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Abstract: The Wigner–Eckart theorem is used for considering the collective effects related to ordering
spins in systems of identical particles in ferro- and antiferromagnetic electronic systems, as well as
magnetic effects that occur in high spin systems. The Hamiltonian, written in the spin representation
in the form obtained by Heisenberg, Dirac, and van Vleck used to describe spin ordering in systems
of particles with spin 1/2, is not appropriate for a description of particle systems with a spin different
from 1/2. “High” spin particles in the spin representation need other forms of the Hamiltonian
of the exchange interaction in the spin representation. The Hamiltonian for high-spin particles
has been developed from the first principles, and the effects of magnetic ordering in systems of
identical particles with arbitrary spin are considered in this review. An effect of giant negative
magnetoresistance in the Indium antimonide has been interpreted from the exchange contribution of
a high spin heavy holes point of view.

Keywords: angular momentum; spinors; permutation; high spin; magnetization; heavy holes; giant
negative magnetoresistance

1. Introduction

The Wigner–Eckhart theorem [1,2] is widely used when considering the collective effects related
to ordering spins in systems of identical particles with their own mechanical moments of arbitrary
magnitude. This includes spin ordering effects in ferro- and antiferromagnetic electronic systems, as well
as the magnetic effects that occur in the cold atomic Bose and Fermi condensates. The Hamiltonian,
written in the spin representation in the form obtained by Heisenberg, Dirac, and van Vleck [3–5],
is commonly used to describe a spin ordering in systems of particles with spin 1/2 . The description
of particle systems with a spin different to 1/2, the “high” spin, in the spin representation should
not be described by the Heisenberg–Dirac–van Vleck Hamiltonian, since the latter takes into account
the symmetry properties of the total wave function and its spin part is associated with the particle
system with spin 1/2 only. Particle systems with spins other than 1/2, or the so-called “high” spins,
have been intensively studied since the beginning of the 1990s and form a large set of theoretical works
in the field of quantum gases and statistical physics. These systems have a number of properties that
are fundamentally different from the properties of similarly arranged systems of localized spins 1/2.
The structure of the ground state, the excitation spectrum, and the behavior at critical points all have a
character completely dissimilar to the behavior magnetic systems with a spin of 1/2.

A theoretical study of anisotropic antiferromagnets with particle spin 1 [6–8] was stimulated
by experiments with Bose–Einstein condensates in optical traps. Optical traps, to compare to the
magnetic traps, do not destroy the atomic spin degree of freedom, which makes it possible to observe
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macroscopic quantum phenomena associated with the spin orientation [1]. For example, a detected
fragmentation of the ground state with several ordered magnetic phases appeared instead of a single
ground state [2,3]. In particular, the ground state of systems with spin s = 1 is a singlet, although
magnetic fluctuations with the appearance of so-called magnetic or cyclic states are very strong [3].
The ground state of systems with spin s = 2 is the ferromagnetic state [9].

Haldane [10,11] initiated an investigation into the magnetic properties of high-spin particle
systems in the condensed matter theory long before the experimental implementation of Bose–Einstein
condensates in 1995. To describe the antiferromagnetic chain, Haldane [10,11], and later his followers
Affleck, Kennedy, Lieb, and Tasaki [12–14], used the Hamiltonian of the exchange interaction in the
extended S–1-model with the inclusion, in addition to the bilinear (Heisenberg) term, of a biquadratic
term with undetermined coefficients, with which they analyzed the intermediate phases. The variety
of phases predicted for the chain with spin 1 is directly related to the coefficients in the bilinear and
biquadratic terms in the Hamiltonian of the exchange interaction in the spin representation. Therefore,
the exact form of the Hamiltonian describing the behavior of the system with spin 1, and in general,
with arbitrary spin, is crucial for the statistical description of high-spin systems and for the analysis of
critical phenomena occurring in such systems. In [15,16], an attempt was first made to obtain the ab
initio Hamiltonian of a system of particles with spins different than 1/2. Here we give deeper and more
detailed foundations of the proposed ab initio method for the derivation of the Hamiltonian of the
exchange interaction in the spin representation.

Manganese doped InSb is a unique material, and has demonstrated a metal–insulator transition
under a variety of physical parameters, such as variations the in magnetic field, uniaxial and hydrostatic
compression, and so on. The results of experiments with manganese doped InSb explore the colossal
magnetoresistance effect [17]. An interpretation of these phenomena is a matter of discussion for the
foreseeable future. One of the reasons for the appearance of the negative magnetic resistance effect in a
compressed indium antimonide crystal in a magnetic field, in our opinion, may be a change in the
exchange interaction of heavy holes with a 3/2 spin. The gap energy ∆ in InSb(Mn) is a function of
the temperature, magnetic field, and value of mechanical stress. Antiferromagnetic properties in a
system of high-spin particles (heavy holes) are a matter of exchange interaction and spin symmetry.
The existence of giant negative magnetoresistance in the millikelvin range of temperature gives rise
to the creation of advanced cryogenic devices, such as thermometers, bolometers, and also selective
sensors for millimeter and radio-frequency wavelength [17].

2. Prerequisites from the Quantum Theory of Angular Momentum

It is known [2] that the set of all possible rotations forms a group of rotations of three-dimensional
space, which is referred to as R3. The transformation matrices defined in the orthogonal basis form
representations of the rotation group—each rotation is represented by an orthogonal nonsingular
matrix, R, whose determinant is equal to unity, det (R) = + 1, and which has an inverse matrix, R−1, such
that that R·R−1 = I, where I is the identity matrix. The set of these matrices is closed with respect to the
operation of group multiplication and, therefore, forms a group, which is denoted as SO (3)—a special
orthogonal group of three-dimensional space. All transformations in this group preserve distances
and angles. It is well known, and such a group is spoken of as an isometric group. The term “special”
means that the determinant of the transformation matrix can only be +1. In turn, this means that the
group does not include rotational–reflex transformations. For this reason, elements of the rotation
group are also called true rotations or simply rotations, while rotational–reflex transformations are
called pseudo-rotations. [2] To determine each element of the rotation group, it is necessary to specify
only three real parameters (three angles), even though the rotation matrix contains nine elements.
However, not all nine elements are independent. Six of them are related by the requirement of equality
of the determinant to unity and orthogonality relations. From this point of view, the rotation group has
a dimension equal to three [18].
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In the case of matrices transforming spinors during coordinate system transformations, a
continuous set of unitary (2 × 2) -matrices S having a determinant equal to +1 forms a group
of spinor transformations that is isomorphic to SU (2), a special unitary group of a two-dimensional
complex space. Indeed, the set of these matrices is closed under the multiplication operation has the
identity element I, and each matrix S has an inverse matrix S−1 such that S S−1 = I. The dimension of
the group SU (2), as well as the dimension of the group SO (3), is three, since the four elements of the
unitary matrix are connected by the requirement that the determinant be equal to unity, which leaves
three parameters independent—rotation angles [2,19].

As shown in [2,20], each (2 × 2) -matrix S transforming the components of the spinor is associated
with a (3 × 3) -matrix R describing the rotation of the coordinate system, i.e., transforming the
components of the vector. In other words, arbitrary rotation from the group SO (3) can be induced
by the corresponding matrix from SU (2). However, the important circumstance should be noted.
In fact, this rotation can be induced not only by the matrix S but also by the matrix - S. This means
that each element from the group SO (3) corresponds to more than one element from the group SU (2)
(which would mean an isomorphism of these two groups), and the set consisting of two elements of
the group SU (2), {S, - S}. Such a correspondence between the elements of two groups demonstrates
a homomorphism of the group SU (2) to the group SO (3). So, when you turn by an angle equal to
2π, the vector functions return to their original value (see, for example, [2]), whereas, with the same
rotation, the spinor transformation leads to its multiplication by an additional phase factor equal to
(−1) 2S = −1 (here S – is a magnitude of spin, S = 1/2).

In more detail, for the general regulations of the transformation of vector functions and spinors
of arbitrary rank, during three-dimensional rotations, we consider an “active” rotation as a rotation
in which the physical body experiences a real turn. The initial coordinate system is called the
“laboratory system”. The coordinate system rigidly connected with the body rotates relative to the
laboratory system.

The active rotation changes the direction of the vector r. The new vector is r′. The function Ψ (r)
is transformed into Ψ (r′), which should be connected with the initial function Ψ (r) and vice versa by
linear transformations, [20].

ψ(r′) = R̂a(n,ω)ψ(r), ψ(r) = R̂−1
a (n,ω)ψ(r′), (1)

where R̂a(n,ω) is the active rotation operator on the angleω around the axis directed along the vector
n, and R̂−1

a (n,ω) is the inverse active rotation operator has the form, respectively:

R̂a(n,ω) = eωn·[r×∇r], R̂−1
a (n,ω) = e−ωn·[r×∇r], (2)

or, in another form, using a quantum mechanical angular momentum operator
(
L̂ = −i[r×∇r]

)
, the

finite rotation operator will be as follows:

R̂a(n,ω) = eiωn·L̂, R̂−1
a (n,ω) = e−iωn·L̂. (3)

The operators L̂x, L̂y, and L̂z are associated with generators of rotations around the corresponding
axes. In the Cartesian basis, we have for the projections of the angular momentum:

L̂i = −i
∑

jk

εi jkx j ∂

∂xk
=

∑
jk

(
=̂i

)
jk

x j ∂

∂xk
, (4)
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where εi jk is the Levi–Civita symbol, x j is a contravariant component of the vector r presented in the

Cartesian basis,
(
=̂i

)
jk
= −iεi jk is matrices of rotation generators:

(
=̂x

)
jk
=


0 0 0
0 0 −i
0 i 0

,
(
=̂y

)
jk
=


0 0 i
0 0 0
−i 0 0

,
(
=̂z

)
jk
=


0 −i 0
i 0 0
0 0 0

 (5)

The presented matrices are called rotation generators around the axes X, Y, Z.
Thus, the Operators (2) and (3) represented in the equivalent form with accounting (4) and (5) in

the case when they describe coordinate transformations, so in particular,

ψ(r′) = R̂a(n,ω)ψ(r) = eiωn·L̂ψ(r), r′ = R̂a(n,ω)r = eiω(n·=̂)r. (6)

In the case of the spin particle, the particle wave function in quantum mechanics is a function of
spatial, r, time, t, and spin, σ, variables, that is, it can be denoted as Ψ (r, t, σ). This function must also
be an eigenfunction of the spin projection operator on the quantization axis, Sz, and, therefore, in the
nonrelativistic case, must have two components corresponding to two possible eigenvalues of this
operator, σ = +1/2 and σ = −1/2, for spin S = 1/2. Such a two-component function is called a spinor and
is denoted as a one-column matrix with components Ψσ.

ψ(r, t, σ) =
(
ψ1/2(r, t)
ψ−1/2(r, t)

)
= ψ1/2(r, t)χ1/2,1/2 +ψ−1/2(r, t)χ1/2,−1/2, (7)

where χs,σ is the basis spin functions and have the form:

χ1/2,1/2 =

(
1
0

)
, χ1/2,−1/2 =

(
0
1

)
, χ†1/2,1/2 =

(
1 0

)
, χ†1/2,−1/2 =

(
0 1

)
. (8)

We discuss the construction of the rotation matrix for spinors and basis spin functions
corresponding to the spin S = 1/2. It will be important when generalizing the concept of spinor
when describing systems with arbitrary spin using irreducible representations of the groups SU (2)
and SO (3). We assume that the particle is a point one and is located at the origin, then the rotation
of the coordinate system will not change the spatial coordinates, and the projection of the spin on
the quantization axis will change. In the general case, the linear transformation S, which is a rotation
of the coordinate system, connects two basis sets (χ1/2,1/2,χ1/2,−1/2) and (χ′1/2,1/2,χ′1/2,−1/2) and

can be represented as
(
χ′1/2,1/2 χ′1/2,−1/2

)
=

(
χ1/2,1/2 χ1/2,−1/2

)
Ŝ, or χ′1/2,µ′ =

∑
µ
χ1/2,µŜµµ′ . So,

the spinor in the new coordinate system can be written as

ψ′(r, t, σ) = Ŝψ(r, t, σ) =
∑
µ

ψµ(r, t)Ŝχµ =
∑
µµ′
ψµ(r, t)χ′µ′ Ŝµ′µ =

∑
µ′
ψµ
′

(r, t)χµ′ , (9)

where for the spinor components we have

ψ′µ
′

(r, t) =
∑
µ

Ŝµ′µψµ(r, t). (10)

The linear transformation matrix S applied to the spinor coincides with the Wigner D-function [21]
Ŝµ′µ = D1/2

µ′µ(α, β,γ), where α, β,γ are the Euler angles. So then,

χ′1/2,µ′ =
∑
µ

χ1/2,µD1/2
µµ′ (α, β,γ) and ψ′µ

′

(r, t) =
∑
µ

D1/2
µ′µ(α, β,γ)ψµ(r, t). (11)
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Such transformations could be written in terms of rotation on the angleω around the axis directed
along the vector n as follows. The transformation of a spinor during a rotation on the angleω around

the direction n in general case is
(
ψ′1/2(r, t)
ψ′−1/2(r, t)

)
= R̂S(n,ω)

(
ψ1/2(r, t)
ψ−1/2(r, t)

)
, where the spin rotation

operator R̂S(n,ω) (a passive rotation) and its inverse operator R̂−1
S (n,ω) are

R̂S(n,ω) = e−iω(n·ŝ) = e−iω2 (n·σ̂), R̂−1
S (n,ω) = eiωn·ŝ = eiω2 (n·σ̂). (12)

We can easily write both of operators by using the three-dimensional rotation generator of

the spinor
(
<̂

)i j
= − i

4

(
σ̂iσ̂ j − σ̂ jσ̂i

)
, the same as a generator

(
=̂i

)
jk

= −iεi jk of finite rotations in

three-dimensional space (5)

R̂S(n,ω) = exp
(
−iω2 (n · σ̂)

)
= exp

iω
∑
k

nk
∑
i j
<̂

i j

,

R̂−1
S (n,ω) = exp

(
iω2 (n · σ̂)

)
= exp

−iω
∑
k

nk
∑
i j
<̂

i j

.
(13)

For the matrix elements of the three-dimensional turn in the (n,ω)-representation, or (ω, Θ,
Φ)-representation, where angles Θ, Φ determines a direction of the vector n, and are commonly
denoted by Us

µµ′(ω; Θ, Φ) =
〈
sµ

∣∣∣e−iω(n·ŝ)
∣∣∣sµ′〉. This matrix element is associated with the Wigner

D-function [21] as

Us
µµ′(ω; Θ, Φ) =

∑
µ′′

Ds
µµ′′(Φ, Θ,−Φ)e−iµ′′ωDs

µ′′µ′(Φ,−Θ,−Φ). (14)

Hence, we may write the spinor elements transition in the term of (ω, Θ, Φ)-angles as follows:

ψ′µ
′

(r, t) =
∑
µ

U1/2
µ′µ (ω; Θ, Φ)ψµ(r, t) and

ψµ(r, t) =
∑
µ′
ψµ
′

(r, t)U1/2∗
µ′µ (ω; Θ, Φ).

(15)

Now we note the rules for transforming complex conjugate spinors. Because of the Wigner
D-function properties, the complex conjugate spinor component ψ1/2 ∗ transforms when the coordinate
system rotates as ψ −1/2, while the component ψ − 1/2 ∗ transforms as –ψ1/2. As is known (see,
for example, [22]), this property is related to the property Schrödinger equations (i.e., nonrelativistic
equations) with respect to time reversal. The wave function is replaced by a complex conjugate. With
the same transformation, the sign of the projection of the angular momentum is changed. Since the
nonrelativistic description of the particle should be invariant under the substitution t→ −t and ψ
→ ψ∗, the complex conjugate components of spinors in their properties should be equivalent to the
components corresponding to the opposite projections of spins. The mathematical expression of this
property is the following spinor transformation formulas:

ψ′µ
′

∗ (r, t) =
∑
µ

D1/2∗
µ′µ (α, β,γ)ψµ ∗ (r, t) =

∑
µ

U1/2∗
µ′µ (ω; Θ, Φ)ψµ ∗ (r, t),

ψµ ∗ (r, t) =
∑
µ′
ψ′µ

′

∗ (r, t)D1/2
µ′µ(α, β,γ) =

∑
µ′
ψ′µ

′

∗ (r, t)U1/2
µ′µ (ω; Θ, Φ).

(16)

The similarity of the transformation laws of the vectors and spinors components allows us to
consider the components of the spinorΨ (r, t, σ) as contravariant components of a two-component vector
in a two-dimensional complex vector space. Then, it is possible to introduce covariant components,
Ψµ (r, t), which are associated with the contravariant following the rules for raising and lowering
indices [22]:

ψ1/2(r, t) = ψ−1/2(r, t), ψ−1/2(r, t) = −ψ1/2(r, t), (17)
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which are usually formulated in a compact form using a metric spinor:

(g)µν = (g)µν =
(

0 1
−1 0

)
,

gνµ = gνµ = −gµν = −gµν.
(18)

The metric spinor is antisymmetric with respect to the indices permutation. The columns of the
metric spinor are the eigenvectors of the matrices s2 and sz corresponding to the eigenvalues s (s + 1) =

3/4 and ± 1/2, which determines the natural connection between the algebra of two-component spinors
and the description of the particle with spin s = 1/2.

The description of the transformations of the wave functions of a particle with a spin S different
from 1/2 during rotations of the coordinate system does not differ significantly from the description
of the wave functions transformations of a system of particles n = 2S with spins 1/2 if the spins are
aligned so that in total they form spin S. In turn, this means that the wave function of such a system
can be represented as a symmetric spinor of rank r = 2S. If, in the general case, the spin function of a
system of particles is a certain spinor, then by the method of symmetrization / antisymmetrization
(like the symmetrization and antisymmetrization of the components of reducible tensors), one can
organize the spinor components into sums of symmetric and antisymmetric spinors. Antisymmetric
spinors are equal to zero for all ranks above the second. The antisymmetric spinor of the second
rank is invariant with respect to the rotations of the coordinate system, that is, it behaves like a scalar.
As for symmetric spinors, the highest rank of the spinor, which describes a system of particles with
spin S, will be r = 2S. The number of independent components of such a spinor will be 2S + 1. When
transforming the coordinate system, these quantities are transformed through each other. Their number
cannot be reduced by any linear transformation. That is, these components can be used to construct
structures similar to irreducible tensors. When rotated by an angle equal to 2π, the vector functions
return to their original value, while during the same rotation, the transformation of the spinor leads to
its multiplication by an additional phase factor equal to (−1) 2S = −1 for the odd S and (−1) 2S = 1 for
the even S. It is this property of spinor transformations during rotation that determines the sign of
the permutation operation according to the principle of the indistinguishability of identical particles.
So, the component of an arbitrary symmetric spinor of rank 2S is the expansion coefficient of the spin
function χ2S for spin S in the products of the basic functions,

χS =
S∑

M=−S

ψ
1... /... 2.....S+M .... 1... /... 2...− 1..../ 2.......S−M −.... 1..../ 2....
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1/ 21/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2 1/ 2

1
( , ) ( ) ( ) .

( )!( )!

S M S M

SMП
S M S M

   + −

− −=
+ −

 (20) 
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' '1 / 2.. . 1 / 2 1 / 2 ... 1 / 2 1 / 2.. . 1 / 2 1 / 2 ... 1 / 2

'' ( , ),S M S M S M S M S
M M

M

D a b + − + −− − − −
=

 
(21) 

where a, b are the Cayley–Klein parameters [2]. 

The inversion of the coordinate system, S (x, y, z) → S (x = −x, y = −y, z = −z), with respect to the 

origin, changes the directions of the coordinate axes to the opposite. The initial and final coordinate 

systems cannot be connected by any continuous transformation, that is, inversion is a discrete 

transformation. Like other single reflection transformations, a single inversion changes the relative 

orientation of the coordinate axes, converting the left coordinate system to the right and vice versa.  

The transformation of the scalar function ψ (r) under coordinate inversion reduces to replacing 

ˆ ˆ( ) ( ) ( ).I I  = = −r r r  

If the function ψ (r) is an eigenfunction of the inversion operator, then its eigenvalue is 

determined from the equation: 

SM(χ1/21/2,χ1/2−1/2) (19)

where we introduced the notation for the normalized product of basic functions as
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For symmetric spinors of rank r = 2S, we find that these spinors transform when the coordinate 

system rotates as follows: 

' '1 / 2.. . 1 / 2 1 / 2 ... 1 / 2 1 / 2.. . 1 / 2 1 / 2 ... 1 / 2

'' ( , ),S M S M S M S M S
M M

M

D a b + − + −− − − −
=

 
(21) 

where a, b are the Cayley–Klein parameters [2]. 

The inversion of the coordinate system, S (x, y, z) → S (x = −x, y = −y, z = −z), with respect to the 

origin, changes the directions of the coordinate axes to the opposite. The initial and final coordinate 

systems cannot be connected by any continuous transformation, that is, inversion is a discrete 

transformation. Like other single reflection transformations, a single inversion changes the relative 

orientation of the coordinate axes, converting the left coordinate system to the right and vice versa.  

The transformation of the scalar function ψ (r) under coordinate inversion reduces to replacing 

ˆ ˆ( ) ( ) ( ).I I  = = −r r r  

If the function ψ (r) is an eigenfunction of the inversion operator, then its eigenvalue is 

determined from the equation: 

SM(χ1/21/2,χ1/2−1/2) =
1√

(S + M)!(S−M)!
(χ1/21/2)

S+M(χ1/2−1/2)
S−M. (20)

For symmetric spinors of rank r = 2S, we find that these spinors transform when the coordinate
system rotates as follows:

ψ
′ 1... /... 2.....S+M′ .... 1... /... 2...− 1..../ 2.......S−M′ −.... 1..../ 2.... =

∑
M

ψ
1... /... 2.....S+M .... 1... /... 2...− 1..../ 2.......S−M −.... 1..../ 2....DS

M′M(a, b), (21)

where a, b are the Cayley–Klein parameters [2].
The inversion of the coordinate system, S (x, y, z) → S (x = −x, y = −y, z = −z), with respect

to the origin, changes the directions of the coordinate axes to the opposite. The initial and final
coordinate systems cannot be connected by any continuous transformation, that is, inversion is a
discrete transformation. Like other single reflection transformations, a single inversion changes the
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relative orientation of the coordinate axes, converting the left coordinate system to the right and
vice versa.

The transformation of the scalar function ψ (r) under coordinate inversion reduces to replacing

Îψ(r) = ψ(Îr) = ψ(−r).

If the function ψ (r) is an eigenfunction of the inversion operator, then its eigenvalue is determined
from the equation:

Îψ(r) = λIψ(r). (22)

Due to the double action of the inversion operator on the eigenfunction, it gives the following
equation:

ÎÎψ(r) = λ2
Iψ(r) = ψ(r),

We have λ2
I = 1,⇒ λI = ±1. That means, that with the inversion operator acting on a scalar

function, this function can change sign (true scalar or just a scalar) or remain unchanged (pseudoscalar).
The Cartesian components of the true vector with a single inversion are converted as

A′i′=x′,y′,z′ =
∑

j=x,y,z

(
ÎS→S′

) j

i′
A j = −Ai′ (23)

The rules for transforming the Cartesian components of the pseudovector and pseudotensor for a
single inversion contain an additional factor equal to the determinant of the transformation,

A′i′=x′,y′,z′ = det
(
ÎS→S′

) ∑
j=x,y,z

(
ÎS→S′

) j

i′
A j = Ai′ (24)

When formulating similar rules for the Cartesian components of tensors, it is necessary to take
into account that sometimes some components of the tensor behave as components of a true tensor,
while other components of the same tensor are transformed as components of the pseudotensor. If the
tensor is homogeneous, that is, all components belong to the same type, then the transformation rules
for the true tensor can be represented as

T′i′1i′2...i
′
p
=

∑
j1 j2... jp

(
ÎS→S′

) j1
i′1

(
ÎS→S′

) j2
i′2
. . .

(
ÎS→S′

) jp
i′p

T j1 j2... jp = (−1)pTi′1i′2...i
′
p

(25)

and for the pseudotensor, as follows:

T′i′1i′2...i
′
p
= det

(
ÎS→S′

) ∑
j1 j2... jp

(
ÎS→S′

) j1
i′1

(
ÎS→S′

) j2
i′2
. . .

(
ÎS→S′

) jp
i′p

T j1 j2... jp = (−1)p+1Ti′1i′2...i
′
p

For the transformations of spinors during the inversion in the case of s = 1/2, we have the following:

ψ′(r′, t, σ) =
(
ψ′1/2(r′, t)
ψ′−1/2(r′, t)

)
= Î

(
ψ1/2(r, t)
ψ−1/2(r, t)

)
=

(
ψ1/2(−r, t)
ψ−1/2(−r, t)

)
=

=

(
λI 0
0 λI

)(
ψ1/2(r, t)
ψ−1/2(r, t)

)
= λIψ(r, t, σ).

(26)

If we perform the double action of the inversion operator on the eigenspinor

ÎÎ
(
ψ1/2(r, t)
ψ−1/2(r, t)

)
=

(
λ2

I 0
0 λ2

I

)(
ψ1/2(r, t)
ψ−1/2(r, t)

)
= λ2

Iψ(r, t, σ), (27)
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Then, unlike the case when we operate on a scalar function, the spinor does not necessarily return
to the initial value, Ψ (r, t, σ), even if the coordinate system S returns to the original S = S. Indeed, the
double the action of the inversion operator can be understood as the result of rotation of the coordinate
system [1] by a zero angle or by an angle 2π. In the first case, the spinor goes into itself, i.e., λ2

I = 1 or
λI = ±1. In the second case, since the spinor components change sign when rotated through an angle
of 2π, λ2

I = −1 or λI = ±i.
For the case of the system of identical two particles with arbitrary spins s, where the symmetric

(19), (21) spinors of rank r = 2s describe each particle, the spinor of this system in the system of the
mass center has the form:

ψ(r1 = r, r2 = −r, t, ξ1, ξ2) = ψ(r1 = r, t, ξ1)ψ(r2 = −r, t, ξ2),

then the inversion operation, applied to this spinor, is equivalent to the permutation P̂1,2 operation, so
then P̂1,2ψ(r1 = r, r2 = −r, t, ξ1, ξ2) = (−1)2sψ(r1 = r, r2 = −r, t, ξ1, ξ2).

3. Spin Hamiltonian of Identical Particles System with Arbitrary Spins

This section discusses obtaining the form of the Hamiltonian of the exchange interaction in the
spin representation and considers the effects of magnetic ordering in systems of identical particles
with arbitrary spin. It should be noted that in strongly correlated systems, such as ferromagnetic
(antiferromagnetic) materials, where the correlation length is much greater than the average distance
between the electrons, a state with a definite total spin within the correlation region can also form, and
this full spin as well as in isolated systems, is a motion integral.

Consider the Hamiltonian Ĥ(r1, r2) that describes the pairwise interaction of two identical particles,
given in the coordinate representation, which can be represented as the sum of the Hamiltonians of
two independent particles:

Ĥ0(r1, r2) = ĥI(r1) + ĥII(r2), (28)

and pair interaction operator V̂(r1, r2):

Ĥ(r1, r2) = Ĥ0(r1, r2) + V̂(r1, r2). (29)

In the nonrelativistic case, the complete Hamiltonian (29), in the absence of a spin–orbit interaction,
is invariant under the particle permutation described by the operator P̂1,2, and it also commutes with
the total spin operator S of the particles in the system:

[Ĥ(r1, r2), P̂1,2] = 0,
[Ĥ(r1, r2), Ŝ] = 0,
[Ĥ(r1, r2), Ŝ2].

(30)

This means that in the stationary case, the total energy E of the system, the total spin S, its projection
Sz, and the parity g of the permutation are conserved and at the same time, are precisely measurable
quantities that determine the complete set of parameters characterizing the system. Eigenfunctions of
single-particle Hamiltonians ĥI(r1) and ĥII(r2), corresponding to the states Ik, IIl with energies εIk, εIIl,
respectively:

ĥI(r1)ψIk(r1, ξ1) = εIkψIk(r1, ξ1),
ĥII(r2)ψIIl(r2, ξ2) = εIIlψIIl(r2, ξ2),

(31)

are the products of the spatial and spin parts of the 1st and 2nd particles, respectively,

ψIk(r1, ξ1) = φk(r1)χ1(ξ1),
ψIIl(r2, ξ2) = ϕl(r2)χ2(ξ2).

(32)
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The solution of the stationary Schrödinger equation for two identical particles, in the absence of
interaction, in accordance with (30), is (2s+1)-times degenerate in terms of the total spin S, where s is
each particle spin. The total function Ψkl(r1, ξ1, r2, ξ2), taking into account the indicated degeneracy,
corresponding to the energy value E0 = εk + εl, which is the eigenfunction of the Hamiltonian (28).

Ĥ0(r1, r2)Ψkl(r1, ξ1, r2, ξ2) = E0Ψkl(r1, ξ1, r2, ξ2) ≡ (εk + εl)Ψkl(r1, ξ1, r2, ξ2) meets to the
symmetry requirements with respect to the permutation operation:

P̂1,2Ψkl(r1, ξ1, r2, ξ2) = Ψkl(r1, ξ1, r2, ξ2) = (−1)2sΨkl(r1, ξ1, r2, ξ2) (33)

Here is the total permutation parity g = 2s. The total permutation operation of indices 1 and 2
includes the permutation of the spatial coordinates of particles 1 and 2 and the values of the projections
sz1, sz2 of the spins on the Z axis of these particles: P̂1,2 = P̂r1,r2 P̂sz1,sz2 . A two-particle function can
always be represented as a simple product of its coordinate and spin parts:

Ψkl(r1, ξ1, r2, ξ2) = Φkl(r1, r2) ·X(ξ1; ξ2), (34)

the symmetry properties of which with respect to the permutation operation are determined as follows:
(1) The symmetry of the spin part of the system of two identical particles is determined by the

symmetry of the Clebsch–Gordan coefficients (or 3j-symbols) [2]:

X(ξ1, ξ2) = |S, Sz〉 =
∑

s1zs2z

CSSz
s1s1zs2s2z

|s1, s1z〉|s2, s2z〉, (35)

where symmetry properties of the Clebsch–Gordan coefficients are

CSSz
ss1zss2z

= (−1)2s−SCSSz
ss2zss1z

(36)

or
P̂sz1,sz2X(ξ1, ξ2) = (−1)2s−SX(ξ1, ξ2) (37)

where S is the total spin value of the particles system.
(2) The symmetry of the spatial part of the two-particle function (34) is determined as the result of

the action of the permutation operator on the Function (34) taking into account (33) and (36), (37):

P̂1,2Ψkl(r1, ξ1, r2, ξ2) = P̂r1,r2 Φkl(r1, r2)P̂sz1,sz2X(ξ1, ξ2) = (−1)2sΨkl(r1, ξ1, r2, ξ2);
P̂r1,r2 Φkl(r1, r2)(−1)2s−SX(ξ1, ξ2) = (−1)2sΨkl(r1, ξ1, r2, ξ2);
P̂r1,r2 Φkl(r1, r2) = (−1)SΦkl(r1, r2).

(38)

The first correction to energy, taking into account the interaction of particles defined in the
coordinate space (in the first order of the perturbation theory), has a well-known form [22]:

E(1) = K ±A,
K =

〈
φk(r1)ϕl(r2)

∣∣∣V̂(r1, r2)
∣∣∣ϕl(r2)φk(r1)

〉
,

A =
〈
ϕl(r1)φk(r2)

∣∣∣V̂(r1, r2)
∣∣∣ϕl(r2)φk(r1, r2)

〉
,

(39)

where K is a “direct” Coulomb and A is an exchange contribution. The sign in front of the exchange
contribution is determined precisely by the symmetry property of the spatial part of Function (34),
established in Relation (38). Thus, the correction to the energy due to the interaction in the spatial
coordinate representation is determined according to (38) by the value of the total spin:

E(1) = K + (−1)SA. (40)
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Now the main goal is to construct in the spin representation the Hamiltonian of a system of
identical particles, which describes the interaction defined in spatial coordinates. For this, it is necessary
to obtain an explicit form of the parity operator; we denote it by Ĝs1,s2 acting in the spin representation
directly on the spin part (35) of Function (34), however, the eigenvalue of which will be the parity value
of the permutation of the coordinate part of the wave function (38):

Ĝs1,s2X(ξ1, ξ2) = (−1)SX(ξ1, ξ2);
Ĝs1,s2 |S, Sz; s1s2〉 = Ĝs1,s2

∑
s1zs2z

CSSz
s1s1zs2s2z

|s1, s1z〉|s2, s2z〉 = (−1)S
|S, Sz; s1s2〉. (41)

Thus, there is a system of (2s + 1) Equation (41) that allows the unambiguous determination of
(2s + 1) free coefficients. We search for the parity operator Ĝs1,s2 in the form of a series expansion in
powers of the scalar products of the spin operators of interacting particles:

Ĝs1,s2 = c2s(ŝ1 · ŝ2)
2s + c2s−1(ŝ1 · ŝ2)

2s−1 + . . .+ c1(ŝ1 · ŝ2) + c0 (42)

Substituting (42) into (41), we have a system of algebraic equations that uniquely determines the
desired coefficients in Expansion (42):

c2s

(
0(0+1)−2s(s+1)

2

)2s
+ c2s−1

(
0(0+1)−2s(s+1)

2

)2s−1
+ . . . c1

(
0(0+1)−2s(s+1)

2

)
+ c0 = (−1)0

c2s

(
1(1+1)−2s(s+1)

2

)2s
+ c2s−1

(
1(1+1)−2s(s+1)

2

)2s−1
+ . . . c1

(
1(1+1)−2s(s+1)

2

)
+ c0 = (−1)1

. . . . . . . . . .

c2s

(
S(S+1)−2s(s+1)

2

)2s
+ c2s−1

(
S(S+1)−2s(s+1)

2

)2s−1
+ . . . c1

(
S(S+1)−2s(s+1)

2

)
+ c0 = (−1)S

. . . . . . . .

c2s

(
2s(2s+1)−2s(s+1)

2

)2s
+ c2s−1

(
2s(2s+1)−2s(s+1)

2

)2s−1
+ . . . c1

(
2s(2s+1)−2s(s+1)

2

)
+ c0 = (−1)2s

(43)

Thus, Hamiltonian with the Interaction (29) can be replaced by the Hamiltonian acting in the spin
space:

Ĥ = E0 + K + AĜs1,s2 . (44)

Generalizing the case of a system of particles with arbitrary spin s and omitting the constant
corresponding to the energy of the ground state of noninteracting particles, we obtain the Hamiltonian
taking into account the pair interaction in the form:

Ĥint =
∑
k<l

Kkl +
∑
k<l

AklĜsk,sl , (45)

Here, Equations (42) and (43) uniquely determine the parity operator Ĝs1,s2 .

3.1. Particles with s = 1/2

For this case of a two-particle system with s = 1/2, Equations system (43) has the following form: c1
1
2

(
1(1 + 1) − 2 1

2

(
1
2 + 1

))
+ c0 = (−1)1

c1
1
2

(
0− 2 1

2

(
1
2 + 1

))
+ c0 = (−1)0,

(46)
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from which we find the coefficients c1 = −2 and c0 = − 1
2 , then the parity permutation operator

Ĝs1,s2 = − 1
2 (1 + 4ŝ1 · ŝ2) has a well-known Heisenberg–Dirac–van Vleck (HDVV) [3–5] form. The

Hamiltonian (45) has HDVV-form:

Ĥint1/2 =
∑
k<l

Kkl −
1
2

∑
k<l

Akl(1 + 4ŝk · ŝl) =
∑
k<l

(Kkl −
Akl
2

) −
∑
k<l

2Aklŝk · ŝl (47)

In the case when the pair exchange-coupling Akl = A constant is the same for all pairs of particles,
the Schrödinger equation with Hamiltonian (16) allows an exact solution. Then the state vector |Σ, M〉
with a certain value of the total spin Σ of the entire system and its projection M onto the Z-axis is an
eigenvector of the Hamiltonian of the exchange interaction:N(N − 1)

2
(K −

A
2
) − 2A

∑
k<l

→̂
s k ·

→̂
s lsk,sl

|Σ, M〉 = Eint|Σ, M〉.

Because of 2
∑
k<l

ŝk · ŝl = Σ̂2
−Nŝ2, the eigenvalue of the interaction energy of the spin system will

have the form:

Eint =

{
N(N − 1)

2

(
K −

A
2

)
−A

(
Σ(Σ + 1) −N

1
2

(1
2
+ 1

))}
(48)

It is clear if the exchange interaction constant A is positive, then the most favorable state is the
state of the system with the maximum possible value of the total spin, that is Σ = N

2 , it corresponds to
the ferromagnetic ordering. In the case of a negative value, A is the most energetically favorable state
with a minimum total spin, that is Σ→ 0, antiferromagnetic ordering of spins.

3.2. Particles with s = 1

For the particles system with s = 1, Equation system (43) consist of three equations:
c2

(
2(2+1)−2·1(1+1)

2

)2
+ c1

(
2(2+1)−2·1·(1+1)

2

)
+ c0 = (−1)2

c2

(
1(1+1)−2·1·(1+1)

2

)2
+ c1

(
1(1+1)−2·(1+1)

2

)
+ c0 = (−1)1

c2

(
0·(0+1)−2·1·(1+1

2

)2
+ c1

(
0·(0+1)−2·1·(1+1)

2

)
+ c0 = (−1)0,

(49)

that uniquely determine the coefficients c2 = c1 = −c0 = 1. The parity permutation operator has
the form

Ĝs1,s2 = (ŝ1 · ŝ2)
2 + (ŝ1 · ŝ2) − 1. (50)

For a system of particles with spins s = 1, Hamiltonian (45) takes a biquadratic form:

Ĥint = K
N(N − 1)

2
+

∑
k<l

Akl
[
(ŝk · ŝl)

2 + (ŝk · ŝl) − 1
]

(51)

The interaction energy for the couple of particles is

Eexc
i,i+1 = Ai,i+1

{(
1
2 (S(S + 1) − 2s(s + 1))

)2
+ 1

2 (S(S + 1) − 2s(s + 1)) − 1
}
=

= Ai,i+1

{(
1
2 (S(S + 1) − 4)

)2
+ 1

2 (S(S + 1) − 4) − 1
}
.

(52)

In the case when the pair exchange-coupling Akl = A constant is the same for all pairs of particles
and if the exchange interaction constant is A > 0, then the antisymmetric spin state with the total spin
S = 1, (Sz = ±1, 0) and a correction to the energy Eexc

i,i+1 = −A, the degeneracy rate of which is gS = 3, is
a favorable state. In the case A < 0, a favorable state is a symmetric state that is degenerate over the
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total spin with S = 0, (Sz = 0) and S = 2 (Sz = ±2, ±1, 0) and a correction to the energy Eexc
i,i+1 = A, the

degeneracy rate of which, taking into account projections of the full spin gS = 6.

3.3. Particles with s = 3/2

For the particles system with s = 3/2, Equation system (43) consist of four equations that uniquely
determine the coefficients c3 = − 2

9 , c2 = − 11
18 , c1 = 9

8 , c0 = 67
32 . The parity permutation operator has

the form
Ĝs1,s2 = Ĝ3/2,3/2 = −

2
9
(ŝ1 · ŝ2)

3
−

11
18

(ŝ1 · ŝ2)
2 +

9
8
(ŝ1 · ŝ2) +

67
32

. (53)

Hamiltonian (45) takes a bicubic form:

Ĥint =
N(N − 1)

2
K + A

∑
k<l

{
−

2
9
(ŝk · ŝl)

3
−

11
18

(ŝk · ŝl)
2 +

9
8
(ŝk · ŝl) +

67
32

}
. (54)

The interaction energy for the couple of particles is

Eexc
i,i+1 = A

{
−

2
9

(
1
2 (S(S + 1) − 2s(s + 1))

)3
−

11
18

(
1
2 (S(S + 1) − 2s(s + 1))

)2
+

+ 9
8

(
1
2 (S(S + 1) − 2s(s + 1))

)
+ 67

32

}
.

(55)

If the exchange interaction constant is A > 0, then the degenerate symmetric states (see Appendix A)
with the total spin S = 1 and S = 3 and the correction to the energy Eexc

i,i+1 = −A is an advantageous state
with Eexc

i,i+1 = A, the degeneracy rate gS = 10 (for S = 1, Sz = ±1, 0 and for S = 3, Sz = ±3, ±2,±1, 0). If
the exchange interaction constant is A < 0, then the degenerate antisymmetric states (Appendix A)
with the total spin S = 0, 2 and the correction to the energy Eexc

i,i+1 = A is an advantageous state with
Eexc

i,i+1 = A, the degeneracy rate gS = 6 (for S = 0, Sz = 0 and for S = 2, Sz = ±2,±1, 0).

3.4. Particles with s = 2

For the particles system with s = 2, Equation system (43) consists of four equations that uniquely
determine the coefficients c4 = 1

36 , c3 = 1
6 , c2 = − 13

36 , c1 = − 5
2 , c0 = −1. The parity permutation operator

has the form

Ĝs1,s2 = Ĝ2,2 =
1

36
(ŝ1 · ŝ2)

4 +
1
6
(ŝ1 · ŝ2)

3
−

13
36

(ŝ1 · ŝ2)
2
−

5
2
(ŝ1 · ŝ2) − 1 (56)

Hamiltonian (45) takes a bicubic form:

Ĥint =
N(N − 1)

2
K + A

∑
k<l

{ 1
36

(ŝk · ŝl)
4 +

1
6
(ŝk · ŝl)

3
−

13
36

(ŝk · ŝl)
2
−

5
2
(ŝk · ŝl) − 1

}
(57)

The interaction energy for the couple of particles is

Eexc
i,i+1 = A

6

{
1
6

(
1
2 (S(S + 1) − 2s(s + 1))

)4
+

(
1
2 (S(S + 1) − 2s(s + 1))

)3
−

−
13
6

(
1
2 (S(S + 1) − 2s(s + 1))

)2
− 15

(
1
2 (S(S + 1) − 2s(s + 1))

)
− 6

}
.

(58)

If the exchange interaction constant is A > 0, then the degenerate antisymmetric state with the
total spin S = 1 and S = 3 and the correction to the energy Eexc

i,i+1 = −A is an advantageous state with
Eexc

i,i+1 = A, the degeneracy rate gS = 10 (for S = 1, Sz = ±1, 0 and for S = 3, Sz = ±3, ±2,±1, 0). If the
exchange interaction constant is A < 0, then the degenerate symmetric state with the total spin S = 0, 2,
4 and the correction to the energy Eexc

i,i+1 = A is an advantageous state with Eexc
i,i+1 = A, the degeneracy

rate gS = 15 (for S = 0, Sz = 0, for S = 2, Sz = ±2,±1, 0 and for S = 4, Sz = ±4,±3, ±2,±1, 0).
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3.5. Particles with s = 5/2

The General expression (43) written as applied to the case of particles with spin s = 5/2 leads to a
system of six equations for determining six coefficients:

c5
(
15− 35

4

)5
+ c4

(
15− 35

4

)4
+ c3

(
15− 35

4

)3
+ c2

(
15− 35

4

)2
+ c1

(
15− 35

4

)
+ c0 = −1

c5
(
10− 35

4

)5
+ c4

(
10− 35

4

)4
+ c3

(
10− 35

4

)3
+ c2

(
10− 35

4

)2
+ c1

(
10− 35

4

)
+ c0 = 1

c5
(
6− 35

4

)5
+ c4

(
6− 35

4

)4
+ c3

(
6− 35

4

)3
+ c2

(
6− 35

4

)2
+ c1

(
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The coefficients are:

c5 = −
1

450
, c4 = −

1
40

, c3 =
53

1200
, c2 =

14911
14400

, c1 =
35687
23040

, c0 = −
47417
18432

.

Hamiltonian (45) takes the form:

Ĥ =
∑
k,l

Akl

{
−

1
450

(ŝk · ŝl)
5
−

1
40

(ŝk · ŝl)
4 +

53
1200

(ŝk · ŝl)
3 +

14911
14400

(ŝk · ŝl)
2 +

35687
23040

(ŝk · ŝl) −
47417
18432

}
(60)

3.6. Particles with s = 3

The general expression (43) written as applied to the case of particles with spin s = 3 leads to a
system of seven equations for determining seven coefficients:

c6(21− 12)6 + c5(9)
5 + c4(9)

4 + c3(9)
3 + c2(9)

2 + c1(9) + c0 = 1
c6(15− 12)6 + c5(3)

5 + c4(3)
4 + c3(3)

3 + c2(3)
2 + c1(3) + c0 = −1

c6(10− 12)6 + c5(−2)5 + c4(−2)4 + c3(−2)3 + c2(−2)2 + c1(−2) + c0 = 1
c6(6− 12)6 + c5(−6)5 + c4(−6)4 + c3(−6)3 + c2(−6)2 + c1(−6) + c0 = −1
c6(3− 12)6 + c5(−9)5 + c4(−9)4 + c3(−9)3 + c2(−9)2 + c1(−9) + c0 = 1
c6(1− 12)6 + c5(−11)5 + c4(−11)4 + c3(−11)3 + c2(−11)2 + c1(−11) + c0 = −1
c6(−12)6 + c5(−12)5 + c4(−12)4 + c3(−12)3 + c2(−12)2 + c1(−12) + c0 = 1

(61)

The coefficients are:

c6 =
1

8100
, c5 =

19
8100

, c4 = −
2

2025
, c3 = −

571
2700

, c2 = −
713
900

, c1 =
87
50

, c0 =
151
25

Then the Hamiltonian (45) takes the form:

Ĥ =
∑
k,l

Akl
{

1
8100 (ŝk · ŝl)

6 + 19
8100 (ŝk · ŝl)

5
−

2
2025 (ŝk · ŝl)

4
−

571
2700 (ŝk · ŝl)

3
−

−
713
900 (ŝk · ŝl)

2 + 87
50 (ŝk · ŝl) +

151
25

}
.

(62)

4. A Giant Negative Magnetoresistance in a Nonmagnetic Crystal

The metal-insulator transition is the physical effect of changing the conductivity of a material
in solids from a metal type to a semiconductor (or to an insulator) due to nanotechnology, such
as a change in composition by doping the material with impurities or external factors, such as
changes in temperature and magnetic field, uniaxial voltage, and hydrostatic pressure. In some
cases, magnetic fields in semiconductors cause a sharp drop in resistivity. This phenomenon is called
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giant negative magnetoresistance. A negative magnetoresistance of InSb whiskers with different
impurity concentrations 4.4 × 1016–7.16 × 1017 cm−3 was studied in a longitudinal magnetic field
0–14 T in the temperature range 4.2–77 K [23]. The negative magnetoresistance reached about 50%
for InSb whiskers with an impurity concentration in the vicinity of the metal–insulator transition.
The negative magnetoresistance decreased to 35% and 25% for crystals with Sn concentration from
the metal and dielectric side of the transition. The resistance fell in p-Hg1−xMnxTe in the applied
magnetic field of several Tesla as reported by [24]. The same effect demonstrates n-Gd1-xvxS4, as
reported in [25]. Historically, the effect of giant negative magnetoresistance is associated with the
magnetization of semiconductor compounds containing rare-earth magnetic ions—dopants of Gd, Eu,
or manganese (Mn). Surprisingly, a non-magnetic semiconductor, p-InSb(Mn) doped with Mn (with
manganese concentration nMn~1017 cm−3) [26] demonstrates a giant negative magnetoresistance. This
effect in the nonmagnetic crystal with an increase in the magnetic field was discovered in 1984 [27].
The observed resistivity of a sample decreased more than 103 in a magnetic field stronger than 8 T.
Such conductivity increase was accompanied by a transition from a dielectric conductivity to a metallic
conductivity. Authors [27] observed for the first time in a nonmagnetic crystal a Mott transition in the
dielectric–metal direction with an increasing magnetic field. The observed negative magnetoresistance
has a magnitude that much greater than commonly observed in crystalline semiconductors. This
phenomenon in crystalline semiconductors has commonly been described by a theory of the scattering
of the current carried by localized impurities [28] and by the theory of quantum corrections to the
conductivity p [29] that predict only small corrections in the resistance in a magnetic field. Such a
description cannot explain the mentioned giant negative magnetoresistance. According to the model
used in [13], this phenomenon is due to a change in the energy of the exchange interaction of holes
at acceptors.

An indium antimonide crystal belongs to the O7
h symmetry group, which includes such “classical”

semiconductors as Ge, Si, having a diamond-type lattice. This lattice is a face-centered cubic Гf
c.

It contains two identical atoms on the outside [30]. An indium antimonide crystal has p-type
semiconductor holes, which are carriers of the current. In the valence band, Г8 (Г8 +) is formed —the
zone of light and heavy holes (see Figure 1) and the Г6 zone, which is split off from them due to the
spin–orbit interaction, lies much lower and is completely filled [30,31].
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= 0. The wave functions are written in the form of a spinor formally corresponding to the state of a
particle with spin 3/2:

ψlk = ei
→

k
→
x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

cl
3/2(

→

k )

cl
1/2(

→

k )

cl
−1/2(

→

k )

cl
−3/2(

→

k )

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
ei
→

k
→
x
<ik

The matrix c is determined from the solution of the Schrödinger equation, which simultaneously
determines the band spectrum. The transition to the diamagnetic state in a uniaxial deformed crystal
was interpreted in [27,32] as an increase in the exchange interaction of holes at acceptors due to the
splitting of the valence band in the presence of uniaxial compression. It was an assumption that for any
values of the compression parameter, the ground state of the holes would be the level at which the spin
vectors will be “antiparallel”, and with this, the energy gap between the impurity and valence bands
will increase. In this case, the magnetic field induced a metallic state because the paramagnetic splitting
of holes energy at acceptors becomes comparable with the width of the impurity band. However,
we showed that the ground state of heavy holes in manganese-doped indium antimonide was not a
simple “antiparallel”, but it was degenerate in the acceptor’s couple spin, which can have two values
S = 0 and S = 2. Finally, the degeneracy was removed by the applied strong magnetic field, which
in this case, induced a transition to a magnetic state with J = 2 and simultaneously a transition to a
conducting state.

The spin Hamiltonian (54), which describes a system of particles with spins 3/2, contains nonlinear
contributions from the square of the pair spin, the negative constant A of the exchange interaction of
heavy holes, for the case of compression strain increases modulo. Thus, the gap between symmetric
and antisymmetric states is growing, and equal to J = 2 | A | in the split zone of heavy holes, and the
zone with heavy holes lowers, thereby increasing the width of the gap between the impurity levels
and the states of heavy holes. The energy of the holes’ couple has the form (55). For evaluation,
we assumed that the spin value of a pair was a continuously changing quantity, then we can establish
some regularities in the behavior of the exchange contribution from the pair interaction of particles.
Denote by x the value of the scalar product of two particle spins, where s = 3/2 and a “continual” total
spin S as σ:

x =
1
2
(S(S + 1) − 2s(s + 1)) =

(2σ(σ+ 1) − 15)
4

.

The exchange contribution from pair interaction, measured in units of A as a function of a
continuously changing variable x in the interval [−15/4, 9/4], is

y 3
2 , 3

2
= −

2
9

x3
−

11
18

x2 +
9
8

x +
67
32

(63)

The dependence of the energy (63), measured in terms of the exchange interaction constant taking
into account its sign, on the total spin σ is shown in Figure 2.
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The energy correction of the holes couple E = K + A (see (55)) takes place at two values of the
total spin σ = 0 and σ = 2 (both are the antisymmetric spin states). Thus, the exchange interaction
removes the degeneracy in symmetry but does not completely remove the degeneracy in the total spin.
In this case, the symmetric states of heavy holes displaced into the depth of the valence band, and the
antisymmetric ones rose up, compensating for the influence of the deformation potential. The final
removal of the degeneracy of the antisymmetric states, which determines the conductivity of heavy
holes, occurred in a magnetic field. The Hamiltonian of the system in the magnetic field has the form:

Ĥint = K + A
{
−

2
9

(1
2

(
Ŝ2
− 2ŝ2

))3
−

11
18

(1
2

(
Ŝ2
− 2ŝ2

))2
+

9
8

(1
2

(
Ŝ2
− 2ŝ2

))
+

67
32

}
− BzgŜz, (64)

Here, Bz is the magnetic field directed along the compression axis of the sample, g is the
gyromagnetic factor of the acceptor. Then the eigenenergy of the system in the magnetic field is

E = K + A
{
−

2
9

(1
2

(
σ(σ+ 1) −

15
2

))3
−

11
18

(1
2

(
σ(σ+ 1) −

15
2

))2
+

9
8

(1
2

(
σ(σ+ 1) −

15
2

))
+

67
32

}
− BzgM.

where M is the total spin projection on the compression axis.
Thus, the antisymmetric states are split by the magnetic field into five sublevels with M = 2, 1, 0,

−1, −2, where the state with M = 0 remains twice degenerate over the full spin with σ = 2 and σ = 0.
Symmetric states are also split into seven sublevels, M = 3, 2, 1, 0, −1, −2, −3, where states with M = 1,
0, −1 remain twice degenerate over the full spin with σ = 1 and σ = 3.

5. Results and Discussions

When the magnetic field is switched on due to splitting, the sublevel with σ = 2 rises to
impurity levels and changes the character of conductivity to metallic. The conductivity coefficient of a
semiconductor due to scattering by impurities is determined by the expression:

σim =
e2

mvTn′Q
n0e−

∆
T , (65)

where vT =
√

T/m is the thermal velocity of the electron, lik = 1/n’Q is an electron mean free path
taking into account scattering by impurities whose concentration is n’, and the cross-section is Q. The
band gap ∆ in pure indium antimonide is 0.2 eV, the band gap ∆’ between the impurity and valence
band is an undeformed crystal ~ 0.04 eV. Upon compression, this gap increases due to an increase in
both the absolute value of the exchange interaction and direct Coulomb repulsion: ∆′χ = ∆′ + Kχ±

∣∣∣Aχ∣∣∣,
where the correction +|A| corresponds to the symmetric states σ = 1, 3, and the antisymmetric states σ
= 0, 2 have the correction −|A|, both of which according to (65) reduce the conductivity. The splitting of
impurity levels in a strong magnetic field leads to the fact that the down (symmetric) sublevel move

into the valence band: ∆′χB = ∆′ + Kχ+
∣∣∣∣Aχ∣∣∣∣+MgB , M = 3, 2, 1, 0, −1, −2, −3. For the antisymmetric

sublevels, the gap is ∆′χB = ∆′ + Kχ−
∣∣∣∣Aχ∣∣∣∣+MgB , where M = 2, 1, 0, −1, −2, the upper sublevels move

into the conductive band since the gap between the impurity sublevel and the conductive band

is almost leveled by the magnetic field: ∆′χB = ∆′ + Kχ−
∣∣∣∣Aχ∣∣∣∣−2gB ≈ 0 . Thus, hole conductivity at

the temperature of ~10 K increases by a factor of
∣∣∣∣∣e ∆′χ

T

∣∣∣∣∣ ≈ 1 × e7 = 1096 which corresponds to the

experimental results obtained in [33–35].
Indium antimonide crystals doped with manganese at impurity concentration around Ncr due

to their exceptional physical properties can be used for advanced cryogenic devices operated in the
millikelvin range of temperatures. The advantage of p-InSb(Mn) as athermosensitive material is that it
is not restricted by the limitations of hopping processes at low and super-low temperatures, a quality
which noticeably differs from the conventional Ge and Si semiconductors. In contrast to the conventional
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thermoresistors, p-InSb(Mn) resistance thermometers show exponential resistivity–temperature
dependence described by Equation (65), where ∆ varies between 0.007 and 1 meV. This unique
property of p-InSb(Mn) crystals allows high thermosensitive materials with low specific resistivity in
the millikelvin range of temperature to be obtained, thus reducing Pc. It was shown in [36,37] that the
sensitivity of InSb(Mn) resistance at 10 mK reached aa value of ~1000 K−1. Note that at T below 20 mK,
Germanium thermoresistors practically lose their sensitivity as a result of the Variable range hopping
(VRH) conductivity type.

We considered as the example of the high-spin system, the system of heavy holes, possessed by spin
3/2 and described its magnetic properties. Such consideration is actually also for the other high-spin
systems. Theoretically, magnetic properties of the magnetic behaviors of the spin-1 nanostructures
have been investigated successfully by using various techniques, such as MFT, EFT with correlations,
MC simulations in the Ising model [38]. The equilibrium properties of nanostructures for the high
spin system, such as 3/2, 5/2, and 2, are also the object of intensive studies. Such theoretical studies
are useful for the analysis of the magnetic properties of nanoparticles, lyotropic liquid crystals,
and the effects of spin ordering in liquid crystals and sensory systems. The scientific and practical
significance of traditional liquid crystals built from organic molecules (mesogens) is well known.
These molecules spontaneously, under the influence of dispersion forces and repulsive forces, combine
into supramolecular ensembles, forming a liquid and, at the same time, ordered liquid crystal phase
(mesophase) ordered by molecular orientations. Minimal external influence causes a change in
the physical macroscopic properties of liquid crystals. It is the sensitivity of the liquid crystals to
external factors that serves as the basis for their widespread use as a liquid but anisotropic medium
in scientific research, in various devices for displaying and processing information (displays of
computers and televisions, indicators, optical converters, etc.). At present, many laboratories in
almost all developed countries are engaged in the synthesis and study of metallomesogens [39–43].
The first high-spin (S = 5/2) thermotropic liquid crystal was obtained—a mesogenic complex with
a Fe(III) atom [44]. Synthesized polynuclear (homo- and heteronuclear) mesogenic complexes with
a metal-containing ligand (derivative of ferrocene), including nematics with six iron atoms in their
composition, have been obtained. The problem of creating mesogenic complexes of 3d elements with
variable spin properties (high–low-spin transitions), i.e., search synthesis of systems combining liquid
crystal and spin-crossover properties, is very important for the chemical sensors technology. Thus,
mesogenic complexes of a number of lanthanides of the composition L3LnX3 with ligands from the
class of azamethine compounds (Schiff base) and a wide range of counter-ionic ions were synthesized.
Magnetic mesophases based on lanthanide complexes can be used to visualize magnetic fields of
various surfaces, i.e., for magnetic flaw detection purposes. Of particular importance is the synthesis
of a complex combining liquid crystal properties with the property to change the spin state depending
on temperature. The study of such systems will allow, due to the sensitivity of the spin state to
intermolecular interactions, the mechanisms of cooperative spin transitions to be detailed. Further
efforts may lead to the use of such systems as chemical sensors.

Another application is ferrofluids. Ferrofluids are known as colloidal suspensions of ferromagnetic
nanoparticles in aqueous or organic solvents. Dispersed particles are randomly oriented, but their
moments are aligned when a magnetic field is applied, creating a variety of exotic and useful
magneto-mechanical effects. Shuai et al. [45,46] reported that a liquid suspension of magnetic nanoplates
spontaneously ordered into an equilibrium nematic liquid crystal phase, which is macroscopically
ferromagnetic in this case. The barium hexaferrite (BF) nanoplates used in this experiment are suspended
in isotropic n-butanol and surfactant-stabilized to produce a system of functionalized nanoplates with
weak electrostatic repulsion, strong and anisotropic steric repulsion, and magnetic interaction. The
magnetization in a zero field creates the characteristic magnetic effects of self-action, including the
liquid crystal textures of the domains of liquid blocks located in closed loops of magnetic flux, which
makes this phase highly sensitive, so much so that it changes shape sharply even in the Earth’s magnetic
field. Such phases are possible because, in such hybrid suspensions, not only the energy of the magnetic
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dipole–dipole interaction between the supermolecular magnetic moments of neighboring particles but
also the electric dipole–dipole exchange interaction, depending on the total spin of the particles, can be
many times higher than the thermal energy at room temperature [47,48]. This BF nematic is distinctly
ferromagnetic, with a magnetization density of two orders of magnitude larger than that reported in
the previously found thermotropic nematic LC host (4-cyano-40-pentylbiphenyl, 5CB) fluid system [49].
The single-ion anisotropy for the system of ions with spin equals to 3/2 is relevant in accounting
for the magnetic properties of a number of compounds: CsNiCl3 _weak axial anisotropy NENP
[Ni(C2H8N2)2NO2(ClO4)]weak axial anisotropy [8], CsFeBr3, NENC [Ni(C2H8N2)2Ni(CN)4], and
DTN [NiCl2−4SC(NH2)2]strong planar anisotropy [13]. Another exotic state—the spin nematic—has
been discovered in the one-dimensional LiCuVO4 [50–52]. The 3/2 Ising system was introduced
to explain magnetic and crystallographic phase transitions in some compounds, such as DyVO4,
and then extended to describe tricritical properties in ternary fluids mixtures (ethanol–water–carbon
dioxide) [53]. They presented a lattice-gas model of ternary fluid mixtures. Within the mean-field
approximation, a nonsymmetric tricritical point is studied in this model. These theoretical results were
compared to the experimental observations on the system ethanol–water–carbon dioxide.

The parameter of the exchange interaction is very important for considering spin statistics and
spin dynamics in spin representation using the spin Hamiltonian. The exchange interaction, which
determines the spin configuration, is the result of the Coulomb interaction of charges redistributed
in real space in accordance with the state’s interference defined in the coordinate space and should
be computed very carefully for the two particle’s interaction, while it represents a coupling constant
for the consideration in the spin representation. Due to the unambiguous correspondence of the
permutation relations for the coordinate and spin parts of the wave function, based on the fundamental
principle of parity, a spin configuration is established that uniquely corresponds to the sign with which
the Coulomb exchange interaction enters into the energy correction. In this sense, the main parameter
determining the magnetic ordering in systems of identical particles is the exchange integral. The sign
in front of the exchange integral in the expression of the total energy is determined by the parity of
the permutation of the spatial part of the total wave function. Due to the unique connection with
the parity of the spin part, this sign can be replaced by the operator in the spin representation, which
contains “large degrees” of scalar products of spin operators’—biquadratic, bicubic, etc., сontributions
with corresponding coefficients. Thus, the exchange interaction parameter determined by the integral
exchange calculated in the coordinate representation is included in the resulting spin Hamiltonian as
a common factor. The coefficients before the bilinear, biquadratic, bicubic, etc., terms are uniquely
determined from the corresponding parity condition. Thus, the concept of a separate consideration of
biquadratic or bicubic exchange interactions as various contributions, often used in theoretical papers
devoted to the analysis of statistics of high-spin systems, becomes meaningless, since all the above
contributions are determined by a unique, single parameter, namely, the exchange interaction integral
calculated in the coordinate space. Depending on the real electronic configuration of the interacting
atoms or molecules, this integral can be positive or negative or even change its sign depending on the
change in the distances between the interacting particles. In this article, we have shown how, based on
the first principles, based on the fundamental properties of the symmetry of angular momenta, we can
obtain the exact shape of the spin Hamiltonian, which describes identical particles with a spin other
than 1/2.
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Appendix A

Symmetric states of the couple of spins s = 3/2:

|J = 3, Jz = 3〉 = |3/2, 3/2〉|3/2, 3/2〉
|J = 3, Jz = 2〉 = 1

√
2
(|3/2, 3/2〉|3/2, 1/2〉+ |3/2, 1/2〉|3/2, 3/2〉)

|J = 3, Jz = 1〉 = (|3/2, 3/2〉|3/2,−1/2〉+ |3/2,−1/2〉|3/2, 3/2〉) 1
√

5

+|3/2, 1/2〉|3/2, 1/2〉
√

3
5

|J = 3, Jz = 0〉 = (|3/2, 1/2〉|3/2,−1/2〉+ |3/2,−1/2〉|3/2, 1/2〉) 3
2
√

5
+(|3/2, 3/2〉|3/2,−3/2〉+ |3/2,−3/2〉|3/2, 3/2〉) 1

2
√

5

|J = 1, Jz = 1〉 = −
√

2
5 |3/2, 1/2〉|3/2, 1/2〉

+
√

3
10 (|3/2, 3/2〉|3/2,−1/2〉+ |3/2,−1/2〉|3/2, 3/2〉)

|J = 1, Jz = 0〉 = 3
2
√

5
(|3/2, 3/2〉|3/2,−3/2〉+ |3/2,−3/2〉|3/2, 3/2〉)

−
1

2
√

5
(|3/2, 1/2〉|3/2,−1/2〉+ |3/2,−1/2〉|3/2, 1/2〉)

(A1)

Antisymmetric states:

|J = 2, Jz = 2〉 = 1
√

2

(
j1 = |3/2, m1 = 3/2〉

∣∣∣ j2 = 3/2, m2 = 1/2
〉
−

∣∣∣ j1 = 3/2, m1 = 1/2
〉∣∣∣ j2 = 3/2, m2 = 3/2

〉)
|J = 2, Jz = 1〉 = 1

√
2

(∣∣∣ j1 = 3/2, m1 = 3/2
〉

j2 = |3/2,−1/2〉 −
∣∣∣ j1 = 3/2, m1 = −1/2

〉∣∣∣ j2 = 3/2, m2 = 3/2
〉)

|J = 2, Jz = 0〉 = 1
2

{(∣∣∣ j1 = 3/2, m1 = 1/2
〉∣∣∣ j2 = 3/2, m2 = −1/2

〉
−

∣∣∣ j1 = 3/2, m1 = −1/2
〉∣∣∣ j2 = 3/2, m2 = 1/2

〉)
+

+
(∣∣∣ j1 = 3/2, m1 = 3/2

〉∣∣∣ j2 = 3/2, m2 = −3/2
〉
−

∣∣∣ j1 = 3/2, m1 = −3/2
〉∣∣∣ j2 = 3/2, m2 = 3/2

〉)}
|J = 0, Jz = 0〉 = 1

2

{(∣∣∣ j1 = 3/2, m1 = 1/2
〉∣∣∣ j2 = 3/2, m2 = −1/2

〉
−

∣∣∣ j1 = 3/2, m1 = −1/2
〉∣∣∣ j2 = 3/2, m2 = 1/2

〉)
−

−

(∣∣∣ j1 = 3/2, m1 = 3/2
〉∣∣∣ j2 = 3/2, m2 = −3/2

〉
−

∣∣∣ j1 = 3/2, m1 = −3/2
〉∣∣∣ j2 = 3/2, m2 = 3/2

〉)}
.

(A2)
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