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Abstract: The new molecularly imprinted polymer (MIP) membrane based on cassava starch—Fe3O4—
was developed to detect acetaminophen and caffeine simultaneously with the differential pulse
voltammetry (DPV) method. Cassava starch was reacted with sodium tripolyphosphate (STPP)
as a crosslinking agent, while acetaminophen and caffeine were added as templates. The Fe3O4

nanoparticles in the composite were added to increase the sensor’s sensitivity. The experimental
results show that the ratio between cassava starch:STPP:acetaminophen/caffeine in the mixture for MIP
membranes influences the sensitivity of the sensor obtained. MIP membranes with the best sensitivity
is produced at a mixture ratio of 2:2:1. The sensor performance is also affected by the pH of the solution
and the type of buffer solution used. The sensor works very well at pH 2 in PB solution. Sensors
produced from GCE modified with MIP membrane from cassava starch—Fe3O4 with acetaminophen
and caffeine as templates have linear range concentrations, respectively, at 50–2000 µM and 50–900 µM.
Sensor sensitivity was 0.5306 A/M against acetaminophen and 0.4314 A/M against caffeine with Limit
of Detection (LoD), respectively, 16 and 23 µM. Sensor selectivity and sensitivity are better than those
without MIP and can be applied for the determination of the content of acetaminophen in headache
medicine, with an accuracy of 96–99% and with Relative Standard Deviation (RSD) 0.9–2.56%.

Keywords: Cassava starch; glassy carbon electrode (GCE); sodium-tripolyphosphate (STPP);
electrochemical sensors; acetaminophen; caffeine

1. Introduction

In an effort to increase the selectivity and sensitivity of electrochemical sensors, sensors have been
developed based on molecularly imprinted polymers and nanoparticles. Two natural polymers have
been used as functional molecules in the development of molecularly imprinted polymer (MIP)-based
sensors, namely chitosan and starch [1–3]. Cassava starch, which is a natural polymer, has the
potential to be a functional polymer in the development of MIP-based sensors. Polymer molecules
in cassava starch can be crosslinked by the addition of sodium tripolyphosphate (STPP) in a basic
NaOH solution [4–6]. Based on these results, cassava starch can be used as a basic polymer for
membranes in the development of electrochemical sensors for the detection of acetaminophen and
caffeine, simultaneously. Increasing the sensitivity of a sensor can be done by adding a conductivity
material, such as Fe3O4 nanoparticles.

Fe3O4 nanoparticles were chosen as additives in membranes because they can increase the electrical
conductivity of polymers [7]. Fe3O4 nanoparticles are known to increase the electrical conductivity of
polyindole/polyvinyl alcohol (PIN/PVA) composites. The electrical conductivity of PIN/PVA composites
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is 1.25 mS/cm, while the electrical conductivity of PIN/PVA composites containing Fe3O4 nanoparticles
is 100 S/cm [8]. Adding 0.1% Fe3O4 nanoparticles in the nata de coco membrane for potentiometric
detection of phenol compounds can increase sensitivity up to 30% [9]. Fe3O4 nanoparticles have
been used for the development of diazinon sensors using nata de coco membranes [10] and polyvinyl
alcohol-based MIP membranes for the detection of chlorpyrifos [11] and monosodium glutamate [12].

Acetaminophen is one of the antipyretic and analgesic compounds that is most widely used as a
safe and effective painkiller. Caffeine is an alkaloid which is a derivative of N-methyl from xanthine
and is widely used to treat asthma, nasal congestion, and headaches. Headache medicines on the
market generally contain a combination of acetaminophen and caffeine in amounts of 500–600 mg and
35–65 mg per tablet, respectively. Ensuring the quality of medicines circulating in the market, especially
over-the-counter medicines, such as headache medications, is urgent. This is because there are
several cases of the circulation of counterfeit medicines and repackaging expired medicines. The most
important activity is determining the amount of active substances in these medicines. Determination
of caffeine and paracetamol content in multicomponent medicines can be done by the titrimetric and
the HPLC methods. The titrimetric method requires a long analysis time and is less sensitive, whereas
the HPLC method has a high analytical sensitivity but it is considerably expensive [13–15]. Another
method of analysis, such as spectrophotometry, without separation is less accurate because there are
other substances in the medicines which might interfere the measurement. Therefore, this study seeks
to develop a simultaneous, easier, quicker, and more accurate determination of acetaminophen and
caffeine in headache medicine by using selective membranes based on cassava starch.

Acetaminophen is 4-N-acetamino phenol or commonly called paracetamol. It can be oxidized
in an acidic environment [16] following the reaction as shown in Figure 1. Several electrochemical
detection methods for acetaminophen have been developed, including the use of electrodes from
Screen Printed Graphene Electrodes. Acetaminophen in biological samples can be determined using
this sensor in the range of 0.1–50 µM at pH 7 [17].
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Figure 1. Oxidation of acetaminophen in an acidic environment.

An acetaminophen detection method in medicines has also been developed using Multi Walled
Carbon Nanotubes (MWCNT) nano material and chitosan–Cu complex compounds as sensors/working
electrodes. These sensors can detect acetaminophen in the concentration range of 0.1–200 µmol/L at
pH 7. To increase its sensitivity, ascorbic acid and dopamine are added [18]. The use of nano material
with CuO–CuFe2O4 for the detection of acetaminophen and codeine, simultaneously, has resulted
in a system with a high sensitivity where acetaminophen can be detected in the concentration range
of 0.01–1.5 µmol/L. The detection was applied to biological fluid samples [19]. The ability to detect
compounds, with performance at very low concentrations is not applicable for pharmaceutical samples.
Detection of acetaminophen is best obtained by the voltammetry method both individually and
simultaneously with the detection of other compounds [20–24].

Caffeine can be oxidized in an acidic environment by the mechanism shown in Figure 2. A study
to develop a detection method has been carried out for electrochemical detection of caffeine using
carbon paste as a working electrode and applied to pharmaceutical samples. In that experiment caffeine
was detected in the concentration range of 1–80 µM [25]. The same detection method for caffeine has
also been developed but it uses carbon electrodes, in the concentration range of 20–100 µM, and is
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applied to beverage samples [26]. The development of electrochemical sensors for the detection of
caffeine, both individually and simultaneously with other compounds, has been widely developed but
is generally applied in beverage samples [27–31].
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Figure 2. Steps of the caffeine oxidation reaction in an acidic environment, proposed by Tadesse, Y.,
et al [25].

Several electrochemical sensors have been developed based on MIP to detect caffeine and
acetaminophen individually [32,33]. Utilizing natural polymers from renewable materials as
functional molecules in the preparation of MIP is an effort to produce low-cost and environmentally
friendly sensors. Research on the development of MIP-based electrochemical sensors from cassava
starch—Fe3O4—is a new breakthrough to produce sensors that are inexpensive, selective and sensitive
and environmentally friendly.

2. Materials and Method

2.1. Materials

Chemicals used in the experiments were acetaminophen standard (Sigma Aldrich, Surabaya,
Indonesia), caffeine standard (Sigma Aldrich), Britton Robinson (BR) buffer solution (pH 2–7), phosphate
buffer (PB) solution (pH 7), cassava starch (local product), sodium tripolyphosphate for synthesis,
sodium tripolyposphate STPP (Sigma Aldrich), glycerol for synthesis (Sigma Aldrich), sodium
hydroxide (Merck), ethanol (Merck), Fe3O4 50–100 nm (Sigma Aldrich).

The tools used in this study were glassy carbon working electrodes (GCE) with a disk diameter of
5 mm (Metrohm RDE.GC50) with electrode shafts, galvanostat potentiostat (Autolab PGSTAT204),
Shimadzu 8400S fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM)
FEI Inspect S50, pH meter Senz TI-13MO597, Yenaco YNC-OV-30L oven, shakers and glassware.

2.2. Preparation of MIP Membrane

The procedure for making sensors was adapted from experiments conducted by da Silva, N.,
Sechi, M., Teixeira, P.M. (2017) [6]. We added 2 g of cassava starch to boiling water, and stirred until
the volume reached 100 mL (2% w/v), then a few drops of 0.1 M NaOH solution were added to the
pH value of 10. Next, 22 mL STPP was added along with 11 mL acetaminophen and 11 mL caffeine
(concentrations of acetaminophen and caffeine as in Table 1). The mixture was stirred at 80 ◦C for
eight hours, then placed in a petri dish and dried at 80 ◦C overnight. The formed membrane was
removed and washed with 3 × 30 mL of ethanol until it is free of acetaminophen and caffeine, confirmed
spectrophotometry. The length of time for each washing step was one hour while shaken at 200 rpm.
The washed membrane is then dried in the oven for two hours at 50 ◦C. The membranes were made in
three different compositions, shown in Table 1.
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Table 1. Compositions of membrane for electrode modification.

Membranes
Percentage/(w/v)

Cassava Starch STPP Acetaminophen Caffeine

M211 2 1 1 1
M221 2 2 1 1
M222 2 2 2 2

2.3. Electrode Modifications

A 0.05 g of dry membrane, 2 mL of hot water (70 ◦C), and 15 µL glycerol was mixed and
continuously stirred for 30 min to form a homogeneous solution (viscous solution). Meanwhile,
the glassy carbon electrode (GCE) surface was rinsed with ethanol and dried at 50 ◦C for 30 min.
Next, the GCE surface was sprayed with a membrane suspension, then dried at 50 ◦C for 1 hour
30 min. An electrode modification was also made by adding 11 µL suspension of Fe3O4 nanoparticles
0.1% (w/v).

2.4. Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) Measurements

The measurement was carried out on acetaminophen (1 mM), caffeine (1 mM), and acetaminophen-
caffeine solutions (1:1 mM), in a BR buffer of pH 7. The electrodes used as a reference in the measurements
were Ag/AgCl (3 M KCl) and Pt wires used as auxiliary electrodes. The potential applied to the CV
is −0.1–1.8 volts vs Ag/AgCl (3 M KCl), with a scan rate of 0.1 V/s. The potential applied to DVP is
−0.3–1.6 volts with a scan rate of 0.01 V/s, amplitude modulation 0.025 V, modulation time 0.05 s,
and interval time 0.5 s.

3. Results and Discussions

3.1. Characterization of the Modified Electrode

The first step in electrode modification is to determine the optimum membrane composition.
The membrane composition is summarized in Table 1, where each membrane is then used to modify
the surface of the Glassy Carbon Electrode (GCE), to obtain the electrodes GCE-M211, GCE-M221 and
GCE-M222. Each of the three electrodes was evaluated based on a DPV voltammogram profile for
each acetaminophen and caffeine solution of 1 mM in a BR buffer of pH 7. The results of the study are
shown in Figure 3.
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Figure 3. Differential pulse voltammetry (DPV) voltammograms for acetaminophen and caffeine 1
mM each in Britton Robinson (BR) buffer pH 7 measured by working electrodes: unmodified glassy
carbon electrode (GCE-UM), GCE-M211 (GCE modified by M211), GCE-M221 (GCE modified by M221),
GCE-M222 (GCE modified by M222).
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As shown in Figure 3, the best voltammogram profile for acetaminophen is displayed by GCE-M211
and that for caffeine by GCE-M221. The peak current obtained by each electrode is shown in Figure 4,
which shows that the highest peak current for acetaminophen is exhibited by GCE-M222, while for the
caffeine is displayed by GCE-M221. Considering that caffeine levels in medicine sample samples are
10 times less than the level of acetaminophen, the GCE-M221 is chosen as the best electrode.
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Figure 4. Observed peak currents for acetaminophen and caffeine 1 mM in BR buffer pH 7, on various
working electrodes: GCE-UM (unmodified GCE), GCE-M211 (GCE modified by M211), GCE-M221
(GCE modified by M221), GCE-M222 (GCE modified by M222).

The peak potential (Table 2) for acetaminophen shifts slightly negative but remain in a tolerable
range. As for caffeine, there is no difference in peak potential for all modified GCEs, although there
is a shift towards negative compared to GCE-UM. This occurred allegedly because GCE-UM is less
sensitive to caffeine. By observing the data summarized in Table 2, it can be concluded that there is no
chemical interaction between acetaminophen and caffeine with the modified cassava starch membrane.
Structural changes that occur in cassava starch modified with STPP can be studied from the FTIR
spectrum (Figure 5). In the FTIR spectrum of cassava starch -modified, new peaks appear at wave
numbers of 1556 and 1512 cm−1, possibly correspond to P–O or P=O strain, and at 895 cm−1 that
belongs to the P–H strain.

Table 2. Peak potential for oxidation of acetaminophen and caffeine using working electrodes:
unmodified glassy carbon electrode (GCE-UM), GCE-M211, GCE-M221 and GCE-M222.

Electrode
Peak Potential/(volt) vs. Ag/AgCl

Acetaminophen Caffeine

GCE-UM 0.646057 1.47186
GCE-M211 0.661163 1.45676
GCE-M221 0.630951 1.45676
GCE-M222 0.630951 1.45676

The Fe3O4 nanoparticle was added into the modified cassava starch membrane to increase
sensitivity. The Fe3O4 can interact with the hydroxyl groups in the modified starch molecule so that
the membrane can form three-dimensional structures with wider pores. The presence of Fe3O4 can be
identified by SEM photographs (Figure 6), in which the membrane surface containing Fe3O4 appears
brighter than the background image. Figure 6a shows the membrane surface which is not added
with the Fe3O4 nanoparticles. The CV and DVP voltammograms for a mixture of acetaminophen and
caffeine using GCE-M221 and GCE-M221-Fe3O4 electrodes are shown in Figure 7. The increased peak
current in the voltammogram suggests that Fe3O4 can increase sensitivity, both for acetaminophen
and caffeine.
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Figure 7. Cyclic voltammetry (CV) (a) and DPV (b) acetaminophen and caffeine voltammograms,
1 mM each in BR with a pH of 7, measured by working electrodes of GCE-M221 (GCE modified by
M221), GCE-M221-Fe3O4 (GCE modified by M221 and Fe3O4 nanoparticles).
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The oxidation of acetaminophen and caffeine is influenced by the pH of the solution.
The experimental results shown in Figure 8 and summarized in Table 3 show that increasing the
pH value can shift the oxidation potential to a more negative direction, both for acetaminophen and
caffeine. Differential pulse voltammetry (DPV) data shows that the highest peak current occurs at
pH 2, thus subsequent DPV measurements are carried out at a pH 2. The condition of the electrolyte
solution affects the oxidation potential and peak current; therefore, these experiments are carried out
in two kinds of buffer solution pH 2, which are BR and PB. DPV data (Table 4) shows that in the PB
buffer solution, the caffeine peak current is slightly higher than that of in BR solution and the peak
potential was shifted in a positive direction.
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Figure 8. CV (a) and DPV (b) voltammograms of 1 mM acetaminophen and caffeine in BR pH 2–7,
respectively, measured with a working electrode of GCE-M221-Fe3O4.

Table 3. Peak potential (Ep) and peak current (Ip) of acetaminophen and caffeine 1 mM in various
Britton Robinson (BR) buffer solutions pH 2–7.

pH Ep/(Volt) vs. Ag/AgCl Ip/(µA)

Acetaminophen Caffeine Acetaminophen Caffeine

2 0.6215 1.4452 598 637
3 0.5711 1.4351 582 468
4 0.5216 1.4099 396 455
5 0.4712 1.3998 428 457
6 0.4166 1.3948 542 506
7 0.4079 1.3847 544 519

Table 4. Potential peak (Ep) and peak current (Ip) of acetaminophen and caffeine 1 mM in buffer pH 2,
BR 0.04 M and PB 0.04 M.

Compounds Ep/(volt) Ip/(µA)

BR PB BR PB

Acetaminophen 0.6445 0.6647 444 425
Caffeine 1.4746 1.4855 438 610

3.2. Quantitative Analysis

The quantitative relationship between the concentrations of acetaminophen and caffeine at peak
currents is shown in Figure 9b, with a DPV voltammogram (Figure 9a). The concentrations of
acetaminophen and caffeine are made equal in the range of 50–900 µM. The parameters of analysis for
acetaminophen and caffeine by DPV using GCE-M221-Fe3O4 are shown in Table 5.
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Figure 9. DPV acetaminophen and caffeine voltammograms at concentrations of 50–900 µM in PB pH 2
(a) and the curve of the relationship of acetaminophen and caffeine concentrations to peak currents (b),
measured by a working electrode of GCE-M221-Fe3O4.

Table 5. Analysis parameters of differential pulse voltammetry (DPV) with acetaminophen and caffeine
with GCE-M221-Fe3O4 as a working electrode.

No Parameters
Compound

Acetaminophen Caffeine

1 Linear range concentration/(µM) 50–2000 50–900
2 Sensitivity/(A/M) 0.5306 0.4314
3 Limit of Detection/(µM) 16 23

Figure 10 indicates that the sample contains substances that interfere with the peaks in the applied
potential area, as observed in the GCE voltammogram. Thus, it is proposed that the modified cassava
starch membranes are selective membranes. The formation of acetaminophen and caffeine templates
causes the molecules that reach the surface of GCE are only acetaminophen and caffeine, in which
these molecules then oxidized to the appropriate potential. The polymer molecules present in the
cassava starch reacted with STPP have been cross-linked (Figure 6) in a pattern that matches the
molecular structure of acetaminophen and caffeine. When washing the membrane with ethanol,
both acetaminophen and caffeine dissolve and leave traces of the appropriate shape of the associated
molecules. Furthermore, Fe3O4 nanoparticles can increase sensitivity because they can interact with
the -OH groups in the starch and form more rigid three-dimensional structures, (Figure 6b). Thus,
it can increase the number of acetaminophen and caffeine molecules that reach the surface of the GCE.

The validity of the method is confirmed from the accuracy of the analysis results, the results of the
analysis of acetaminophen and caffeine, simultaneously, with GCE-M221-Fe3O4 as a working electrode
on DPV, is presented in Table 6. The accuracy of the analysis results appears from an error of less than
2%, except for acetaminophen in the “O” sample. The accuracy for acetaminophen in all samples was
better compared to that for caffeine. This happens because the concentrations of caffeine are 6–9 times
less than that of acetaminophen.

The application of the electrodes for measurements was carried out on headache medicines from
three commercially available samples, namely samples P, B and O. Accuracy testing was done by
comparing the levels of acetaminophen and caffeine analysis results with levels in the sample, based on
what was stated on the label. Measurement of samples using unmodified GCE and GCE-M221-Fe3O4,
and the obtained voltammograms are shown in Figure 10.
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Figure 10. DPV voltammogram sample P (a), sample B (b) and sample O, (c) Each sample was dissolved
in PB pH 2, measured both by GCE-M221-Fe3O4 and unmodified GCE as the working electrode.

Table 6. Recovery of acetaminophen and caffeine from P, B, and O samples dissolved in PB pH 2,
determined by DPV with GCE-M221-Fe3O4 as the working electrode.

Sample Real mg/tablet Recovery mg/tablet Recovery (%)

Acet * Caffeine Acet * Caffeine Acet * Caffeine

P 600 65 591 64 98.50 ± 1.20 98.40 ± 2.02
B 600 50 587 48 97.83 ± 1.02 97.74 ± 1.95
O 500 35 480 34 96.11 ± 0.90 98.66 ± 2.56

* Acetaminophen.

4. Conclusions

Cassava starch can be used as a functional polymer in the development of electrochemical sensors
for simultaneous detection of acetaminophen and caffeine, in headache medicine samples. The ratio of
starch Manihot composition:STPP:acetaminophen/caffeine in the process of making MIP membrane
affects the sensitivity of the sensor. The best MIP membrane is produced at a ratio of 2:2:1. Fe3O4

nanoparticles are proven to increase sensor sensitivity. The performance of the sensors is influenced by
the pH and type of buffer solution. The sensor works optimally at pH 2 in PB solution. Sensors obtained
from GCE modified with MIP cassava starch-Fe3O4 membrane have better selectivity and sensitivity
and can be applied to headache medicine samples, with 96–99% accuracy and RSD 0.9–2.56%.
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