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Abstract: The various forms of carbon nanostructures are providing extraordinary new opportunities
that can revolutionize the way gas sensors, electrochemical sensors and biosensors are engineered.
The great potential of carbon nanostructures as a sensing platform is exciting due to their unique
electrical and chemical properties, highly scalable, biocompatible and particularly interesting due to
the almost infinite possibility of functionalization with a wide variety of inorganic nanostructured
materials and biomolecules. This opens a whole new pallet of specificity into sensors that can
be extremely sensitive, durable and that can be incorporated into the ongoing new generation
of wearable technology. Within this context, carbon-based nanostructures are amongst the most
promising structures to be incorporated in a multi-functional platform for sensing. The present
review discusses the various 1D, 2D and 3D carbon nanostructure forms incorporated into different
sensor types as well as the novel functionalization approaches that allow such multi-functionality.

Keywords: carbon nanostructures; graphene; carbon nanotubes; graphene foam; sensors

1. Introduction

Carbon can present itself in many different natural and artificial allotropes [1–4]. These structures
pursue unique electronic, mechanical, physical and chemical properties [5–7], which allow applications
in a number of fields, especially in materials science and molecular electronics [8]. A few years ago we
reviewed these nanostructures and their potential use as a drug delivery and diagnostics platform [4].
Currently we explore these versatile structures as multi-functional platforms for sensing. To this
end, we explore the one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) carbon
nanostructures, represented by carbon nanotubes (CNTs), graphene and graphene foam, respectively
illustrated in Figure 1.

Sensing is an important area in modern society, because the use of sensors is a widespread
reality, for example in the gas emission control industry, household security, automotive emission
control, environmental monitoring and health care diagnosis. Most investigations have focused on
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detecting oxygen (O2) [9,10], ozone (O3) [11], carbon monoxide (CO) [12,13], carbon dioxide (CO2) [14],
ammonia (N3) [15], sulfur dioxide (SO2) [15] and hydrogen (H2) [16,17]. Other organic gases such as
ethanol [18], benzene [19], isopropanol [20], acetone [21,22] and methanol [23] have also called attention
to be detected. Different biological electroactive species and other biomolecules as glucose [24,25],
neurotransmitters [26], ascorbic acid [27,28], uric acid [29], hydrogen peroxide (H2O2) [30] among
others are also of great interest to be monitored due to the need of diagnosis of diseases [31]. There is
a high demand for sensors that have a high selectivity, sensitivity and reversibility as well as high
scalability, low costs and compact sizes to be incorporated in wearable devices.

To achieve these properties, the active sensing spot must ideally pursue a high surface
area/volume ratio to increases the probability of adsorption of molecules and increase the sensitivity.
The selectivity of the sensor is mostly achieved by functionalization with specific molecules that
have a high affinity to the analytes of interest. Carbon nanostructures pursue all the ideal properties
such as high surface area and can be easily functionalized. Currently, their relative cheap and simple
production steps as well as advanced manipulation methods of a wide variety of carbon nanostructures
makes them perfect candidates to be used in different types of sensors.

A key attention to the realization of sensors in general is directed to the integration of the
recognition elements with the electronic elements, which can be classified into many different
types, such as amperometric sensors, electrochemical impedance sensors, luminescence sensors and
photoelectrochemical sensors [32]. In this way, the detection of chemical and biological targets is
done by measuring electrochemical changes of the electrode that interacts with the analyte [33].
This highlights that the construction of high performance sensor platforms must not only consider the
material used in the sensing area, but also the electrode materials, which will determine how well the
signal can be transduced, transmitted and amplified.
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Figure 1. Illustration of the main carbon nanostructures described in this review. (A) 1D carbon
nanostructures represented by carbon nanotubes. (B) 2D carbon nanostructures represented by graphene.
(C) 3D carbon nanostructure represented by graphene foam, which is an intricate three-dimensional
network of graphene.

The field of sensing using carbon nanostructures is very broad and diverse due to the variety of
nanostructures and type of functionalization available. Therefore, most of the reviews in the field focus
on a specific nanostructure with special attention to carbon nanotubes and graphene [34–37] or type of
application [38]. More recently, research on 3D carbon nanostructures for a wide variety of applications
has been rising and is mostly focused on synthesis approaches and battery applications [39–42] but to
our knowledge this class of carbon nanostructures as sensors has not been covered in reviews. In this
work we focus primarily on novel approaches used to build and functionalize carbon nanostructures
as a multi-functional platform for sensing. Mostly of the presented strategies are applicable to a
variety of gas, electrochemical and biosensors. This review is divided into 1D, 2D and 3D carbon
nanostructures and subdivided into the various types of sensors where these nanostructures are
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applied. The specific functionalization of each nanostructures and their state-of-the-art application is
addressed. Finally, their future applications perspectives are briefly discussed.

2. 1D Carbon Nanostructures

It is almost twenty years since the discovery of CNTs by S. Iijima [43]. During these twenty years
many papers related with CNTs unique properties [44] and applications were published. Nowadays
CNTs even find their place in commercial applications, which is mostly in composite technology [45].
However, in the field of sensing devices, CNTs still have a wide field to be explored. Due to their very
good electrical properties, possibility to functionalize their sp2 backbone and large surface area (higher
than graphite) [46,47], making them an interesting active material in sensing devices.

2.1. Carbon Nanotubes as Chemiresistors and Chemical Field-Effect Transistor

As mentioned previously, due to the good electrical properties of CNTs, they are a promising
material to be used as a sensing layer in chemoresisting sensing devices. Chemoresistors are based
on changing the electrical current flow through the material, which in the presence of a substance
impacts the electron state of the active material. The first work related with CNT as a gas sensor is
dated at the beginning of twenty first century. P. G. Collins et al. [48] researched the sensing ability of
single-walled CNTs in the presence of oxygen. The experiment was carried out using a four-probe
contact configuration at two temperatures 17 ◦C and 117 ◦C by flooding the device in cycles by air and
evacuating it by vacuum pump. They also carried out alternative experiments by flooding the chamber
with N2 to confirm the sensor response to the oxygen molecules. Their research showed a rapid
change in conductivity of the CNT-based active material. Moreover, CNT-based sensors were much
faster than current ones based on metallic semiconducting devices, which work at high temperatures.
The advantage of the device proposed by P. G. Collins et al. lies in the fact that it works at room
temperature, which is also a milestone ahead in comparison to commercial ones using semiconducting
active materials. Y. Wang et al. [49] presented chemiresistors based on single-walled CNTs to detect
dimethyl methylphosphonate (DMMP) which is a flame retardant additive to polymer composites.
The experiment was carried in a homemade chamber with N2 as a carrier gas passing through a
bubbler. The DMMP was evacuated after every test cycle. Their sensors were able to detect 5 ppm of
DMMP in an experimental atmosphere.

L. Valentini et al. [50] researched the temperature influence on CNT-based chemiresistors in terms
of changes in their resistivity. They concluded that the CNT structure is stable and able to go back to
the starting state in the range between 25 and 250 ◦C. The resistivity of the CNT remains stable at 25 ◦C
before heating. Above 250 ◦C structural changes can impact the material resistivity. They investigated
their CNT-based chemiresistors affinity to NO2 gas and they were able to detect the gas concentrations
from 10 ppb and increased it stepwise to 100 ppb in temperature range from 25–250 ◦C. For the
measurement carried out at 165 ◦C, a second thermal treatment increased the sensitivity of the sensor
to NO2 gas by almost 20 times, from approximately 3% to 56% after a second thermal treatment.

T. Ueda et al. [51] grew CNTs on a SiC surface and used them to prepare NO2 and NO gas sensing
devices. The detection level of CNT-based chemiresistors was 2 ppm. In this case they purified their
device before the experiment by heating it to 80 ◦C in H2O2 in a heating bath to remove impurities and
amorphous carbon. The experiment was carried out at room temperature for NO and at 100, 150 and
200 ◦C for NO2. They reported sensitivity of 2% for NO at room temperature and from 0.3% to 2.2%
for NO2 depending on the operating temperature. However, at temperatures lower than 200 ◦C the
sensor was not able to return to the ground state. This is one of the reasons why different research
groups use UV irradiation to promote a faster desorption of NO2 gas molecules adsorbed at device
surface (sensor recovery).

Nowadays there is a possibility to change the gas affinity to the active material in the sensor
or its properties by functionalization, which tailors and improves the basic device properties like
selectivity or detection range. CNTs are composed by sp2 C=C bonds which take part in many
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chemical reactions, especially in organic chemistry. Therefore, their chemical structure opens the
possibility of functionalization. There are numerous papers reporting the functionalization of CNTs for
instance by oxidation [52–54], thiolination [55–57] and bromination [58]. I. Sayago et al. [59] prepared
chemiresistors from carboxylated CNTs and tested their sensing ability to NO2. Their chemiresistors
showed high selectivity to NO2 even when flushing it mixed with NH3. The sensor was still selectively
active promoting the detection of NO2. Their work also highlighted the sensor performance when
working in temperature higher than room temperature. At temperatures higher than 200 ◦C the
sensitivity achieved for 0.7 ppm of NO2 was almost 3% higher in comparison to the sensor measured
at 25 ◦C. M. Guo et al. [60] prepared thiolinated CNTs by a number of chemical reactions from
carboxylation to final thiolinated CNTs. Their sensors have the ability to detect trace concentration of
formaldehyde. H. Xie et al. [61] propose an amino-functionalized CNT system to detect formaldehyde
gas. In their work they discuss the impact in resistivity due to changes of the sensor active material
chemical structure. Their study shows clearly that the amino functionalization can improve the
sensitivity to the analyte. In other words, unfunctionalized CNTs had marginal change in resistivity
during exposure to formaldehyde, but after adding 5% of amino groups to the CNTs there was a
clear change in resistivity of the active material when the gas sensor was exposed to formaldehyde
concentrations of 20 and 200 ppb. D. Hines et al. [58] presented the response of brominated CNTs
to eight different gaseous media. Chemiresistors based on brominated CNTs were reproducible and
showed clear and noticeable response for concentrations under 1 ppm.

Another approach to sensing device production is using field effect transistors (FET). The working
principle of these sensors is slightly different than in chemiresistors. FET devices consist of two
electrodes: source and drain connected by a conducting material which is the charge carrier. Along with
the conductive material there is another electrode separated from rest of the setup with a thin dielectric
layer called the gate, to which the external voltage is connected. Gate voltage creates external electric
field which has an impact in the resistivity/conductivity of sensor active material [62]. Figure 2 shows
the schematics of chemiresistors and FET devices.
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Figure 2. (A) Schematic chemiresistors and (B) ChemFET with carbon nanotubes as active material.
Vg is the gate bias potential and Vsd is the source-drain potential.

The first FET device based on single-walled CNTs was presented by J. Kong et al. [63] to detect
NO2 and NH3. Metal oxide-based gas sensors exposed to NH3 gas in concentration from 200 ppm
to 1% usually have response time around 1 min. with relative sensitivity from 0.1 to 100 depending
on the metal oxide used in the gas sensing experiment. The NH3 sensor also showed efficiency at
temperature higher than 350 ◦C. For NO2 metal oxide-based gas sensors they also a have quite fast
response, which is approximately 1 min. In this case the relative selectivity was from 1 to 300 and,
like in NH3 case, they usually operate in temperatures from 250 to 600 ◦C [64]. They also observed
that their device has a rapid change in material conductivity and the response time vary from 0.5 min
to 5 min. for NO2 and 10 min. for NH3. The response time is related with the analyte concentration,
what they clearly observe in NO2 experiment. However, in comparison to the metal oxide devices,
the biggest advantage of the J. Kong et al. sensor is the ability to work and be repeatable at room
temperature. T. Someya et al. [18] prepared devices based on single-walled CNTs and investigated the
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possibility to detect low concentrations of different alcohol vapors. The device was sensitive for a wide
range of alcohol vapors and they highlighted the dependence of the sensor response relative to their
vapors partial pressure value [18]. Figure 3 presents the change in drain current during exposure to
various alcohol vapors.
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Figure 3. Drain current Vsd = −100 mV are shown as a function of time for application of saturated
vapor of various kinds of alcohols: methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tertiary-butanol,
1-pentanol, and 1-octanol. Reproduced with permission from ref. [18].

Another interesting approach to apply CNTs to FET devices is presented by A. Star et al.
methodology [65]. They decorated CNTs with several metals, mostly from D block of the periodic
table, and exposed them to H2, NO2, NH3, H2S and CO. They carried the sensing experiment at room
temperature and in air with constant level of relative humidity. Figure 4 presents the sensor response
for different gases of numerous metals used to decorate the CNT surface. The results were normalized
so that 0.0 (blue color) means no response for the tested media and 1.0 (red color) is highest sensor
response obtained. Their research highlighted the importance of nanomaterial functionalization to
change their properties.
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Figure 4. Correlation coefficients relating the conductance of devices decorated via metal evaporation
with the gas profile of the tested gases, from 0 (no response) to 1 (maximal response). The catalytic
metals were evaporated on carbon nanotube devices and tested for H2, CO, CH4, and H2S gases as
highlighted in the Periodic Table. Reproduced with permission from ref. [65].

J. P. Novak et al. [66], similarly to Y. Wang et al. [49], worked on a device that was able to detect
DMMP, but J. P. Novak et al. used FET setup to detect DMMP by applying a positive gate bias to fully
desorb DMMP from the CNT surface instead of exposing it to UV radiation or heating inside an oven.
Their work also brings a very interesting idea to improve the selectivity between target gas/vapor
and contaminants present in air like fuel vapors or humidity. They used special filters (built from
glass wool and hydrogen-bonding acidic polycarbosilane called HC) to shield the sensor from the
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influence of impurities. The ChemFET device was able to detect DMMP in the ppb range with high
response and gate voltage assisted recovery has promising perspective in future applications [66].
Also, in comparison to Y. Wang group chemiresistor [49], J. P. Novak et al. FET sensor was able to
detect lower concentrations of DMMP.

2.2. Carbon Nanotubes as Biosensors

There is a growing interest in the biochemistry of the human body as well as a growing
need to increase the sensitivity and selectivity of sensor devices used in medicine. In most cases
CNTs biosensors are based on CNT functionalized by covalent or non-covalent bond. The setup
needed for that kind of measurement is slightly different than for the previously mentioned devices.
CNT-based biosensors mostly use electrochemical techniques like amperometry, voltamperometry,
chronoamperometry as a base for their research. Recently there are numerous works related with
biosensing devices, report of multiple systems for detecting glucose, proteins or neurotransmitters like
dopamine or serotonin.

Y. Lin et al. [67] worked on CNT-based glucose biosensors functionalized with GOx (glucose
oxidase) enzyme at the tip of the nanotubes. The sensor was used in amperometric measurement and
tested for the detection ability of glucose with detection limits at level of 0.08 mM and signal to noise
ratio equal 3. Further work by numerous groups related with glucose detection was based on different
CNT functionalization, but most of them had common feature which was partially functionalized
CNT with glucose oxidize enzyme. Another very common way to improve selectivity in CNT-based
sensors is preparing quasi composite of Naftion and CNTs, for instance in the works of X. Liu et al. [68],
Y. L. Yao et al. [69] and K. Zhao et al. [70]. The purpose of Naftion addition is to decrease the negative
impact of ascorbic acid which is one of the products of glucose metabolism in organism or uric acid
which has an increased level and is related with diabetes.

Proteins are biopolymers that present in all organism from viruses to humans. The ability to
detect low concentrations of protein can be helpful to find the cause or even cure for diabetes or HIV.
One of the first work related with insulin sensor device was presented by J. Wang et al. [71] in which
they prepared ruthenium oxide decorated CNTs as a coating to glassy carbon electrode. They achieve
1 nM detection limit. Over a decade later after, E. Martínez-Periñán with his group [72] presented an
insulin sensor based on nickel (II) hydroxide CNT system with detection limits in the range of µM
with confirmed stability (initial loss of the response was 10%) during multiple hours of continuous
work [72].

Dopamine and serotonin are one of the most important neurotransmitters in the human
organism. Their lowered level is related with many diseases, for instance with depression or other
psychological disorders. The ability of detecting these two neurotransmitters at low concentrations is
important from the medical point of view. Neurotransmitter biosensors research lies primordially on
modified CNTs and on amperometric measurements method. B. E. K. Swammy et al. [73] prepared
electrodes coated with oxidized CNTs and Naftion to detect simultaneously serotonin and dopamine.
Their biosensor limit of detection for both neurotransmitters was lower than 300 nM. Y. Sun et al. [74]
prepared multi-walled CNTs ionic liquid composite to realize similar experiment as above described.
They prepared devices with high selectivity, sensitivity for both analytes with limit of detection under
100 nM.

3. 2D Carbon Nanostructures

A. K. Geim and K. S. Novoselov kickstarted the research and development related with 2D carbon
materials by presenting graphene obtained by Scotch-Tape method in 2004 [75]. Briefly, 2D carbon
materials are referred as crystalline structures with a honeycomb lattice and thickness of a single
to few carbon atoms [76]. In the 2D carbon nanomaterials family it is possible to distinguish
single and few layer graphene layers with very good thermal and electrical conductivity, large
surface area (larger than the CNT case) [77]. Another very important member of the 2D carbon
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nanomaterials family is the graphene oxide and its derivatives based on chemical functionalization,
with most prominent representative in the form of reduced graphene oxide. Briefly, the graphene
oxide pursue a quasi-graphene structure consisting mostly of an aromatic sp2 backbone with the
presence of oxygen containing functional groups like carboxyl, carbonyl and hydroxyl groups [78,79].
The presence of functional groups and other defects in the sp2 structure have a direct impact onto
the material properties, which leads to a decrease in conductivity and other properties in comparison
to graphene [80,81]. To improve the electrical properties of GO-based materials it is usually applied
chemical or thermal reduction to the starting material [81]. One of the biggest advantages of using
graphene oxide in sensing applications is increased affinity of graphene oxide-based material to
analyte substances due to the presence of functional groups and much bigger reactivity of the material,
facilitating further functionalization. This can lead to precise tailoring of properties on demand.
Herein, we will briefly refer application of 2D carbon nanomaterials as a sensor device.

3.1. 2D Nanomaterials as Chemiresistors and ChemFET

G. Ko et al. [82] prepared chemiresistors based on multi-layered graphene for NO2 detection
working at room temperature but with UV light-supported recovery of the sensor. Their sensor
presented fast response and selectivity between NO2 and air. They obtained almost 10% of sensitivity
for 100 ppm of NO2. R. Pearce et al. [83] reported the shielding mechanism of multiple layers of
graphene in the case of their chemi-resistive response, because single layer graphene has over 55,000
higher response to gas concentration in comparison its multilayer counterpart at 25 ◦C for one hour
exposure to 2.5 ppm of NO2. Figure 5 presents the responses of single (left) and multilayer graphene
(right) to different concentrations of NO2.Chemosensors 2018, 6, x FOR PEER REVIEW  8 of 28 

 

 

Figure 5. Left panel present response of single layer graphene exposed different concentrations of 

NO2. Right panel present response of multilayer graphene exposed to different concentrations of NO2 

tested in different temperature. Reproduced with permission from ref. [83]. 

F. Yavari et al. [84] also presented a graphene-based gas sensor for NO2 and NH3 detection. Their 

device operated at room temperature and atmospheric pressure. The sensor was exposed to 

concentrations from 0.1 to 200 ppm in the case of NO2 and from 0.5 to 1000 ppm in the case of NH3. 

They also stated that in comparison to other types of materials like conductive polymers [85] or metal 

oxide [64] their device performance is impressive. They achieved around 19% higher sensor response 

for 200 ppm exposure to NO2 than for polypyrrole sensor exposed to 1000 ppm. 

Another interesting approach to graphene-based NO2 gas sensor was proposed by H. Choi et al. 

[86]. Their sensor is based on a multilayer graphene grown using CVD and transferred to flexible 

polyimide surface with Au interdigitated electrodes. They investigated the sensor response in “flat” 

state for NO2 diluted in N2. The gas mixture concentration was from 0.2 ppm to 5 ppm. They also 

researched the influence of device bending to sensor response. The gas sensor was exposed to 1 ppm 

NO2 for 3 min. There was no decrease in signal when compared between flat and bend state. All 

measurements were carried out at room temperature. However, similar to the previously mentioned 

CNTs- and graphene-based devices, the desorption of gas molecules was very slow and the sensor 

did not come back to ground state spontaneously. Therefore, they used external heating as a sensor 

recovery method. 

H. J. Yoon et al. [87] proposed a device based on a few layer (~4 layers) graphene obtained by 

mechanical cleavage, which was firstly exposed to CO2. They obtained promising results with quite 

fast responses and recovery time under 10 s. Their device was tested in tree temperature values: 22, 

40 and 60 °C. In all three cases they obtained a large increase in relative conductance over 20%. The 

results suggest that this sensor architecture has a great application potential in environmental 

monitoring systems. 

K. R. Nemade et al. [88] proposed a device based on few-layer graphene (~6 layers) obtained by 

electrochemical exfoliation. Their chemiresistor sensor was exposed to CO2 and the commercial 

mixture of propane and butane (LPG). They also assess the influence of temperature on the 

performance of the gas sensor for all the tested substances. They carried out the experiment at CO2 

concentrations from 30 to 50 ppm in a temperature range from 46 to 206 °C. For all chosen 

concentrations they estimated that the optimal temperature of operation for CO2 gas sensor was 150 °C. 

They used the same protocol in the case of LPG and got the highest sensor response at 125 °C. The 

device showed almost perfect stability for constant exposure to 100 ppm solutions of both analytes 

for 30 days exposure. Their few-layer graphene-based sensor was also able to operate at room 

temperature condition, but the sensor response was quite low (under 1%) in both cases. 

The first graphene-based FET gas sensor was proposed by F. Schedin et al. [89]. They prepared 

a FET sensor based on a single layer graphene obtained by micromechanical cleavage of graphite. 

The experiment was carried out in an evacuated glass container and filled in with analyte (NO2 or 

NH3 or CO or H2O) diluted to 1 ppm concentration with inert gas (either nitrogen or helium). The 

Commented [MRG2]: Number and unit should be in the 

same line 

Figure 5. Left panel present response of single layer graphene exposed different concentrations of NO2.
Right panel present response of multilayer graphene exposed to different concentrations of NO2 tested
in different temperature. Reproduced with permission from ref. [83].

F. Yavari et al. [84] also presented a graphene-based gas sensor for NO2 and NH3 detection.
Their device operated at room temperature and atmospheric pressure. The sensor was exposed to
concentrations from 0.1 to 200 ppm in the case of NO2 and from 0.5 to 1000 ppm in the case of NH3.
They also stated that in comparison to other types of materials like conductive polymers [85] or metal
oxide [64] their device performance is impressive. They achieved around 19% higher sensor response
for 200 ppm exposure to NO2 than for polypyrrole sensor exposed to 1000 ppm.

Another interesting approach to graphene-based NO2 gas sensor was proposed by
H. Choi et al. [86]. Their sensor is based on a multilayer graphene grown using CVD and transferred
to flexible polyimide surface with Au interdigitated electrodes. They investigated the sensor response
in “flat” state for NO2 diluted in N2. The gas mixture concentration was from 0.2 ppm to 5 ppm.
They also researched the influence of device bending to sensor response. The gas sensor was exposed
to 1 ppm NO2 for 3 min. There was no decrease in signal when compared between flat and bend
state. All measurements were carried out at room temperature. However, similar to the previously
mentioned CNTs- and graphene-based devices, the desorption of gas molecules was very slow and the
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sensor did not come back to ground state spontaneously. Therefore, they used external heating as a
sensor recovery method.

H. J. Yoon et al. [87] proposed a device based on a few layer (~4 layers) graphene obtained by
mechanical cleavage, which was firstly exposed to CO2. They obtained promising results with quite
fast responses and recovery time under 10 s. Their device was tested in tree temperature values:
22, 40 and 60 ◦C. In all three cases they obtained a large increase in relative conductance over 20%.
The results suggest that this sensor architecture has a great application potential in environmental
monitoring systems.

K. R. Nemade et al. [88] proposed a device based on few-layer graphene (~6 layers) obtained
by electrochemical exfoliation. Their chemiresistor sensor was exposed to CO2 and the commercial
mixture of propane and butane (LPG). They also assess the influence of temperature on the performance
of the gas sensor for all the tested substances. They carried out the experiment at CO2 concentrations
from 30 to 50 ppm in a temperature range from 46 to 206 ◦C. For all chosen concentrations they
estimated that the optimal temperature of operation for CO2 gas sensor was 150 ◦C. They used the
same protocol in the case of LPG and got the highest sensor response at 125 ◦C. The device showed
almost perfect stability for constant exposure to 100 ppm solutions of both analytes for 30 days
exposure. Their few-layer graphene-based sensor was also able to operate at room temperature
condition, but the sensor response was quite low (under 1%) in both cases.

The first graphene-based FET gas sensor was proposed by F. Schedin et al. [89]. They prepared
a FET sensor based on a single layer graphene obtained by micromechanical cleavage of graphite.
The experiment was carried out in an evacuated glass container and filled in with analyte (NO2 or NH3

or CO or H2O) diluted to 1 ppm concentration with inert gas (either nitrogen or helium). The device
presented rapid response for NO2, NH3, CO and H2O with limits of detection in the order of 1 ppb.
However, after removing the detected gas from the chamber, the sensor still presented stable signal of
response. They concluded that the adsorption of gas molecules at room temperature on the graphene
surface is stable. The F. Schedin team used annealing at 150 ◦C under vacuum to fully recover the
sensing ability of the device.

M. Guatam et al. [90] prepared a graphene-based FET sensor for detecting NH3. They carried
out an experiment in range of temperatures from 27 to 100 ◦C in dry air and continued vacuum.
They observed that with the temperature increase, the sensing response of devices grow linearly.
They also reported general problems with the sensor recovery only for the dry air flow experiment.
Therefore, they proposed other ways in which the air flow is combined with infra-red irradiation or
dry air flow combined with vacuum annealing.

As mentioned earlier, one of the biggest advantages of functionalized graphene-based materials
(graphene oxide, reduced graphene oxide, functionalized graphene oxide) in comparison to pristine
graphene is the increased affinity to detect molecules due to the presence of sp2 structural defects
(e.g., presence of functional groups). That is why these types of 2D materials are more promising in
gas sensing applications.

In the case of graphene oxide (GO) there is a small amount of reports on chemiresistors and
FET devices due to its more insulating than conductive properties [81]. That fact was noticed and
highlighted by S. Prezioso et al. [91]. They prepared a device by drop casting GO material onto
platinum interdigitated structure, and carried humidity sensing experiment for GO and annealed
GO at 200◦C in ultra-high vacuum. The goal of that research was to study the effect of the chemical
composition of the material during experiment in higher experimental temperature. They chose
two ranges: from 25 to 150 ◦C and from 25 to 200 ◦C. The experiments were performed in a dry air
atmosphere. They concluded that the chemical composition of the material has a clear impact onto the
baseline conductivity and desorption time, which was faster for the annealed GO. They also tested
the GO-based sensor for detecting low concentrations of NO2. Their device was able to detect NO2 at
concentrations on the ppb level at 150 ◦C.
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A. P. Taylor et al. [92] proposed an electro-sprayed GO chemiresistive detector with a four point
electrodes connection and compared its performance with commercial humidity detectors (Honeywell
HIH-4000). They carried out two types of experiments. The first part was based on quick change of
relative humidity value to check if the GO-based sensor was able to detect dynamic relative humidity
changes. It turns out that the GO-based sensor was able to surpass the response of the commercial
one. This suggests that GO-based humidity sensors are able to track changes in relative humidity
continuously. The second part of experiments demonstrated that the conductivity change of the
material is in linear relation with the percentage value of relative humidity.

Our group [93] works on the impact of functionalization to investigate the detecting ability of GO
in comparison to reduced and functionalized GO with thiol groups. Our goal was to prepare a gas
sensing device operating fully at room conditions (e.g., room temperature and atmospheric pressure)
without any external recovery promotion mechanism like the ones mentioned before such as heating
or UV irradiation. It was also our aim to highlight the impact of the chemical composition of the
active material in relationship to the device behavior exposed to chosen analytes, namely NO2 and
ethanol. The experiments were carried out by flushing the sensor in 5-minutes-cycles of exposure to
NO2 or ethanol diluted in nitrogen to concentrations from 100 to 300 ppm. Prior to the measurement
the chamber was flushed for 15 min with inert gas, in this case nitrogen. We observed different
behaviors of the device exposed to analytes in the case of GO sensors, reduced GO and partially
reduced thiolinated GO. Every sensor type had different responses, recovery time and relative sensor
response in comparison to each other. We also studied the reproducibility and stability of the sensor.
This was performed by measuring at least four cycles for a certain concentration and repeated the
measurement conditions a few days later. The sensors prepared from GO and GO-based materials
have stable and reproducible response with marginal changes in the signal shape, response time,
recovery time, and amplitude.

There are many more reported works related with reduced GO as a gas sensor. J. D. Fowler et al. [94]
proposed chemiresistors based on hydrazine reduced GO for the detection of NO2, NH3,
and 2,4-dinitrotoluene (DNT). They carried out experiments at room temperature with 10 min sensor
exposure to analyte followed by 10 min. purging in dry nitrogen. They observed a clear change in sensor
resistivity for all three analytes: 13% for NO2, 2.5% for NH3 and 0.03% for DNT, with limit of detection
in case of DNT equals to 28 ppb. Their result for NO2 and NH3 was similar to the one proposed by
F. Schedin et al. [89] done with micromechanical cleavage graphene. They also carried out detection of
5 ppm NO2 on micro hotplate and concluded that, as in the previous cases, the analyte desorption from
sensor surface is promoted by heating (sensor recovery is faster) but at the expense of loss in sensitivity.
G. Lu et al. [95] prepared thermal reduced GO for NO2 detection. In their case, the GO was prepared by
Hummers method and was thermally reduced by annealing in argon atmosphere for 1 h. They conducted
the experiments in various concentrations and reported a linear dependence between concentration and
relative response percentages. They obtained similar results in the case of sensor response percentages in
comparison to F. Schedin et al. [89] graphene device and J. D. Fowler et al. [94] hydrazine reduced GO.

G. Lu et al. [96] prepared back-gated FET sensor for detecting NO2 and NH3 based on GO reduced
by hydrazine. Their device showed a superior performance of the FET device when compared to
the chemiresistors reported previously in reference [95]. The switching of sensor architecture from
chemiresistors to FET device improved sensor response from ~2.5% for the chemiresistors to almost
10% for the FET device, which is 4 times better than the chemiresistor device. In the case of NH3

they also noticed an improvement of performance. A chemiresistor reported by G. Lu et al. [97]
had 0.4 lower response in resistivity during exposure to 1% solution of NH3 in relation to reduced
GO-based FET device reported in reference [96].

V. Dua et al. [98] incorporated in their research two novel approaches in reduced GO-based gas
sensors. In the first, they used ascorbic acid (Vitamin C) for an environmentally friendly reduction
of GO for gas sensing applications. The authors reported that their Vitamin C reduced GO layer
have a similar conductivity to previously reported hydrazine reduced GO. Due to the toxic and



Chemosensors 2018, 6, 60 10 of 28

explosive nature of hydrazine, applying a new environmentally friendly reducing agent in gas sensing
applications is definitely an advantage. Another unique approach was presented by preparing a
flexible device by printing the active material layer onto a polymer surface. Such flexible sensors
showed response to NO2, NH3, Cl2, methanol, ethanol, toluene and dichloromethane. Figure 6 presents
example response plots and the sensor selectivity diagram. The sensors operated in a special chamber
in which they were exposed to an analyte. The recovery process was quite slow (approximately 2 h)
under vacuum. External UV irradiation was used to promote desorption and the time needed for the
sensor to get back to the ground state was under 5 min.

Chemosensors 2018, 6, x FOR PEER REVIEW    10 of 28 

 

There are many more reported works related with reduced GO as a gas sensor. J. D. Fowler et 

al. [94] proposed chemiresistors based on hydrazine reduced GO for the detection of NO2, NH3, and 

2,4‐dinitrotoluene  (DNT). They carried out experiments at  room  temperature with 10 min sensor 

exposure to analyte followed by 10 min. purging in dry nitrogen. They observed a clear change in 

sensor resistivity for all three analytes: 13% for NO2, 2.5% for NH3 and 0.03% for DNT, with limit of 

detection  in case of DNT equals  to 28 ppb. Their  result  for NO2 and NH3 was similar  to  the one 

proposed by F. Schedin et al. [89] done with micromechanical cleavage graphene. They also carried 

out detection of 5 ppm NO2 on micro hotplate and concluded that, as in the previous cases, the analyte 

desorption from sensor surface is promoted by heating (sensor recovery is faster) but at the expense 

of loss in sensitivity. G. Lu et al. [95] prepared thermal reduced GO for NO2 detection. In their case, 

the GO was  prepared  by Hummers method  and was  thermally  reduced  by  annealing  in  argon 

atmosphere for 1 h. They conducted the experiments in various concentrations and reported a linear 

dependence between concentration and relative response percentages. They obtained similar results 

in the case of sensor response percentages in comparison to F. Schedin et al. [89] graphene device and 

J. D. Fowler et al. [94] hydrazine reduced GO.   

G. Lu  et  al.  [96] prepared back‐gated FET  sensor  for detecting NO2  and NH3  based  on GO 

reduced  by  hydrazine.  Their  device  showed  a  superior  performance  of  the  FET  device  when 

compared  to  the  chemiresistors  reported  previously  in  reference  [95].  The  switching  of  sensor 

architecture  from  chemiresistors  to  FET  device  improved  sensor  response  from  ~2.5%  for  the 

chemiresistors to almost 10% for the FET device, which is 4 times better than the chemiresistor device. 

In the case of NH3 they also noticed an improvement of performance. A chemiresistor reported by G. 

Lu et al. [97] had 0.4 lower response in resistivity during exposure to 1% solution of NH3 in relation 

to reduced GO‐based FET device reported in reference [96]. 

V. Dua et al. [98] incorporated in their research two novel approaches in reduced GO‐based gas 

sensors. In the first, they used ascorbic acid (Vitamin C) for an environmentally friendly reduction of 

GO for gas sensing applications. The authors reported that their Vitamin C reduced GO layer have a 

similar conductivity to previously reported hydrazine reduced GO. Due to the toxic and explosive 

nature  of  hydrazine,  applying  a  new  environmentally  friendly  reducing  agent  in  gas  sensing 

applications  is definitely  an advantage. Another unique  approach was presented by preparing  a 

flexible device by printing  the active material  layer onto a polymer surface. Such  flexible sensors 

showed  response  to NO2, NH3,  Cl2, methanol,  ethanol,  toluene  and  dichloromethane.  Figure  6 

presents example response plots and the sensor selectivity diagram. The sensors operated in a special 

chamber  in  which  they  were  exposed  to  an  analyte.  The  recovery  process  was  quite  slow 

(approximately 2 h) under vacuum. External UV irradiation was used to promote desorption and the 

time needed for the sensor to get back to the ground state was under 5 min. 

 

Figure  6.  Example  vapors  sensing  characterization  of  RGO/Inject‐Printed  chemiresistors.  (A) 

Response vs time plot of sensor response exposed to NO2. (B) Response vs time plot of sensor response 

exposed  to Cl2.  (C) Summary of  sensor  response  for different measured media. Reproduced with 

permission from ref. [98]. 

One of the newest approaches to flexible gas sensors was proposed by H. J. Park et al. [99] They 

prepared electrospun fabric from nylon‐6, coated it with GO and reduced it with a solution of iodine 

Figure 6. Example vapors sensing characterization of RGO/Inject-Printed chemiresistors. (A) Response
vs time plot of sensor response exposed to NO2. (B) Response vs time plot of sensor response exposed
to Cl2. (C) Summary of sensor response for different measured media. Reproduced with permission
from ref. [98].

One of the newest approaches to flexible gas sensors was proposed by H. J. Park et al. [99].
They prepared electrospun fabric from nylon-6, coated it with GO and reduced it with a solution of
iodine acid and acetic acid. Their device showed slightly better (approximately 0.5 higher) sensor
relative response for 1 ppm of NO2 than in the work presented by V. Dua et al. [98]. They also showed
the ability of detecting low concentrations of NO2 (1 ppm) in the bent state. However, the device
response in the bent state was 2 times lower than in the flat state.

A. Lipatov et al. [100] also studied the ability of thermally reduced GO to detect different alcohol
vapors. They tested the response for methanol, ethanol, isopropanol and water vapor. For all
analytes they obtained a clear stable response of the device with small differences in response behavior
depending on the analyte type. This opens up new possibilities for further research on improving
the selectivity of these analytes. Their sensor device did not use external heating or UV irradiation to
promote desorption of analyte molecules from the sensor surface.

W. Yuan et al. [101] and A. Zöpfl et al. [102] pushed the research forward regarding the impact
of functionalization onto GO- and reduced GO-based devices and their selectivity. W. Yuan team
used hydrazine as a reducing agent, ethylene diamine (EDA) as both a partial reducing and chemical
composition modification agent. Aryl diazonium salt was used to introduce sulfur to the chemical
composition of GO. After these 3 types of functionalization, they compared the impact of the
introduced functional groups onto the sensing ability of device exposed to various concentrations of
NO2. They compared the response signal obtained for reduced, sulfonated and EDA-functionalized
graphene-based materials in presence of 50 ppm of NO2. Sulfonated and EDA-functionalized materials
exhibited respectively 16- and 4-times higher responses than reduced GO.

A. Zöpfl team compared reduced GO, octadecylamine (ODA)-functionalized and reduced
GO-based nanocomposites decorated with metal oxides (TiO2, MnO2) and metal nanoparticles
(platinum and palladium). They tested the behavior of chemiresistors for exposures to different
concentrations of NO2, H2, CH4 and compared the results between the chosen functionalization
materials (for instance, Pd functionalization increased the relative response of gas sensor for hydrogen
from 0.1 to 0.6 in comparison to other devices). Their results confirm that functionalized GO is a
promising material to tailor the selectivity of the gas sensor.
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3.2. 2D Carbon Nanomaterials as Biosensors

One of the first reports on graphene-based glucose sensor was done by C. Shan et al. [103]. The core
architecture of their device was based on a nanocomposite electrode consisting of graphene and
polyethyleneamine-functionalized ionic liquid. They conducted cyclic voltamperometry measurement
with different scan rates. They obtained electrodes with good linear responses for 2 to 14 mM of glucose
concentration. The prepared electrode was stable with minimal changes in response and the current did
not go over the 5% error barrier over 1 week from the initial measurement. H. Wu et al. [104] reported
bionanocomposite films consisting of glucose oxidase, platinum, chitosan and thermally expanded GO
to partially reduced GO. Their composite had good sensitivity for glucose with theoretical detection
limit of 0.6 µM. They attributed the results of their cyclic voltamperometry detection experiment to the
large surface area of graphene and good electron transfer between partially reduced GO and platinum.

D. H. Shin et al. [105] decorated graphene grown in CVD with electrodeposited palladium in
the presence of different sulfuric acid concentration in the electrolyte, which led to the formation of
particles with different morphologies as shown in Figure 7. They used these structures to prepare a
FET glucose sensor.Chemosensors 2018, 6, x FOR PEER REVIEW    12 of 28 
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They obtained a device with good response and detection limit of 1 nM glucose, which was lower
than in, for instance, CNT-based devices reported by L. Meng et al. [106]. However, the FET sensor
based only on Pd/Graphene structure was not selective in the presence of uric acid and ascorbic
acid. For this reason, the Shinc group prepared a device with glucose oxide and a Naftion coating.
After these modifications the FET sensor was selective for glucose in presence of uric and ascorbic acid.

S. Lin et al. [107] prepared a flexible electrochemical glucose detector with active material
consisting of laser-scribed graphene (LSG-laser reduced GO), chemically reduced GO and laser-scribed
graphene coated with copper nanoparticles. The LSG/Cu electrochemical flexible electrode
performance dropped only by 10% when stored in ambient conditions for 30 days. The sensor
limit of detection was 0.35 µM which was almost two times smaller than, for instance, the work
presented by H. Wu et al. [104]. Their sensor was also selective to glucose in the presence of ascorbic
and uric acid without the need of a Naftion coating.

X. Xuan et al. [108] proposed a wearable flexible glucose detector based on reduced GO decorated
with platinum and gold nanoparticles in the form of a wristband. Apart from the standard glucose
measurement reported earlier, Xuan’s sensor exhibited good analytic activity with response time of
12 s. They also investigated the ability of glucose detection in sweat. The collected human sweat from
healthy and diabetic patients. They also prepared glucose solutions in human sweat. The sensor was
able to detect 0.1 mM of glucose in sweat, which is a huge success towards the application of that type
of device in current and future health care programs.

G. Xu et al. [109] prepared a laser-scribed graphene-based electrochemical dopamine sensor
coated with poly(3,4-ethylenedioxythiophene) (PEDOT) layer. They used cyclic voltammetry and
differential pulse voltammetry with nitrogen purging to remove oxygen from the measurement setup.
They carried out measurements in phosphate-buffered saline (PBS) electrolyte solution at two pH
values, namely 7.0 and 7.4 in the presence of uric and ascorbic acid. They also tested the influence of



Chemosensors 2018, 6, 60 12 of 28

a PEDOT layer on dopamine detection. It came out that pure graphene electrodes have low affinity
and selectivity towards dopamine in presence of ascorbic and uric acid. However, the PEDOT layer
drastically increased the current flow in the presence of dopamine. They achieved simultaneous
detection of dopamine in the presence of ascorbic and uric acid with high selectivity, sensitivity of
0.22 ± 0.01 µA/µM and a low detection limit of 0.33 µM.

In the case of other biomolecules there were reports on graphene-based sensors detecting E. coli
bacteria. A. Pandey et al. [110] prepared a capacity/impedance sensor based on graphene nanoplates
and monolayer graphene with a gold electrode interdigitated array. The graphene surface was
activated by a PASE linker for further E. coli antibody functionalization. Both devices showed reaction
in the presence of E. coli O156L:H7 bacteria. The sensitivity of the developed sensor was 4 pF for
graphene nanoplates sensor and 1 pF for monolayer defect-free graphene per unit change in analyte
concentrations of 10-100 CFU/mL. However, the monolayer graphene-based device had 10 times better
sensitivity in comparison to nanoplates-based device, which contained 100 CFU/mL. Both devices are
promising setups for application in the detection of pathogenic E. coli bacteria.

B. Thakur et al. [111] proposed reduced GO-based FET device covered with gold nanoparticles
to anchor E. coli antibodies. The FET device demonstrated rapid response with limits of detection
at concentration of 103 CFU/mL. The authors reported that this limit of detection is lower than in
cases of some commercial E. coli detectors. The FET device gave a stable and reproducible signal for
3 measurements. They also reported that there is a possibility of recovery of this type of device by
using suitable regeneration buffers. R. Singh et al. [112] recently showed that reduced GO has been
integrated in a microfluidic chip to create a reduced GO-based electrochemical immunosensor for the
label-free detection of the H1N1 influenza virus. This was done by covalently bonding the NH2 end of
monoclonal antibodies specific to virus with carboxyl end reduced GO. The sensor showed a linear
detection behavior in the range of 1 to 104 PFU/mL.

4. 3D Carbon Nanostructures

The appearance and rise of two-dimensional carbon nanostructures triggered also the desire
to explore the possibility of creating their three-dimensional structures counterparts in order to
exploit their thermal and electrical properties for innumerous applications [113]. The realization of
three-dimensional structures based on graphene also known by graphene foam was theoretically
demonstrated [114] and successfully produced using reduced graphene oxide as well as grown using
CVD [115–120]. Such 3D structures change its resistance when perturbed locally, which can serve to
sense local changes, for example in temperature and electromagnetic field. These properties rendered
studies to investigate pure and functionalized graphene foam as different types of sensors [121–123].

4.1. 3D Carbon Nanostructures as Chemical and Electrochemical Sensors

F. Yavari et al. [124] reported the use of a unfunctionalized and flexible 3D graphene foam,
which can be used for sensing NO2 and NH3 with high sensitivity and reversibility. The graphene
foam was synthesized using a scaffold of porous nickel as a template for the deposition and growth
of graphene with CVD with a posterior removal of the nickel template, remaining only the three
dimensional network of graphene [115]. The charge carriers can move rapidly with small resistance,
which results in high electrical conductivity. Trace amounts of NO2 and NH3 adsorbed on graphene
cause changes in the conductivity of the graphene foam and can be detected. The high porosity of
the graphene foam increases the surface area and it facilitates for the homogenous distribution of the
investigated gases. It is also important to mention that the whole process is reversible and applied in
environmental monitoring and gas detection again terrorism.

The resistance of unmodified 3D graphene structures was also used to detect other organic
molecules, among which are chloroform, ether and acetone as demonstrated by H. Hua et al. [125].
The graphene foam was also synthesized using a nickel scaffold as a template while the resistance
curves for the various molecules were acquired and an algorithm was applied to discriminate the
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specific molecules with over 97% accuracy. The results show the promising ability of graphene foam
to detect a wide spectrum of molecules combined with algorithms to identify specific compounds or
contaminants. A sketch of the graphene foam sensor architecture is shown in Figure 8.
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The unique structure of 3D graphene foam for sensors has also been demonstrated for
functionalized or hybrid graphene foam architectures [121]. It is known that cobalt oxide (Co3O4) is
a promising functional material for electrochemical [126] and gas sensors [127–129]. L. Li et al. [130]
used flower-like Co3O4 nanostructures supported on 3D graphene foam as a platform for sensing
ethanol vapor with a concentration as low as 15 ppm at 320 ◦C. A similar functionalization approach
was achieved by Y. Ma et al. [131]. In their work they demonstrated the synthesis of graphene foam
functionalized with α-Fe2O3 to build an electrode-like sensor with the ability to detect and quantify the
presence of nitrite. The detection of nitrite was validated in various water sources by anodic stripping
voltammetry analysis and the electrochemical impedance spectrum.

4.2. 3D Carbon Nanostructures Biosensors

Decorated 3D graphene foam has also been demonstrated to be suitable for biosensors to
detect a wide variety of biomolecules [132,133]. The use of 3D graphene foam functionalized with
Co3O4 nanowires has been shown as an excellent enzyme-free electrochemical glucose detector.
X.-C. Dong et al. [134] used this 3D graphene/Co3O4 composites to sense the presence of glucose in
an extreme low concentration (<25 nM). The use of enzymes to detect glucose using a nitrogen-doped
CNT-functionalized 3D graphene foam was demonstrated by P. Fan et al. [135] as shown in Figure 9.
This was achieved by immobilizing glucose oxidase on nitrogen-doped CNT-functionalized 3D
graphene foam composite and measuring changes in the conductivity of the system in the presence
of glucose in a linear range from 0.05 to 15.55 nM. The detection of glucose using graphene foam
decorated with nickel nanoparticles was also demonstrated by L. Wang et al. [136]. The linear range of
their electrochemical sensor was from 15.84 µM to 6.48 mM with a detection limit reaching 4.8 µM.



Chemosensors 2018, 6, 60 14 of 28

Chemosensors 2018, 6, x FOR PEER REVIEW    15 of 28 

 

 

Figure 9. (A) Schematic illustration for the preparation of nitrogen‐doped CNT@3D graphene foam. 

(B) Current‐time curve of glucose oxidase on nitrogen‐doped CNT@3D graphene foam for different 

concentrations of glucose in stirred 0.1 M O2‐saturated PBS (pH 7.0) at −0.45 V. (C) Calibration curve 

of  the glucose oxidase on nitrogen‐doped CNT@3D graphene  foam  for glucose. Reproduced with 

permission from ref. [135]. 

Similarly to Co3O4, manganese oxide (Mn3O4) was also used to decorate 3D graphene foam to 

detect glucose non‐enzymatically as well as hydrogen peroxide (H2O2) as shown by P. Si et al. [137] 

The Mn3O4  is  found  on  the  graphene walls  in  form  of  nanoflakes. The high  surface  area  of  the 

Mn3O4@3D  graphene  foam  has  a  large  surface  area,  providing  abundant  active  sites  for 

electrocatalytic  reactions  and  electron  transport.  Cyclic  voltammetry  was  used  to  study  the 

electrochemical changes in the oxidation/reduction of Mn3O4  in the presence of glucose and H2O2. 

The selectivity of the biosensor was demonstrated by negligible current responses to the addition of 

0.1 mM uric acid, ascorbic acid and acetaminophen, which are common electroactive species in the 

blood. 

The detection of H2O2 was accomplished using hybrid composites containing 3D graphene foam 

with high sensitivity. For example, J. Liu et al. [138] functionalized the graphene surface of the whole 

3D  structure with  a  complex  composite  of  horseradish  peroxidase, methylene  blue  and  CNTs, 

rendering excellent performance to detect H2O2 with a low concentration (58 nM) and a fast response. 

C.‐C. Kung  et  al.  [139]  incorporated  platinum/ruthenium  (PtRu)  bimetallic  nanoparticles  on  the 

porous structure of the graphene foam and reached a detection limit of 0.04 μM for H2O2 also with 

minimum influence of other electroactive species. 

Since copper oxide (CuO) has shown promising results to catalyze biomolecules [140,141], Y. Ma 

et  al.  [142]  decorated  graphene  foam with  CuO  nano‐flowers  to  construct  a  sensor  with  high 

sensitivity  for ascorbic acid  (vitamin C). The sensing of ascorbic acid was done by measuring  the 

resistance and changes in the current passing through the decorated graphene foam in the presence 

of ascorbic acid and a calibrating solution of phosphate buffer solution (PBS). The detection of the 

important neurotransmitter dopamine was also achieved using 3D graphene foam by X. Dong et al. 

[143] Their work  showed  that hydrophobic  and  π‐π  interactions between  the dopamine  and  the 

graphene walls cause measurable changes in the conductivity of the 3D graphene foam, allowing the 

detection of dopamine at concentrations as low as 25 nM. 

Figure 9. (A) Schematic illustration for the preparation of nitrogen-doped CNT@3D graphene foam.
(B) Current-time curve of glucose oxidase on nitrogen-doped CNT@3D graphene foam for different
concentrations of glucose in stirred 0.1 M O2-saturated PBS (pH 7.0) at −0.45 V. (C) Calibration curve
of the glucose oxidase on nitrogen-doped CNT@3D graphene foam for glucose. Reproduced with
permission from ref. [135].

Similarly to Co3O4, manganese oxide (Mn3O4) was also used to decorate 3D graphene foam to
detect glucose non-enzymatically as well as hydrogen peroxide (H2O2) as shown by P. Si et al. [137].
The Mn3O4 is found on the graphene walls in form of nanoflakes. The high surface area of the
Mn3O4@3D graphene foam has a large surface area, providing abundant active sites for electrocatalytic
reactions and electron transport. Cyclic voltammetry was used to study the electrochemical changes in
the oxidation/reduction of Mn3O4 in the presence of glucose and H2O2. The selectivity of the biosensor
was demonstrated by negligible current responses to the addition of 0.1 mM uric acid, ascorbic acid
and acetaminophen, which are common electroactive species in the blood.

The detection of H2O2 was accomplished using hybrid composites containing 3D graphene
foam with high sensitivity. For example, J. Liu et al. [138] functionalized the graphene surface of
the whole 3D structure with a complex composite of horseradish peroxidase, methylene blue and
CNTs, rendering excellent performance to detect H2O2 with a low concentration (58 nM) and a fast
response. C.-C. Kung et al. [139] incorporated platinum/ruthenium (PtRu) bimetallic nanoparticles on
the porous structure of the graphene foam and reached a detection limit of 0.04 µM for H2O2 also with
minimum influence of other electroactive species.

Since copper oxide (CuO) has shown promising results to catalyze biomolecules [140,141],
Y. Ma et al. [142] decorated graphene foam with CuO nano-flowers to construct a sensor with high
sensitivity for ascorbic acid (vitamin C). The sensing of ascorbic acid was done by measuring
the resistance and changes in the current passing through the decorated graphene foam in the
presence of ascorbic acid and a calibrating solution of phosphate buffer solution (PBS). The detection
of the important neurotransmitter dopamine was also achieved using 3D graphene foam by
X. Dong et al. [143]. Their work showed that hydrophobic and π-π interactions between the dopamine
and the graphene walls cause measurable changes in the conductivity of the 3D graphene foam,
allowing the detection of dopamine at concentrations as low as 25 nM.

H. Yan Yue et al. [144] used zinc oxide (ZnO) nanowires to functionalize graphene foam to
selectively detect uric acid, ascorbic acid and dopamine by differential pulse voltammetry. They claim
that uric acid is of especial attention since it can be used as a biomarker for Parkinson’s disease.
Patients with Parkinson’s disease have levels of uric acid 25% lower than in healthy individuals.
These molecules coexist in many biological systems, therefore sensors with high sensitivity and
selectivity are crucial. Their functionalized 3D graphene foam sensor was able to detect these molecules



Chemosensors 2018, 6, 60 15 of 28

without any cross interference with a limit of detection of 0.5, 0.5 and 5 µM for uric acid, dopamine
and ascorbic acid, respectively.

4.3. Other Sensors Based on 3D Carbon Nanostructures

There is a class of sensors based on 3D carbon nanostructures used to measure strain.
These sensors are mostly based on the incorporation of polymers to the porous architecture of the
graphene foam to produce a flexible and stretchable sensor. For example, Y. A. Samad et al. [123]
embedded a graphene foam into a polydimethylsiloxane (PDMS) to create a pressure/strain sensor
that can measure the human blood pressure and heartbeat.

In order to increase the bending sensitivity of the 3D graphene foam/PDMS composite,
R. Xu et al. [145] introduced a thin layer of polyethyleneterephthalate (PET) in one of the sides of the 3D
graphene foam/PDMS composite causing a variance in the electrical resistance of the composite when
bended to the side with and without PET due to the different bending properties of the different sizes
of the composite. Y. Qin et al. [146] demonstrated that the infusion of polyimide into a brittle reduced
graphene aerogel rendered a superflexible three-dimensional architecture able to sense deformation
caused by compression, bending, stretching and torsion with excellent durability as illustrated in
Figure 10. Such graphene foam/PDMS composites were also demonstrated to have enormous application
possibilities into biomechanical systems and wearable devices [147].

Chemosensors 2018, 6, x FOR PEER REVIEW    16 of 28 

 

H. Yan Yue et al.  [144] used zinc oxide  (ZnO) nanowires  to  functionalize graphene  foam  to 

selectively detect uric  acid,  ascorbic  acid  and dopamine by differential pulse voltammetry. They 

claim that uric acid is of especial attention since it can be used as a biomarker for Parkinson’s disease. 

Patients with Parkinson’s disease have  levels of uric acid 25%  lower  than  in healthy  individuals. 

These molecules  coexist  in many  biological  systems,  therefore  sensors with  high  sensitivity  and 

selectivity  are  crucial.  Their  functionalized  3D  graphene  foam  sensor was  able  to  detect  these 

molecules without any cross interference with a limit of detection of 0.5, 0.5 and 5 μM for uric acid, 

dopamine and ascorbic acid, respectively.   

4.3. Other Sensors Based on 3D Carbon Nanostructures 

There  is a class of sensors based on 3D carbon nanostructures used  to measure strain. These 

sensors are mostly based on the incorporation of polymers to the porous architecture of the graphene 

foam to produce a flexible and stretchable sensor. For example, Y. A. Samad et al. [123] embedded a 

graphene  foam  into  a  polydimethylsiloxane  (PDMS)  to  create  a  pressure/strain  sensor  that  can 

measure the human blood pressure and heartbeat.   

In order to increase the bending sensitivity of the 3D graphene foam/PDMS composite, R. Xu et 

al.  [145]  introduced a  thin  layer of polyethyleneterephthalate  (PET)  in one of  the sides of  the 3D 

graphene foam/PDMS composite causing a variance in the electrical resistance of the composite when 

bended to the side with and without PET due to the different bending properties of the different sizes 

of the composite. Y. Qin et al. [146] demonstrated that the infusion of polyimide into a brittle reduced 

graphene aerogel rendered a superflexible three‐dimensional architecture able to sense deformation 

caused by compression, bending, stretching and  torsion with excellent durability as  illustrated  in 

Figure  10.  Such  graphene  foam/PDMS  composites  were  also  demonstrated  to  have  enormous 

application possibilities into biomechanical systems and wearable devices. [147]. 

 

Figure 10. Images showing the recovery process of a compressed reduced graphene foam/polyimide 

composite and the high levels of bend and torsion deformations. Reproduced with permission from 

ref. [146]. 

Monolithic 3D graphene foam was also used as a precursor for graphene quantum dots, which 

were used for sensing iron ions (Fe3+) as presented by A. Ananthanarayanan et al. [148] Such graphene 

dot architecture could not be synthesized using the 2D graphene form, because the graphene film 

quickly disintegrates leading to a low yield of graphene quantum dots. The graphene quantum dots 

were  produced  by  applying  a  voltage  to  the  3D  graphene  foam  in  a  mixture  of  1‐Butyl‐3‐

methylimidazolium hexafluorophosphate  (BMIMPF6) and acetonitrile  (10% v/v) as an electrolyte. 

The  resulting  solution  was  centrifuged  and  the  graphene  quantum  dots  were  collected.  Gel 

electrophoresis suggests a narrow size distribution of the graphene quantum dots, which emit blue 

fluorescence under UV light of 365 nm. In the presence of Fe3+ ions there is a significant quenching 

Figure 10. Images showing the recovery process of a compressed reduced graphene foam/polyimide
composite and the high levels of bend and torsion deformations. Reproduced with permission from
ref. [146].

Monolithic 3D graphene foam was also used as a precursor for graphene quantum dots, which were
used for sensing iron ions (Fe3+) as presented by A. Ananthanarayanan et al. [148]. Such graphene dot
architecture could not be synthesized using the 2D graphene form, because the graphene film quickly
disintegrates leading to a low yield of graphene quantum dots. The graphene quantum dots were
produced by applying a voltage to the 3D graphene foam in a mixture of 1-Butyl-3-methylimidazolium
hexafluorophosphate (BMIMPF6) and acetonitrile (10% v/v) as an electrolyte. The resulting solution
was centrifuged and the graphene quantum dots were collected. Gel electrophoresis suggests a narrow
size distribution of the graphene quantum dots, which emit blue fluorescence under UV light of 365 nm.
In the presence of Fe3+ ions there is a significant quenching (68% quenching in 400 µM of Fe3+) whereas
other ions such as Mg2+, Fe2+, Zn2+, Co2+, Ni2+, Cd2+ and K+ were not able to show significant quenching
of the graphene quantum dots.

5. Summary and Conclusions

In summary, we presented investigations that highlight the great versatility of 1D, 2D and
3D carbon nanostructures as an exceptional high sensitivity and specificity platform for sensing.
Carbon nanostructures pursue a large surface area providing huge functionalization potential,
which enables the design of sensors with high specificity depending on the type of functionalization.
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The high sensitivity is related with the unique electrical properties of the various nanostructures.
Unlike other materials purely based on metals or metal oxides, carbon nanostructures have a higher
compatibility with polymers, which allows the formation of composites that not only present a better
sensitivity, but also opens up the field of flexible electronics and allow the design of a wide range of
wearables that can constantly monitor the surrounding conditions and health of individuals.

Although great progress has been achieved in the synthesis of various carbon nanostructures,
large scale production remains a challenge, especially concerning the fabrication of material without
defects and with reproducible properties. For example, the synthesis of graphene leads to the formation
of grain boundaries and intrinsic point defects that influence the electrical properties of the material.
Moreover the transfer processes of carbon nanostructures from the synthesis substrates to the actual
device is complex and in many cases lead to the formation of defects that limit the reproducibility
and scalability of sensors based on these materials. For example, the lack of precise defect control in
graphene oxide-based sensor may lead to small differences between material batches, which can have
huge impact in the sensing mechanism. In other words, there is still a lack in the synthesis control of
the nanostructures, separating the design of carbon-based sensors from the commercial application of
these devices.

Another general problem of sensors is related with the cross sensitivity. Nowadays it is still a
challenge to create a device with a specificity capable of distinguishing between similar chemicals.
Progress with carbon nanostructures has been achieved, as shown before [125]. In this sense,
we envision that the innumerous possibilities of functionalization is the most promising approach
to reach specificity and this tailoring of properties is achievable with carbon-based nanostructures.
Moreover, we should not ignore the increasing development and refinement of softwares for data
analysis as well as the emerging field of artificial intelligent, which may provide new insights
in data analysis that will enable more detailed processing of the detected signal, minimizing the
cross-sensitivity problem.

The investigations reviewed here suggest that carbon-based sensors are already a reality in the
lab and a continuous investment in this field is essential to not only develop more accurate sensors but
also incorporate these into wearable devices and in the routine of industrial and medical processes.
Table 1 highlights and summarizes all the carbon nanostructures included in this review as well as
their functionalization, molecule detected and the corresponding detection limit of the many different
sensor architectures described in details within the main text.
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Table 1. Carbon nanostructures used as sensors, their functionalization and corresponding analyte discussed within this review.

Carbon Nanostructure Functionalization Analyte (Detection Limit) References

1D carbon nanostructure
Multi-walled CNTs Au nanoparticles NO2 (0.1 ppm), CO (2 ppm), C6H6 (-) [9]
Multi-walled CNTs COOH O2 (0.3%) [10]
Single-walled CNTs FeOOH O3 (4.1 ppb) [11]
Single-walled CNTs CuCl CO (20 ppm) [13]
Multi-walled CNTs SnO2 ethanol (30 ppm), methanol (30 ppm), H2S (9 ppm) [14]
Multi-walled CNTs maleic acid, acetylene NH3 (10 ppm) [15]
Multi-walled CNTs Pt nanoparticles H2 (4%) [16]
Single-walled CNTs Pd doping/sputtering H2 (0.5%) [17]

Single-walled CNTs - ethanol, methanol, 1-propanol, 2-propanol, 1-butanol,
tertiary-butanol, 1-pentanol, 1-octanol (2 mmHg for all analytes) [18]

Multi-walled CNTs ethyl cellulose benzene (2.5 ppm) [19]
Single-walled CNTs poly(vinylpyrrolidone) isopropyl (100 ppm) [20]
Single-walled CNTs LaFeO3 methanol (1 ppm) [23]
Multi-walled CNTs - dopamine (500 nM), glutamate (10 µM) [26]
Multi-walled CNTs Pt-Ni alloy uric acid (0.03 µM) [29]
Single-walled CNTs - O2 (1 × 10−10 torr) [48]
Single-walled CNTs 3-aminopropyltrimethysilane dimethyl methylphosphonate (5 ppm) [49]
Multi-walled CNTs - NO2 (10 ppb) [39,40]

Single-walled CNTs Br ethanol (608 ppb), HCl (769 ppb), NH3 (1645 ppb), sulfuric acid
(286 ppb) [58]

Double- and Multi-walled CNTs - NO2 (0.1 ppm) [59]
Multi-walled CNTs thiol formaldehyde (10 ppm) [60]
Multi-walled CNTs amine formaldehyde (20 ppb) [61]
Single-walled CNTs Au, Pt, Pd, Rh H2 (0.4%), CH4 (0.5%), CO (2%), H2S (50 ppm) [65]
Single-walled CNTs - dimethyl methylphosphonate (1 ppb) [66]
Multi-walled CNTs glucose oxidase glucose (0.08 mM) [67]

Single-walled carbon nanohorns glucose oxidase, nafion glucose (6 µM) [68]
Multi-walled CNTs horseradish peroxidase, glucose oxidase glucose (0.5 µM) [69]
Multi-walled CNTs Pt nanoparticles glucose (1 × 10−5 mol/L) [70]
Single-walled CNTs Nafion dopamine (250 nM), serotonin (130 nM) [73]

Multi-walled CNTs 1-butyl-3-methylimidazolium
hexafluorophosphate dopamine (60 nM), serotonin (8 nM) [74]

Multi-walled CNTs RuOx insulin (1 nM) [71]
Multi-walled CNTs Ni(OH)2-Nafion insulin (85 nM) [72]
Single-walled CNTs Pd nanoparticles glucose (0.2 µM) [106]
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Table 1. Cont.

Carbon Nanostructure Functionalization Analyte (Detection Limit) References

Single-layered graphene SnO2 CO (30 ppm) [12]
SiO2-Graphite CuO glucose (0.02 mmol/L) [25]

Single-layered graphene - NO2 (100 ppm; 2.5 ppm; 100 ppm), NH3 (500 ppb), CO2 (10 ppm) [82–84,87,89,90]
Multi-layered graphene - CO2 (3 ppm), liquid petroleum gas (4 ppm) [88]

Graphene oxide COOH, OH NO2 (20 ppb), NH3 (500 ppm), 2,4-dinitrotoluene (28 ppb) [91,92,94,95]
Graphene oxide ascorbic acid, thiol ethanol (100 ppm), NO2 (100 ppm) [93]

Reduced graphene oxide - NH3 (1%; 100 ppm), Cl2 (100 ppm), NO2 (100 ppm; 1 ppm),
methanol (500 ppm), ethanol (500 ppm), isopropanol (500 ppm) [96–100]

Reduced graphene oxide sulfophenyl, ethylenediamine NO2 (3.6 ppm) [101]

Reduced graphene oxide Octadecylamine, Pd- and Pt-doping, MnO2
and TiO2 nanoparticle NO2 (25 ppm), CH4 (1000 ppm), H2 (500 ppm) [102]

Multi-layered graphene Poly(vinylpyrrolidone), glucose oxidase glucose (2 mM) [103]
Multi-layered graphene glucose oxidase, Pt, chitosan glucose (0.6 µM) [104]
Multi-layered graphene Pd nanoflower, Nafion, glucose oxidase glucose (1 nM) [105]

Graphene oxide Cu nanoparticles glucose (0.35 µM) [107]
Reduced graphene oxide Au-Pt alloy, chitosan-glucose oxidase glucose (5 µM) [108]

Graphene oxide poly(3,4-ethylenedioxythiophene) dopamine (0.33 µM) [109]
Multi-layered graphene E. coli O157:H7 specific antibodies E. coli bacteria (10 to 100 cells/mL) [110]

Reduced graphene oxide Al2O3, Au nanoparticles E. coli bacteria (100 to 100,000 cells/mL) [111]
Reduced graphene oxide H1N1 specific monoclonal antibodies H1N1 influenza virus (1 to 104 virus/mL) [112]

Carbon paste NiO nanoparticles, 1-butyl-3-
methylimidazolium tetrafluoroborate ascorbic acid (0.04 µM) [27]

Graphene foam - NH3 (20 ppm), dopamine (25 nM) and selectivity measurement for
chloroform, acetone, ether [124,125,143]

Graphene foam Co3O4 ethanol (50 ppm; 15 ppm) [127,130]
Graphene foam α-Fe2O3 NO2 (0.12 µM) [131]

Graphene foam prussian blue nanoparticles, CuNi
nanoparticles, Co nanoparticles H2O2 (0.1 µM), glucose (2.3 µM), aminoacids (0.02mM) [132]

Graphene foam Au carcinoembryonic antigen (0.024 pg/mL) [133]
Graphene foam Co3O4 nanowires glucose (25 nM) [134]
Graphene foam N-doped carbon nanotubes, glucose oxidase glucose (5 µM) [135]
Graphene foam Ni nanoparticles glucose (4.8 µM) [136]
Graphene foam Mn3O4 glucose (10 µM), H2O2 (1 µM) [137]
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Table 1. Cont.

Carbon Nanostructure Functionalization Analyte (Detection Limit) References

Graphene foam polydopamine, horseradish peroxidase,
methylene blue H2O2 (58 nM) [138]

Graphene foam PtRu nanoparticles H2O2 (0.04 µM) [139]
Graphene foam CuO nanoparticles glucose (1 µM) [140]
Graphene foam CuO nanoflower ascorbic acid (0.43 µM) [142]
Graphene foam polydimethylsiloxane human blood pressure (60 kPa−1) [123]
Graphene foam ZnO nanowires uric acid (0.5 µM), dopamine (0.5 µM), ascorbic acid (5 µM) [144]
Graphene foam polydimethylsiloxane strain (gauge factor 98.66) [145,147]
Graphene foam Polydimethylsiloxane, polyimide strain (low pressure: 0.18 kPa−1; large pressure: 0.023 kPa−1) [146]

Graphene foam-graphene
quantum dots - Fe3+ (7.22 µM) [148]
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