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Abstract: Cadmium selenide (CdSe) quantum dots (QDs) were synthesized by water phase synthesis
method using 3-mercaptopropionic acid (3-MPA) as a stabilizer, and they were applied to the
detection of copper ions (Cu2+). The results showed that CdSe QDs have excellent selectivity and
sensitivity toward Cu2+. The fluorescence intensity of CdSe QDs decreased with the increase of
Cu2+ concentration. The linear range was from 30 nM to 3 µM, and the detection limit was 30 nM.
Furthermore, CdSe QDs were used for detecting the concentration of Cu2+ in oysters. The content of
Cu2+ was 40.91 mg/kg, which was close to the one measured via flame atomic absorption spectrometry
(FAAS), and the relative error was 1.81%. Therefore, CdSe QDs have a wide application prospect in
the rapid detection of copper ions in food.

Keywords: CdSe QDs; oysters; fluorescence property; copper ions

1. Introduction

During the last few decades, industrial and urban activities have caused the increase of metal
contamination on the marine environment and have had negative ecological effects on coastal
ecosystems. Various studies have demonstrated that the heavy metal copper ion content in marine
products from industrialized coastal areas exceeds the standard [1,2].

The accumulation of copper ions in the human body is enriched by the food chain, and it then
poses a threat to human health [3]. Numerous studies have shown that excessive copper ions can cause
oxidative stress in the liver and irreversible hepatotoxicity [4,5], and it can also increase the risk of
neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and prion diseases [6,7].
Therefore, it is necessary to develop a rapid and accurate technique for the detection of copper ions in
aquatic products [8,9].

Traditional methods of copper ion (Cu2+) detections mainly include atomic absorption
spectrometry (AAS), inductively coupled mass spectroscopy (ICP-MS), and inductively coupled
atomic emission spectroscopy (ICP-AES) [10,11]. These methods are not suitable for popularization and
utilization due to the expensive instruments, tedious operation process, high technical requirements
for operators, and the fact that their use is time-consuming.

Fluorescence spectroscopy has developed quickly during the past decade. Compared to other
spectroscopic techniques, fluorescence spectroscopy is more popular due to the availability and
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simplicity of data acquisition and analysis [12,13]. Quantum dots (QDs), tiny light-emitting particles
on the nanometer scale, are also a new class of fluorescent probes [14–16]. Compared with fluorescent
proteins and other fluorescent probes, there are several unique optical and electronic properties for QDs,
including size-tunable light emission, improved signal brightness, resistance against photo bleaching,
and simultaneous excitation of multiple fluorescence colors. Recent advances in nanotechnology have
led to the development of multifunctional nanoparticle probes that are very bright and stable under
complex in vivo conditions [17].

In recent years, QDs have attracted much attention as fluorescent probes in the detection of heavy
metal ions [17–19]. However, the practical application of QDs to detect Cu2+ in aquatic products
has not been further investigated. In this study, cadmium selenide (CdSe) QDs were synthesized by
aqueous inorganic method using 3-mercaptopropionic acid (3-MPA) as a stabilizer, and measured their
selectivity and sensitivity toward Cu2+. In addition, they were applied to detect the content of Cu2+

in oysters.

2. Materials and Methods

2.1. Materials and Reagents

Sodium borohydride (NaBH4) was purchased from Adamas reagent Co. Ltd (Shanghai, China).
Cadmium chloride (99%) was supplied by Tianjin Fuchen Chemical Reagent Factory (Tianjin, China).
Perchloric acid, nitric acid, and anhydrous ethanol were all purchased from Guangdong Guanghua
technology Co., Ltd (Shenzhen, China). 3-mercaptopropionic acid (3-MPA) was obtained from Shanghai
Aladdin Biochemical Technology Co. Ltd (Shanghai China). Selenium powder was purchased from
Chengdu Huaxia Chemical Reagent Co. Ltd (Chengdu, China). All chemical reagents were analytical
grade and used as received without further purification. The raw oysters were purchased from
Huguang market in Zhanjiang, China.

2.2. Synthesis of CdSe QDs

Selenium powder (0.078 g), 0.140 g of NaBH4, and 3 mL of ultrapure water were sequentially
added to a 50 mL glass vial. Then, the glass vial was quickly stoppered with a perforated stopper and
placed in an ice water bath for 30 min. NaHSe solution was obtained when the solution became clear
and transparent.

Thirty-five µL of 3-MPA was added to 100 mL of 4 mM CdCl2 aqueous solution, and the pH was
adjusted to 11 with 1 M NaOH. Then, the solution was poured into a three-necked flask and adjusted
with pure nitrogen gas for 20 min under magnetic stirring. Freshly prepared NaHSe was added to the
stirred solution and reacted at 95 ◦C for 8 h under the nitrogen.

After the reaction, the CdSe QD solution was mixed with absolute ethanol in a volume ratio of
1:2 and centrifuged at 9000 rpm for 25 min. The yellow-brown precipitate was dissolved in ultrapure
water to obtain purified 3-MPA-modified water-soluble CdSe QDs. The prepared CdSe QDs were
stored at 4 ◦C in the dark.

2.3. Instrumentation

The microscopic characteristics of CdSe QDs were determined via high-resolution transmission
electron microscope (HRTEM, JEOL JEM-2200FS, Tokyo, Japan) under 200 kV. The yield and lifetime of
CdSe QDs were measured by a transient fluorescence spectrometer (FL-TCSPC, HORIBA Jobin Yvon,
France). The fluorescence intensity of the solution was measured by a fluorescence spectrophotometer
(FL, HITACHI, F-7000, Tokyo, Japan).
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2.4. Characterization of QDs

A correlation method was used to determine the fluorescence quantum yield (QY) of
nitrogen-doped graphene quantum dots (N-CQDs). The QY of barium sulfate was regarded as
a reference. The QY of the sample was calculated by Equation (1):

ϕ = ϕ′ ×
A′

I′
×

I
A
×

n2

n′2
(1)

where ϕ represents the QY of the sample, ϕ’ is the QY of barium sulfate, I is the comprehensive
emissions intensity of the tested sample, I’ is the comprehensive emission intensity of barium sulfate, n
represents the refractive index of the tested sample, n’ is the refraction index of barium sulfate, A is
the optical density of the tested sample, and A’ is the optical density of barium sulfate. Absorption at
excitation wavelength was always maintained below 0.05 to minimize the resorption effect [19].

QY refers to the ratio of the number of photons emitting fluorescence to the number of photons
absorbed, and it is an important parameter for evaluating the optical properties of luminescent
nanocrystal [20]. QY is generally measured by reference method [21].

The fluorescence lifetime of a QD is fitted using R(t) = B1e(−
t
τ1
)
+B2e(−

t
τ2
). Mean fluorescence

lifetime τav is calculated using Equation (2).

τav =

∑
Biτ

2
i∑

Biτi
(2)

where τ1 and τ2 represent time constants, respectively, and B1 and B2 represent weights.

2.5. Detection of Different Concentrations of Copper Ion Standard Solution

The fluorescence quenching mechanism of copper ions on QDs is shown in Scheme 1. The
structure of 3-MPA contains a mercapto group (-SH) and a carboxyl group (-COOH). The sulfur atom
and the oxygen atom are easily coordinated with copper ion in the solution, resulting the change of
surface structure or charge of the QDs, thereby affecting the recombination efficiency of electrons and
holes. As a result, the fluorescence intensity of QDs will be quenched [22].
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Scheme 1. Schematic diagram of copper ions (Cu2+) detection by cadmium selenide (CdSe) quantum
dots (QDs).

Different concentrations of copper ion solution were prepared using ultrapure water. Equal
amounts of copper ion solution and quantum dot solution were added to the 10 mL colorimetric tube
successively and placed at room temperature for 30 min. The fluorescence intensity of the solution
was measured by the fluorescence spectrophotometer (Hitachi, F-7000). A standard curve of copper
ion was drawn according to fluorescence intensity. The excitation wavelength of the fluorescence
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spectrophotometer was 450 nm, the scanning range was 480–650 nm, and the scanning speed was
240 nm/min.

Fluorescence quenching efficiency can be described using Equation (3).

E =
F0 − F

F0
(3)

where F0 represents the fluorescence intensity of CdSe QDs, F represents the fluorescence intensity of
CdSe QDs when different concentrations of Cu2+ were added, E represents the fluorescence quenching
efficiency of CdSe QDs.

2.6. Effects of Different Metal Ions on the Fluorescence Intensity of QDs

In order to explore the selectivity of the prepared QDs solution to Cu2+, 5 µM and 10 µM
ionic solutions of Ag+, Pb2+, Zn2+, Hg2+, Fe3+, Mn2+, and Co2+ were measured, respectively. The
fluorescence intensity was measured under the same conditions and compared with copper ion
solution [23].

2.7. Determination of Cu2+ in Oysters

The national standard method (GB 5009.13-2017) was used to verify the reliability of our
experimental method (CdSe QDs).

Sample pre-treatment included the following steps: The sample was weighed at 3 g in a conical
flask, and 10 mL of nitric acid was added the sample was left overnight. Perchloric acid (0.5 mL) was
added and disintegrated on a hot plate. A small amount of nitric acid was added to the digestive juice
when it turned brown. Adjusting the temperature of the hot plate appropriately, the white smoke
completely disappeared. When the digestive juice turned transparent, the digestion was complete. The
same method was used in the control group. After cooling, digestive juice was diluted with ultrapure
water to 10 mL [24].

Different concentrations of copper ion standard solutions (0.0, 0.1, 0.2, 0.4, 0.8,and 1.0 µg/mL) were
prepared. The copper standard solution was introduced into the flame atomic absorption spectrometry
(FAAS) instrument, and the concentration was from low to high. The control group and sample
solution were introduced into the atomizer under the same experimental conditions as the standard
series. The absorbance values were recorded separately and compared with the standard curve.

The digested samples were measured in parallel three times with CdSe QDs under the same
experimental conditions as the standard series of copper ions. The calculated sample concentration
was compared with the results measured by FAAS.

3. Results and Discussion

3.1. Characterization of CdSe QDs

The morphology and size of the purified 3-MPA-modified CdSe QDs were characterized by
HRTEM. Figure 1a shows that the shape of the CdSe QDs is approximately spherical, with no
agglomeration. CdSe QDs have good dispersion, and the size is about 4 nm [25,26]. HRTEM images
show ultra-small fringes, which implies that the structure of CdSe QDs is purely crystalline (Figure 1b).

The purified 3-MPA-modified CdSe QDs were detected by transient fluorescence spectrometer
(TFS). As shown in Figure 2a, the QY of the QDs is 16.65%. Figure 2b shows the result of the fitting.
Fitting parameters of the fluorescence decay curve are shown in Table 1. R2 = 0.99, indicating that
the fitting condition is excellent. Mean fluorescence lifetime, τav, of the QDs calculated by formula is
20.59 ns.
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Figure 2. Fluorescence characteristics of CdSe QDs: (a) Fluorescence quantum yield of CdSe QDs. In
the figure, the black spectrum represent the quantum yield (QY) results for barium sulfate solution, the
red spectrum represent the QY results of CdSe QDs (in ethanol). (b) Fluorescence lifetime of CdSe QDs.
Where the red line represent the fluorescence lifetime fitting curve of CdSe QDs, R2 = 0.99.

Table 1. Fitting parameters of the fluorescence decay curve.

τ1(ns) τ2 (ns) B1 (%) B2 (%) R2

4.030 21.60 24.64 75.36 0.99

3.2. Detection Performance of CdSe QDs for Cu2+

Copper ion was added to the CdSe QDs solution, and the final concentration of Cu2+ ranged from
0.0 to 2.0 µg/mL.

As depicted in Figure 3a, the fluorescence quenching of CdSe QDs increases with the increasing
of copper ion concentration. The experimental data shown in Figure 3b indicates that the fluorescence
quenching efficiency of CdSe QDs has a favorable linear relationship with copper ion concentration
between 30 nM–3 µM. The fitted curve can be expressed as y = 2.69216x + 0.09855, and the correlation
coefficient (R2) is 0.99. The limit of detection (LOD) is defined as LOD = 3SD/K, where LOD, SD,
and K are limit of detection, standard deviation of the black, and the slope of the calibration graph,
respectively. The detection limit of CdSe QDs is found at about 30 nM.

As presented in Table 2, the detection range and limit of this study are compared with other
QDs. The linear range of 3-MPA CdSe QDs is 30 nM–3 µM, which is a little broader than the reported
QDs [27,28]. Moreover, the detection limit is 30 nM, which is lower than the majority of reported
QDs [28–32]. The new quantum dots can be synthesized in one step. Compared with other core-shell
QDs or organic phase synthesized quantum dots, the preparation process of the new QDs are simpler
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and more economical [31,33,34]. In addition, QDs fabricated in this study have been well verified in
practical applications.
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Figure 3. CdSe QDs were used for the detection of Cu2+ in aqueous solution. (a) Fluorescence intensity
of CdSe QDs was measured after adding different concentrations of Cu2+. (b) Fluorescence quenching
efficiency of CdSe QDs was detected with different concentrations of Cu2+. F0 is the fluorescence
intensity of pure CdSe QDs. F is the fluorescence intensity of CdSe QDs as Cu2+ was added with
different concentrations. (F0 − F)/F0 is the fluorescence quenching efficiency of CdSe QDs.

Table 2. Comparison of Cu2+ sensors reported by references.

Probes Limit of Detection Linear Range Application Ref

l-Cysteine-capped CdSeTe QDs 0.007 µM 0.02–2.0 µM Not mentioned [27]
Silica-coated CdSe/ZnS QDs 0.9 µM 0–10 µM Not mentioned [28]
l-Cysteine-capped ZnS QDs 7.1 µM 0–260 µM Not mentioned [29]

Glutathione-capped ZnxHg1−xSe QDs 20 µM 0.03–5.0 µM Not mentioned [30]
Hexadecyl trimethylammonium bromide

modified CdSe/ZnS QDs 0.15 nM 0–600 nM Deionization water [31]

CdS QDs 0.1 µM Not mentioned Not mentioned [32]
MPA-CdSe QDs Not mentioned 4–160 µM Not mentioned [33]

PMAA (methacrylic acid)-Ag nanocluster 0.008 µM 0.01–6.0 µM Not mentioned [34]
Gemini-coated CdSe/ZnS QDs 1.1 µM 0–500 µM Not mentioned [35]

3-MPA CdSe QDs 0.03 µM 0.03–3 µM oysters This work

3.3. Selective Detection of CdSe QDs

The inherent attraction between metal ions and 3-MPA CdSe quantum dot surface ligands is a
key factor in ion selectivity. Figure 4 shows the fluorescence intensity of CdSe QDs solution after 5
or 10 µM of various metal ions were added, respectively. The fluorescence quenching efficiency of
3-MPA-modified CdSe QDs is 91.24% in the presence of Cu2+ but not more than 22.30% in the presence
of other ions, which indicates that the selectivity of CdSe QDs to Cu2+ is higher than that of other
tested ions.

3.4. Detection of Cu2+ in Oysters

Six oyster samples were simultaneously processed by wet digestion. After cooling, the digestive
juice was fixed to 100 mL with ultrapure water. The absorbance values of solutions were sequentially
measured by FAAS under the same conditions as the standard curve.

The fluorescence intensity of the above six oyster sample solutions was measured after the reaction
with the QDs. The corresponding concentration was calculated according to the Cu2+ fluorescence
intensity standard curve equation. The results are shown in Table 3, and there is low relative error
between the concentration of the six samples measured by the fluorescence spectrophotometer and the
FAAS. The average relative error is 1.81%, and the test results are reliable.
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Table 3. The concentrations of copper ion in the oysters.

Fluorescence
Intensity

Corresponding
Concentration

(µg/mL)

Mean
Concentration

(µg/mL)

Concentration Measured
by Flame Atomic

Absorption Spectrometry
(FAAS) (µg/mL)

Relative
Error (%)

Sample 1
855.5 0.3512

0.3592
(±6.841 × 10−3) 0.3667 2.04840.1 0.3586

821.1 0.3679

Sample 2
732.4 0.4174

0.4224
(±5.276 × 10−3) 0.4277 1.24713.0 0.4297

728.3 0.4200

Sample 3
595.7 0.5183

0.5581
(±2.868 × 10−2) 0.5496 1.55541.2 0.5708

527.9 0.5850

Sample 4
762.0 0.3998

0.4035
(±7.455 × 10−3) 0.3921 2.91767.2 0.3968

738.2 0.4139

Sample 5
709.8 0.4318

0.4111
(±1.989 × 10−2) 0.4175 1.53732.6 0.4173

790.2 0.3841

Sample 6
971.6 0.3023

0.2959
(±4.808 × 10−3) 0.3007 1.60975.0 0.3011

1022 0.2842

In the study, the mass of the samples was 3.00 g. According to the calculation method of
flame atomic absorption in GB 5009.13-2017, “Determination of Copper in Food”, the copper ion
concentrations of the six samples were calculated as: 36.67, 42.77, 54.96, 39.21, 41.75, and 30.07
mg/kg, respectively. The average concentration was 40.91 mg/kg. According to GB 15199-94, “Liquid
Limitation Standard for Foods”, the residual limit value of copper ions in aquatic products is ≤50
mg/kg, so the Cu2+ content of the sample does not exceed the limit standard.

4. Conclusions

In the present study, CdSe QDs were prepared by aqueous phase synthesis, and the surface was
modified with 3-MPA as a stabilizer. The particle size of newly generated QDs is approximately 4 nm.
The QY is 16.65%, and a quantum dot lifetime is 20.5896 ns. The fluorescence quenching efficiency of
CdSe QDs has a favorable linear relationship with copper ion concentration between 30 nM–3 µM.
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The fitted curve can be expressed as y = 2.69216x + 0.09855, and the correlation coefficient (R2) is 0.99.
The detection limit of CdSe QDs is 30 nM. CdSe QDs show excellent selectivity to Cu2+. In addition,
they were used to detect Cu2+ in oyster, and the concentration was 40.91 mg/kg. Meanwhile, it was
compared with traditional FAAS. The relative error of the detection results of the two methods is 1.81%.
Therefore, this method is reliable and practical.
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