400 205 CH2O 38 - [43]

ZnCMPLX PE 300 HS Ω 400 5000 H2 14 - [50]
Zn(NO3)2 C 1100 F 20000 Ω SF 400 500 C2H5OH 15.3 - [48]

Prec: precursors, Tdep: temperature of deposition, Top: operating temperature, tres: response time, ppm: parts
per millon, R = Ra/Rg (oxidative gas), R = Rg/Ra (reductive gas), Et2Zn: Diethylzincm, CMPLX: complex
Ω: resistive, O: optical, SNW: single nanowire configuration, SF: single flake, FT: film thickness, Ø: diameter,
L: length, CZ: Crystallite size, TC: thickness of the combs, TB: thickness of the NBs, NWs: nanowires, NPs:
nanoparticles, NRs: nanorods, HS: hierarchical structures, F: flake, DMA: Dimethylamine.

Chemical vapour deposited ZnO has shown sensitivity to gases such as CO [37,41,44,46,53],
H2 [38,46,50], C2H5OH [36,48], CH2O [40,43], NO2 [42,49], O3 [39] and O2 [45,47], working in resistive
mode, although a few papers also report the use of ZnO in optical sensing [36,39,40,45,53]. The
multifunctionality of ZnO has also allowed for the operation of sensors in an optical-resistive mode, in
which adsorption of the gaseous molecules is induced via the use of UV light, which has been shown
to favour the room temperature detection of O3 [39] and CH2O [40].

A comparison of the sensor response as a function of the gas concentrations in ppm (see Section 2.1
for details) for various CVD-deposited ZnO morphologies (Figure 4) suggests that ZnO NS provide
improved sensor responses compared to thin films or particle-like films, which is consistent with
the enhanced sensing properties attributed to high surface-to-volume-ratio materials. Whilst single
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wire sensors based on ZnO have shown good response at room temperature, ZnO films comprised
of NS such as flakes, rods, or belts grouped as mats, films or agglomerates may ultimately be more
advantageous due to easier integration with sensor devices, whilst still possessing greater responses
compared to particle-like planar films.

Figure 4. Relative sensor response (R) to ppm concentration (C) of H2, C2H5OH and CO against
operating temperature for different zinc oxide morphologies (based on the maximum response for the
minimum concentration shown in Table 2 for each morphology/gas combination). Other structures:
NR, NB, CL, flakes.

The ability to influence morphology in CVD deposited material has been exploited in a number
of studies to improve the gas sensing performance of zinc oxide thin films, for instance by altering
reaction conditions wurtzite structure films textured along the [001] direction were prepared with
differing morphology. Optimal conditions for CO sensing were found when using columnar-like
ZnO grains 130 nm thick, as opposed to grains growing laterally to the substrate sized 100, 110, and
160 nm [44].

Similarly improved sensor response to H2 was recorded for single ZnO wires 100 nm in diameter
as opposed to wires with diameters of 200 nm or 600 nm which showed lower responses (less than
10%) [38]. These results were attributed to the higher concentration of structural defects when the
diameter of ZnO wires are decreased, and hence by targeting wires with smaller diameters sensor
performance can be optimized. In addition, hexagonal ZnO wires with curved sides demonstrated
superior ethanol sensing performance than similar wires with straight sides (Figure 5), which was
attributed to higher surface-to-volume ratio of the curved side wires [36].

Figure 5. SEM images of a ZnO wire with curved (a) and straight (b) sides. Reprinted from [36] with
permission from Springer.
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A further demonstration of the use of CVD to manipulate morphology to improve sensor
performance was obtained for hollow microspheres with nanorods grown on their outer surface
formed in-situ during CVD reaction, which were found to possess more oxygen vacancies and surface
sites compared to non-hierarchical structures due to structure-determined residual stress that promoted
the adsorption of oxygen and electron trapping [43].

2.3. Tin Oxide

Tin oxide is an intrinsic n-type wide-bandgap (3.6–4.0 eV) semiconductor with applications in
transparent conducting electrodes, antireflective coatings and gas sensors. The dual valence of tin,
with tin preferably attaining oxidation states of +2 or +4, facilitates the variation of the surface oxygen
composition and in turn the gas sensing properties of this material [54,55]. SnO2 in its thick film form
is one of the most used materials in current commercial resistive gas sensors, and is one of the most
studied materials for gas sensing in the literature. Despite this the literature related to chemical vapour
deposited SnO2 for gas sensing is less reported than for other metal oxides.

Similarly to zinc and tungsten oxides, SnO2 has been synthetized in the form of planar films,
nanoparticles, nanowires and nanorods, with a strong dependence of the microstructure on the
deposition temperature (Table 3), with films and particles reported at deposition temperatures
below 400 ˝C and nanostructured SnO2 obtained at temperatures exceeding 700 ˝C. The most
common precursors for the synthesis of SnO2 via CVD include metallic tin [56–58], salts (SnCl2 and
SnCl4) [59–62], [Sn(OtBu)4] [55,63], and other less common precursors such as Sn(NO3)4 [64] and the
complexes [(CH3(CH2)3CH(C2H5)CO2)2Sn] and [Sn(18-crown-6)Cl4] [65], with O2 often used as a
reactive carrier gas. SnO2 films have often been tested without being integrated into traditional gas
sensing devices whereas SnO2 in the form of NPs and NS have been directly integrated with planar
ceramic-platforms. In common with tungsten oxide the localized CVD of SnO2 nanoparticles on
Si-based microhotplates using the platforms microheaters has been shown to be a viable method for
the integration of the sensing metal oxide with the sensor platform [64], whilst SnO2 single nanowire
sensors are typically integrated by means of a post-transfer process.

Table 3. Summary of the features and sensing properties reported for chemical vapour deposited
tin oxide.

Prec. CVD
method

Tdep,
˝C Form Features,

nm
Sensor
type

Top
˝C ppm gas R tres

s Ref.

SnCl2.2H2O CVD - Film 100T Ω - 6 NO2 1.2 - [59]
TTB MO 350 Film 50T Ω RT 5 H2S 1.1 - [63]

SnCl4 IBI RT Film 400T Ω 500 - H2 - - [60]
SnCl4 ALD 250 Film 2.6T Ω 300 - CO 43 - [61]
TMH LE - NPs ~15Ø Ω 200 20 NO2 77 160 [66,67]

Sn(NO3)4 Loc 375 NPs - Ω - 200 CH4O 5 - [64]
T-crown AA 400 NPs 18–36Ø Ω 300 10 NO2 1.7 - [65]

TEH C 850 NPs 1000Ø Ω 300 500 C2H5OH 1075 31 [68]
SnCl2.2H2O CVD 375 P - Ω 240 300 H2 1.03 - [62]

Sn CVD 750 NWs - Ω 400 CO 3.9 10 [56]
Sn CVD 800 NWs 41Ø ΩSNW 300 500 NO2 17 3 [57]

DBTA PE - NRs 1200L

45Øb-10Ø ΩSNW 250 100 H2 13 - [69]

Sn CVD 800 NWs 60Ø

20,000L Ω 200 1 NO2 90 8 [58]

TTB CVD 700 Plates 30–40T Ω 250 100 C2H5OH 1.5 10 [55]

Prec: precursors, Tdep: temperature of deposition, Top: operating temperature, tres: response time,
ppm: parts per millon, R=Ra/Rg (oxidative gas), R=Rg/Ra (reductive gas), TTB: Tin(IV)tert-butoxide,
TEH: Tin(II)ethylhexanoate, T-crown: Sn(18-crown-6)Cl4, TMH: Tetramethyltin, DBTA: dibutyltin diacetate,
LE: laser enhanced, Loc: Localized, PE: plasma enhanced, C: combustion, IBI: ion beam induced, P: particles,
NPs: nanoparticles, Ø: diameter, Øb: diameter at the base of nanostructure, T: film thickness, L: length, NWs:
nanowires, NRs: nanorods. Ω: resistive, SNW: single nanowire configuration.
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In general SnO2 films deposited via CVD show sensitivity to NO2 [57–59,65,66], CO [56,61],
C2H5OH [55,68], H2 [60,62,69], H2S [63] and CH3OH [64]. The relative sensor response (see Section 2.1
for details) in Figure 6 indicates similar performance for planar films and particles with a notable
difference in sensors based on nanowires which show a high relative response to NO2, although we
note this could be related to the particular microtrenched transducing platform used or the use of Au
catalyst seeds for the formation of the nanowires [58].

Figure 6. Relative sensor response (R) to ppm concentration (C) of H2, C2H5OH and NO2 against
operating temperature for different tin oxide morphologies (based on the maximum response for the
minimum concentration shown in Table for each morphology/gas combination). Other structures: NR
and plates.

Laser-induced CVD (L-CVD) SnO2 films with a grain-like (20 nm) surface showed enhanced
sensing properties to NO2 compared to SnO2 films grown via an alternative rheotaxial growth and
thermal oxidation (RGTO) method, with the magnitude of response doubled and the response time
reduced. This was attributed to the smaller grains produced via L-CVD which were considered to
improve gas diffusion through grains [66,67]. Similar observations were also noticed for SnO2 grown
via AACVD, indicating that grains with smaller size elongated in one direction increase the sensor
response [65]. The positive influence of small grain-like SnO2 surfaces for sensing reductive gases
as H2 compared to compact films was also noticed, and this was attributed to the higher degree of
reduction to Sn2+ or Sn˝ species in grain-like SnO2 surfaces, likely at the outermost surface layer of the
grains where oxygen vacancies can be stabilized [60].

Atomic layer deposition (ALD), a technique which is related to CVD but allows atomic level
control of film thickness, has also been used to examine the influence of SnO2 film thickness on sensor
performance. The response to CO was found to increase when increasing SnOx ALD film thickness
from 1.6 nm to 2.6 nm, whereas it decreased on further increasing film thickness from 2.6 nm to
5.9 nm [61]. The results were interpreted in terms of the Debye length and resistance for the films.
The Debye length was comparable with the film thickness of 2.6 nm corresponding to the maximum
responsivity for CO gas sensing. For film thicknesses >2.6 nm, the decrease in response was explained
by a larger fraction of the film with thickness greater than the Debye length that was not affected by
the O2 and CO chemisorption. For film thicknesses <2.6 nm, the response decrease was attributed to
the increasing resistance of the SnOx ALD film. Similar observations were found for single nanowire
sensors with diameter 40 nm, close to the depletion zone depth (13.4 nm) calculated for NO2 adsorbed
on SnO2, which had higher response to NO2 compared to wires with larger diameters (between
62 and 117 nm) [57]. This is similar to the results found previously for ZnO nanowires [38], although
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the rationale provided is different (increased defect density for ZnO and Debye length for SnO2).
Thinner nanowires also showed an improved detection limit to NO2 (Figure 7).

Figure 7. Gas responses of five single nanowire (SNW) sensors to various NO2 concentrations at
250 ˝C (a), and SEM images of a single nanowire connected to the electrodes (b) and and the NWs with
different diameters (c) (from the bottom to the top: 117, 103, 78, 62, and 41 nm). Reprinted from [57]
with permission from Elsevier.

2.4. Complex Oxides

The p-type semiconductor titanium-doped chromium oxide (CTO) Cr2´xTixO3+y (0 ď x ď 0.4)
shows very good selectivity and sensitivity towards NH3 and H2S [70,71], with several techniques
having been used to synthesize CTO gas sensing material including sol-gel [72–76], solid-state [77–79],
solution [80,81] and CVD [82,83]. The synthesis of CTO powders, prepared via solid-state or sol-gel,
and screen-printed onto an alumina sensor platform are the most widely used techniques but CTO
has also been deposited using atmospheric pressure CVD (APCVD) using [CrO2Cl2] and [TiCl4]
or [Ti(Oipr)4] as metal precursors [83,84]. For APCVD deposited material the gas response against
80 pm of ethanol increased with reducing film thickness (Table 4), with thinner films also having
higher ideal operating temperature, increasing from 500 to 575 ˝C on passing from 1500 to 500 nm
film thickness. Comparison to 1500 nm thick screen-printed CTO sensors, using powder with an
identical composition formed via solid-state synthesis, showed the screen-printed sensors had a better
R/R0 response towards ethanol (ca. 3–4) than an equivalent APCVD sensor (1.5), although film
adhesion was better for the CVD material than the screen-printed one which was fragile and readily
delaminated. The difference in sensitivity was attributed to microstructure, with the lower response
against ethanol due to the high density/lack of microporosity in the microstructure. Subsequently
electrostatic spray assisted vapour deposition (ESACVD) was used to manipulate microporosity when
depositing Cr1.8T0.2O3 onto silicon wafers [85,86]. An increase in film porosity was obtained by adding
a low amount of polyvinyl alcohol and ethylene glycol to the precursor solution; Figure 11a,b shows the
microstructure of CTO films obtained using 0.05 and 0.005 M respectively of precursor solution without
addition of polymer whilst Figure 8c and 11d show the equivalent microstructure with addition of
polymer. The sensors prepared with the addition of polymer exhibited an enhancement in the gas
response towards 500 ppm of ammonia compared to those prepared without additive which was
attributed to the increased porosity (30%–40% with polymer compared to 0%–20% without).

Cobalt(II,III) oxide, Co3O4, is a magnetic p-type semiconductor most often used as a
heterogeneous catalyst, in Li-ion batteries or as a solid-state sensor [80,87–89]. CVD has been used
to improve the sensor performance by homogenous doping with fluorine, with F-doped Co3O4

successfully grown at temperatures between 200 and 400 ˝C by plasma enhanced-chemical vapour
deposition using single-source precursors, Co(dbm)2 (where dbm = 1,3-Diphenyl-1,3-propanedione)
and Co(hfa)2TMEDA (where hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate and TMEDA =
N,N,N’,N’-tetramethylethylenediamine) respectively [90]. Sensors were tested against 100 ppm of
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acetone at different operating temperatures and whilst undoped films exhibited a higher sensitivity
when the operating temperature was 300 or 400 ˝C, F-doped Co3O4 operating at 200 ˝C showed the
best response of all the tested sensors (Table 4). The addition of fluorine, which is reported to increase
the carrier concentrations/mobility of n-type oxide semiconductors [91,92], unexpectedly produced
a higher current response in the p-type Co3O4 at an operating temperature of 200 ˝C. The presence
of fluorine was thought to increase the number of holes (h+), the main p-type semiconductor charge
carriers, by saturating dangling bonds at the surface of Co3O4 which otherwise would have trapped
h+ carriers and hence reduced conductivity [93].

Figure 8. SEM photographs of Cr1.8Ti0.2O3 films deposited at 650 -C from the different precursor
without additive (a) 0.05 M, (b) 0.005 M, and with additive (c) 0.05 M, (d) 0.005 M. Reprinted from [85]
with permission from Elsevier.

In2O3 is a widely used material in transparent conductors, in display panels and solar cell
windows, in optical-antistatic coatings and it has also been used in gas sensing, with the typically
low conductivity of In2O3 improved by doping it with zinc, titanium or tantalum [94,95]. CVD has
been used to deposit mat-like Zn-doped In2O3 nanowires (NWs), at substrate temperatures between
400 and 550 ˝C, with the deposited Zn-In2O3 nanowires being 10–30 µm long with diameters between
50 and 300 nm (Figure 9). ZnO and In2O3 with graphite powder were used as sources.

Figure 9. SEM images of Zn-In2O3 NWs at (a) low and (b) high magnification. Reprinted from [94]
with permission from Elsevier.
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Gas response to CO was enhanced by addition of zinc as a dopant, with Ra/Rg increasing from
1.2 to 2.5 (Table 4). The response and recovery times were also dramatically improved (to 20 and
10 seconds respectively) with sensors based on undoped In2O3 not saturating within the period of
test (500 seconds). Zinc-doped indium oxide proved to be selective against CO, being relatively more
sensitive to CO than to NO2 or NO. In2O3 has also been doped with tantalum or titanium via AACVD
at 450˝C using InMe3 (where Me = methyl) and M(NMe2)n (where M = Ti, n = 4; M = Ta, n = 5) as
precursors [95]. Undoped indium oxide films were comprised of nanoparticles ~ 100 nm in diameter,
with tantalum doping reducing particle size to ~80 nm but titanium doping increasing particle size to
~150 ˘ 10 nm (Figure 10).

Figure 10. SEM images of (a) In2O3 cross section, (b) In2O3, (c) Ti- In2O3 and (d) Ta-In2O3. Reprinted
from [95] with permission from American Chemical Society.

Table 4. Summary of the features and sensing properties reported for chemical vapour deposited
complex metal oxides.

Material Prec. CVD
Method

Tdep
˝C

FT
nm

Top
˝C ppm gas R Ref.

Co3O4:F Co(dpm)2
Co(hfa)2¨ TMEDA PE

200
300
400

200 100 Acetone [90]

Cr2O3:Ti Cr(acac)3
Ti-butoxide AA 550 150-1000 [82]

Cr2O3:Ti CrO2Cl2
TiCl4

AP
400
475
550

500
1000
1500

400 80 CH3CH2OH 3.1
1.7
1.1

[83,84]

Cr2O3:Ti
Chromium

acetate
Ti(acac)2OiPr2

ESAVD 650 200
300400500 500 NH3

1.05
1.18
1.22
1.46

[85,86]

In2O3:Ta InMe3
Ta(NMe2)5

AA 550 650 500 100
0.08

CH3CH2OH
NO2

16.9
3.01 [95]

In2O3:Ti InMe3
Ti(NMe2)4

AA 550 790 500 100
0.08

CH3CH2OH
NO2

2.62
1.80 [95]

In2O3:Zn ZnO
In2O3

CVD 400-550 RT 1-5 CO [94]

SnO2:In SnCl4
InCl3

CVD 400 200 50-250 1000
H2

Methanol
CO

1.14
1.23
1.20

[96,97]

Prec: precursors, Tdep: temperature of deposition, Top: operating temperature, ppm: parts per millon,
R=Ra/Rg (oxidative gas), R=Rg/Ra (reductive gas), FT: film thickness, ES: Electrostatic spray assisted
vapour deposition, PE: plasma enhanced, TMA: Trimethylamine, acac: cetylacetone, Me: methyl,
TMEDA: tetramethylethylenediamine.
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Figure 11. Maximum gas response of doped and undoped In2O3 against different gases at optimum
operating temperature. Reprinted from [95] with permission from American Chemical Society.

Ta-In2O3 showed a much higher response to ethanol than either Ti-doped (~six times greater)
or undoped (~sixteen times greater) In2O3 (Table 4), with the enhanced sensitivity ascribed to the
decreased grain size and hence increased surface area. The response of Ta-In2O3 towards ethanol was
particularly enhanced relative to the increase in sensitivity towards NO2, NH3, CO or butane where
the greatest enhancement compared to an undoped sensor was double (Figure 11), suggesting there
is also a chemical enhancement for ethanol sensing over and above the increase due to surface area.
These results are in contrast to those obtained using Zn as the dopant which displayed particular
enhancement towards CO (over NO2) [94], indicating the potential to provide selectivity in In2O3 via
use of different of dopant atoms.

3. Conclusions

Chemical vapour deposition has been used for synthesis of a wide variety of gas sensitive metal
oxides. Planar thin films typically have poorer gas sensing performance compared to traditional screen
printed equivalent, attributed to reduced porosity, but the ability to manipulate deposition conditions
to alter microstructure, and/or promote formation of nanostructured materials, can mitigate reduced
sensitivity. CVD is a highly promising technique for new materials synthesis due to its ability to
homogenously form the complex doped and ternary/quaternary compositions which are likely to
be at the heart of future advances in the field. However the real benefit of CVD is realised when
considering lower power microsensor platforms, either alumina, silicon or polymer, where the ability
to reproducibly integrate materials directly with the sensor platform provides an important process
benefit compared to competing synthetic techniques. This advantage is likely to drive increased interest
in the use of CVD for gas sensor materials over the next decade, and hence the current prospects for
use of CVD in this field look excellent.
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