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Abstract: Metalloporphyrins are highly recognized for their capacity to act as sensitive substances
used in formulation of optical, fluorescent, and electrochemical sensors. A novel compound,
namely Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl) porphyrin, was synthesized by metalation with
PtCl2(PhCN)2 of the corresponding porphyrin base and was fully characterized by UV-vis, fluorimetry,
FT-IR, 1H-NMR, and 13C-NMR methods. The fluorescence response of this Pt-porphyrin in the
presence of different concentrations of hydrogen peroxide was investigated. Besides, modified glassy
carbon electrodes with this Pt-porphyrin (Pt-Porf-GCE) were realized and several electrochemical
characterizations were comparatively performed with bare glassy carbon electrodes (GCE), in the
absence or presence of hydrogen peroxide. The Pt-porphyrin demonstrated to be a successful sensitive
material for the detection of hydrogen peroxide both by fluorimetric method in a concentration
range relevant for biological samples (1.05–3.9 × 10−7 M) and by electrochemical method, in a larger
concentration range from 1 × 10−6 M to 5 × 10−5 M. Based on different methods, this Pt-porphyrin can
cover detection in diverse fields, from medical tests to food and agricultural monitoring, proving high
accuracy (correlation coefficients over 99%) in both fluorimetric and electrochemical measurements.

Keywords: Pt-porphyrin; photoactive material; UV-vis spectroscopy; fluorimetry; electrochemistry;
hydrogen peroxide detection

1. Introduction

The detection and quantification of oxygen in its various forms is of great importance because
reactive oxygen species (ROS), such as: peroxide radicals (ROO•), hydroxyl radical (•OH), hydrogen
peroxide (H2O2), singlet oxygen (1O2), and ozone (O3) are intracellularly generated during some of the
enzymatic oxidation processes that are involved in the metabolism of proteins, carbohydrates and
fats [1]. The normal concentrations of H2O2 for plasma were determined to be 1–5 µM, while higher
values, in the range of 30–50 µM, can appear during chronic inflammation [2]. In the urine of healthy
subjects, the creatinine-corrected H2O2 concentration varies in the range 276–1844 µM, regardless of
gender [3]. Reduced oxygen levels are developed in cardiac and brain ischemia [4]. Moreover, H2O2

present in blood can interact with Fe2+ ions contributing to oxidative stress [5].
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Quantifying the dissolved O2 in water was realized using a three-dimensional matrix,
containing platinum-tetraphenylporphyrin bonded with 3-(trimethoxysilyl)-propyl-methacrylate
on the surface of polydimethylsiloxane with a detection limit of 4.7 µM [6]. The detection
is based on the reversible fluorescence response of the Pt-porphyrin to different concentrations
of dissolved O2 in water. Based on the same method, other platinum fluorescent compound,
Pt(II)-5-(3-aminophenyl)-10,15,20-tris-(p-tolyl)-porphyrin, incorporated in polyimide polymers was
capable of detecting oxygen in concentrations up to 10% [7].

Composite strips comprising Pt(II)-meso-tetrakis-(pentafluorophenyl)-porphyrin and cadmium
telluride quantum dots were used for rapid colorimetric determination [8,9] of oxygen.
High fluorescence quantum yield hybrid materials based on phenylacetylide fibers functionalized with
platinum (II) meso-tetraphenylporphyrins were developed and showed improved sensitivity to O2,
providing a detection limit of 7.5 ppm. The response to oxygen detection was significantly improved by
adding silver nanoparticles to the hybrid material [9]. A recent work [10] showed that Pt (II)-complex
with octaethylporphyrin-ketone is a near-infrared spectroscopy (NIR) emitting oxygen indicator.

Pt-porphyrins have been used extensively in polymeric membranes to detect molecular oxygen,
but because of their small tendency to bind axial ligands [11,12] they have not been largely investigated
as ionophores [13]. Potentiometric studies of Pt-porphyrins as ionophores became significant only
after platinum-tetraphenylporphyrinates–based polymeric film sensors were successfully applied
for analysis of wines [14]. Few years later, electrodes prepared with membrane containing
Pt(II)-tetraphenylporphyrin responded to iodide with the Nernstian slope of 58.8 mV per decade,
in 10−5 to 10−2 M iodide activity range. The same study revealed that Pt(II)-octaethylporphyrin exhibits
enhanced selectivity for iodide-ion recognition than Pt(II)-tetraphenylporphyrin [15].

In the last decade, our team demonstrated expertise in optical [16], fluorescent [17,18] and
electrochemical [19,20] detection of minute concentrations of hydrogen peroxide, in a range that is
highly relevant for medical tests, using as sensitive materials Mn(III)- and Co(II)-metalloporphyrinates.
Our next approach was to synthesize and test the sensitivity toward H2O2 of other metalloporphyrin
structures, especially Pt-derivatives, for improving selectivity, sensitivity, and the detection
concentration domain, preserving high accuracy.

The main purpose of this work was to synthesize a novel fluorescent Pt-metalloporphyrin with
the capability of recognizing and monitoring ROS species, especially H2O2. We expected that an
allyloxy substituted porphyrin would be more sensitive, due to both electron-withdrawing effect of
allyloxy group and the expected electromeric effect caused during the interaction with an analyte.
Besides, the flexible peripheral allyloxy groups might prevent fast aggregation and, in this case, the fast
quenching of fluorescence.

2. Materials and Methods

2.1. Chemicals

The used solvents were hexane (C6H14), chlorobenzene (C6H5Cl), tetrahydrofuran (THF),
chloroform (CHCl3), dichloromethane (CH2Cl2), benzonitrile (C6H5CN), N,N-dimethylformamide
(DMF), and dimethylsulfoxide (DMSO), purchased from Merck (Darmstadt, Germany), Sigma-Aldrich
(St. Louis, MO, USA) and all were used as received. Double distilled water was used in all experiments.
All chemicals used in synthesis of free 5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin were p.a. grade
and were purchased from Merck (Darmstadt, Germany) and used as received, except for pyrrole that
was distilled prior to use. The platinum water soluble complex PtCl2(PhCN)2 was provided by Alfa
(Haverhill, MA, USA).

2.2. Apparatus

UV-visible spectra were performed using 1 cm wide quartz cuvettes, on a JASCO UV-visible
spectrometer, V-650 model (Pfungstadt, Germany). The emission spectra were recorded in DMSO-water
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system, on a Perkin Elmer LS55 luminescence spectrometer (Perkin Elmer, Inc./UK Model/LS 55,
Waltham, MA, USA). Fluorescence spectra were recorded at ambient temperature (22–24 ◦C), using
1 cm path length cells, without using cut-off filters, at a rate of 100 nm/min, with constant slit widths,
for excitation (10 nm) and for emission (6 nm), exciting at λ = 365 nm. The fluorescence quantum yield
(ΦF) of Pt-porphyrin was calculated by using the steady-state comparative method formula: Φsample

= ΦTPP (Fsample/FTPP)(ATPP/Asample)(nsample
2/nTPP

2), where Φ is the relative fluorescence quantum
yield, F, A, and n are the measured fluorescence area, the absorbance, and the refractive index of the
solvent, respectively [21]. The method is based on comparing the Pt-porphyrin emission spectrum
area with that of a fluorescence standard, meso-tetraphenylporphyrin (TPP). The emission spectra
were performed in THF by exciting at λex = 330 nm. A value of Φf = 0.10 for TPP in THF, previously
calculated [22], was used.

FT-IR spectra were carried out on a JASCO 430 FT-IR (Hachioji, Tokyo, Japan), from KBr pellets,
in the range 4000–400 cm−1. 1H-NMR and 13C-NMR spectra were registered on 400 MHz and 100 MHz
respectively on a Bruker Avance DRX spectrometer equipped with a 5 mm four nuclei (1H/13C/19F/29Si)
direct detection probe (Rheinsteitten, Germany), in CDCl3. The chemical shifts are expressed in
δ (ppm). Electrochemical investigations were performed with the help of Autolab 302N EcoChemie
(Eco Chemie, The Netherlands, 2007).

2.3. Synthesis of 5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (TAPP)

Synthesis of 5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (TAPP) was done by functionalization
of tetra-(4-hydroxy-phenyl) porphyrin derivative with bromopropylene [23] or by Lindsey
method [24,25] from 4-allyloxybenzaldehyde and pyrrole. The complete physical characterization of
the porphyrin base is in full agreement with the structure and was previously published [26].

2.4. Synthesis of Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (Pt(II)-TAPP)

The synthesis of Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin, shown in Figure 1,
was performed by adapting the method of Yamashita [27], optimized according to [28], as follows:
0.105 g (12.5 mmole) 5,10,15,20-tetra-(4-allyloxy-phenyl)porphyrin dissolved in 35 mL chlorobenzene were
vigorously stirred together with a mixture containing 0.0933 g (19.7 mmole) PtCl2(PhCN)2 and 0.072 g
(52.9 mmole) NaAc × 3H2O dissolved in 24 mL chlorobenzene. The molar ratio between the reactants
was TAPP:PtCl2(PhCN)2:CH3COONa × 3H2O = 1:1.5:4 chosen in order to favor the generation of the
Pt-complex and to prevent the HCl generation. Then, the reaction mixture was refluxed for 2 h and the
reaction progress was monitored by UV-vis spectroscopy, as can be seen in Figure 2.Chemosensors 2020, 8, x FOR PEER REVIEW 4 of 15 
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The completion of the reaction was evidenced in the UV-vis spectra by both the hypsochromic
shift of the Soret band and the reducing of the Q bands number to only two, as shown in Figure 2.
The reaction mixture was then cooled to room temperature, filtered, and repeatedly washed with
warm water (4 × 60 mL). The filtrate was several times washed with 100 mL water in a separatory
funnel. The organic extract was dried over Na2SO4 and the chlorobenzene was removed by vacuum
distillation. The resulting orange-reddish solid was recrystallized from dichloromethane. The pure
crystalline powder was finally kept for 10 h at 90 ◦C in vacuum.

The main characteristics of Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl)porphyrin are: brownish-
orange crystals; yield 86%; mp over 320 ◦C; 1H-NMR (CDCl3, 400 MHz), δ, ppm: 8.70 (s, 8H, β-pyrrole),
7.94-7.96 (d, J = 8.4 Hz, 8H, H-2,6 phenyl), 7.18–7.20 (d, J = 8.4 Hz, 8H, H-3,5 phenyl), 6.13–6.22 (m, 4H,
O-CH2-CH=CH2), 5.51–5.55 (d, J = 17.4 Hz, 4H, O-CH2-CH=HCH), 5.34–5.36 (d, J = 10.6 Hz, 4H,
O-CH2-CH=HCH), 4.73–4.75 (d, J = 5.2 Hz, 8H, O-CH2-CH=HCH); the ratio between the peak areas
of these proton categories is around: 1:1:1:0.5:0.5:0.5:1. 13C-NMR (CDCl3, 100 MHz), δ, ppm: 158.49
(Cph

1’); 155.43 (C=N); 135.03 (Cph
3’), 134.88 (=CH); 133.39 (=CH); 130.62 (=CH); 117.99 (=CH2); 113.78

(=CH); 113.07 (Cph
2’); 69.16 (-OCH2). FT-IR(KBr), cm−1: 3426 (H-bonding), 1640 and 1501 (νC=CPh),

1452 (νC=N), 1357 (νC-N), 1231 (νC-O-Cas), 1168 (δC-HPh), 1006 (νC-O-C), 791 (γC-Hpyrrol), 670 (δC-Hpyrrol);
UV-vis, DMSO (λmax (logε)): 408.6 (5.28); 512.5 (4.31); 596.5 (3.44); Φf = 0.038 ± 0.009.

2.5. Electrochemical Measurements

Before each electrochemical determination, the working electrode (WE) was cleaned with fine
sandpaper (0.3 µm), washed with water, electrochemically cleaned (10 cycles in 0.5 M sulfuric acid in
the range −1 to 1.2 V), and exposed to ultrasound bath for 3 minutes in water, acetone, and ethanol.

The porphyrin films were deposited on clean GCE surfaces by drop-casting from a 5.84 mM
Pt(II)-TAPP solution in CH2Cl2, by successively depositing 3 × 1 drops. The films were left to
dry, then the surfaces were washed with CH2Cl2 and water and then dried and stored in the
dark. The modified electrode thus prepared was marked as Pt-Porf-GCE. All electrochemical
measurements were performed at room temperature in a conventional one-compartment three-electrode
cell. The electrochemical cell contains the platinum wire as auxiliary electrode, the Ag/AgCl as reference
electrode and the working electrode: glassy carbon (GCE 0.0314 cm2) unmodified and modified with
metal porphyrin film (Pt-Porf-GCE).

The electrocatalytic effect of the Pt-metalloporphyrin on hydrogen peroxide transformation was
carried out in morpholine-ethane-sulfonic acid (MES) buffer solution, pH 5.6, at a scan rate of 50 mV/s,
in open atmosphere, without removing oxygen (this did not have a significant effect on the oxidation
process) [20].

3. Results and Discussion

3.1. UV-vis Monitoring of the Metalation Reaction

As represented in Figure 2, the UV-vis spectrum of the (TAPP) porphyrin-base is etio type shape
with the Soret band generated by the transition from a1u (π) - eg* (π) and the four Q-bands in the visible
region, corresponding to a2u (π) - eg* (π) transitions.

Monitoring the metalation reaction by UV-vis, as represented in Figure 2, shows that after a short
period of time the Soret band of TAPP is splitting into two bands of equal intensity, revealing the
equilibrium between porphyrin base (λ = 425 nm) and the generation of Pt(II)-TAPP. The forming of
Pt-TAPP is shown by the significant hypsochromic shift of the Soret band with 15 nm, to 410 nm. After
100 min of reflux, the QI and the QIII bands disappeared and the intensity of the Soret band located
at 410 nm is continuously increasing, proving that the equilibrium of the reaction is moved to the
formation of the Pt-complex.
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Figure 2. Monitoring the reaction progress of forming Pt(II)-TAPP by increasing the absorption intensity
at 410 nm and decreasing the intensity of the TAPP absorption bands at 425 nm. In detail the differences
between the Q bands of TAPP, Pt(II)-TAPP and intermediate species.

The reaction was completed after approximately two hours, when all the porphyrin was
transformed into its Pt-complex. As a consequence, UV-vis spectrum presents solely a narrow
Soret band located at 410 nm and only two Q bands, the first located at 513 nm, blue shifted in
comparison with the porphyrin base and representing the Q(0-1) vibration and the second one at
596 nm respectively, representing Q(0-0) electronic transition. The intensity of the remaining Q(0-0)
band is increased as compared to the original QI(0-0) band of the porphyrin base. According to this
behavior [29] the novel obtained Pt-porphyrin is belonging to the second group of metalloporphyrins.

3.2. Physicochemical Characterization of Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin

3.2.1. FT-IR Characterization

A comparison of the FT-IR spectra of the porphyrin base TAPP with the corresponding Pt(II)-TAPP,
as presented in Figure 3, shows that the Pt-complex gave a simplified spectrum, due to the higher
symmetry of the novel compound, which increases from D2h to D4h.
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The peak located at 3318 cm−1 and attributed to internal N-H bond is no more present in the
Pt(II)-TAPP spectrum, proving the complete metalation. Due to the increased symmetry, the band
corresponding to C-H stretching and bending vibrations, located at 1289 cm−1 in the spectrum of
the porphyrin base is missing in the case of Pt-porphyrin. The large band of OH group caused by
intramolecular H-bonding and located at 3426 cm−1 covers the C-H stretching vibrations of phenyl ring
from 3033 cm−1 [30]. The C=N bonding vibration has a lower frequency (1452 cm−1) in Pt(II)-TAPP
than in the porphyrin base (1472 cm-1) due to the influence of the platinum atom [31,32]. Another
significant band is the vibration of the C-O-C bond, located at 1006 cm−1 in the Pt-porphyrin [33].

3.2.2. NMR Analysis

The investigation of the 1H-NMR spectrum, represented in Figure 4A, reveals the absence of
the signal of the two internal protons, proving the bonding of the platinum in the inner core of
the porphyrin. All the signals for the distinctive protons that prove the proposed structure of the
compound are identifiable. Thus, the β-pyrrolic protons present a singlet at 8.70 ppm; the eight ortho
phenyl protons gave signal in the 7.94–7.96 ppm interval and the eight meta phenyl protons as doublet
at 7.18–7.20 ppm, respectively. The four protons from O-CH2-CH=CH2 are identified as multiplet
at 6.13–6.22 ppm, the other eight belonging to =CH2 are resonating as two doublets from 5.51 to
5.55 ppm and from 5.34 to 5.36 ppm; the protons in the vicinity of oxygen O-CH2- gave a doublet at
4.73–4.74 ppm.

The chemical shifts (δ) of 13C-NMR are attributed in Figure 4B, taking into consideration the
distinct aspect and zone for the assignment of each carbon. The 3-line triplet signal around 77 is due to
CDCl3 in which the sample was diluted.
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Figure 4. (A) 1H-NMR spectrum and (B) 13C-NMR spectrum of Pt(II)-TAPP in CDCl3.

3.3. Detection of H2O2

3.3.1. Fluorimetric Detection of H2O2

The method for testing the capacity of Pt(II)-TAPP to act as a sensitive material for the fluorimetric
detection of hydrogen peroxide was performed by adding 0.6 mL H2O2 solution with different
concentrations to each sample containing 5.4 mL solution of 9.93 × 10−6 M Pt(II)-TAPP in DMSO.
The concentrations of the added H2O2 solution were: 1.05 × 10−6 M; 1.1 × 10−6 M; 1.6 × 10−6 M;
2.59 × 10−6 M; 2.9 × 10−6 M; 3.17 × 10−6 M; 3.43 × 10−6 M; 3.67 × 10−6 M; 3.9 × 10−6 M. Each sample
was stirred, and the emission spectra were recorded, as shown in Figure 5.
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It can be observed that the quenching of fluorescence is taking place when adding hydrogen
peroxide to the Pt(II)-TAPP solution in DMSO, as represented in Figure 5. The intensity of emission
decreases after a linear equation, characterized by an excellent confidence coefficient of 99.76%,
in 1.05–3.9 × 10−7 M H2O2 concentration range.

Study of Interfering Analytes

The selectivity of the fluorimetric sensor toward the H2O2 detection is a very important aspect.
Taking into consideration that this fluorimetric sensor is destined for medical tests, the interference
study, shown in Figure 6, was focused on those anions, cations or compounds that are frequently present
in the targeted environments (human serum and urine), such as: glucose (Glu); NaCl; ascorbic acid
(AA); phosphate buffer (PSB), AA + NaCl, PSB + NaCl, Glu + NaCl, lactic acid (LA), I2 + LA, potassium
dichromate (Cr2O7

2−), Cr2O7
2− + LA, acetic acid (AcA), potassium permanganate (MnO4

− ), MnO4
− +

LA, dilauryl phosphite (LP), LP + NaCl [28,34–36]. The concentration of each potential interfering
analyte was 2 × 10−4 M, 100-fold higher in the mixed solution than that of H2O2 (c = 2 × 10−6 M).
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The method used for investigation of interfering analytes is described as follows: to each 10 mL of
9.93 × 10−6 M Pt(II)-TAPP solution in DMSO, 1 mL solution containing the mentioned above interfering
analytes was added. Each sample was vigorously stirred for 1 minute in the ultrasonic bath and the
fluorescence spectra were recorded. Each measurement was performed three times.

The average percentage errors for H2O2 fluorescence detection are calculated as |∆I|/I × 100 (where
I represents the emission intensity of the sample containing H2O2 and |∆I|, the difference in module
between I and the emission intensity of each studied interference analyte or mixtures of analytes),
as displayed in Figure 7.
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Figure 7. Average percentage errors for H2O2 fluorescence detection, introduced by different
interferences, after three determinations.

As can be seen from Figure 7, glucose, lactic acid, dichromate anion, iodine, acetic acid, NaCl
and permanganate anion, solely or in combined mixtures, have no significant influence toward H2O2

detection, although their concentration was 100-times higher than the concentration of detected H2O2.
Other interferences, such as: ascorbic acid, dilauryl phosphite and phosphate buffer introduced

significant average percentage errors, below 5%. Instead, by performing the measurements in
samples comprising at least three different interference analytes, each of them containing NaCl,
the measurements are lacking in precision (errors between 5.5% and 7.3%), probably because of the
induced higher ionic strength.

3.3.2. Electrochemical Detection of H2O2

The response of GCE and GCE electrodes modified with Pt-porphyrin film (Pt-Porf-GCE) in MES
buffer solution at pH = 5.6 was studied comparatively. The cyclic voltammograms are shown in
Figure 8A. Different cyclic voltammograms were obtained on modified GCE electrode. The modified
electrode has oxidation peaks at the potentials of 0.35 V and 0.8 V and reduction peaks at −0.125 V and
−0.6 V, corresponding to the Pt-porphyrin film and thus confirming its presence on the electrode surface.
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presence of 28.95 mM H2O2 (curve 2); (C) GCE (curve 1) and Pt-Porf-GCE (curve 2) in the presence of
28.95 mM H2O2.

Cyclic voltammograms for GCE in MES buffer solution at pH = 5.6 in the absence and in the
presence of H2O2, are presented in Figure 8B. The GCE presents a light response in the presence
of H2O2. The comparison of the cyclic voltammograms shown in Figure 8C for GCE (curve 1) and
for modified Pt-Porf-GCE (curve 2) in the presence of the same concentration of H2O2 (28.95 mM),
reveals that the GCE has no significant response but the modified Pt-Porf-GCE strongly changed both
its anodic and cathodic responses. On modified Pt-Porf-GCE the oxidation process takes place at a
lower potential and the reduction process at a higher potential than in the case of GCE.

The oxidation current of H2O2 on the modified Pt-Porf-GCE, represented in Figure 9, increased
due to electrocatalytic oxidation (~0.7 V), as well as that of reduction (−0.5 V).
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Figure 9. Cyclic voltammograms obtained in MES buffer solution, pH = 5.6 for the Pt-Porf-GCE using
different concentrations of H2O2 [mM]: 9.65 (1); 19.3 (2); 28.95 (3); 48.25 (4). 50 mV/s, 25 ◦C.

The significant increase of the reduction current in the presence of H2O2 is due to the electro-
catalytic effect of the Pt-metalloporphyrin (Pt-Porf) on the H2O2 reduction, illustrated by Equations (1)
and (2). The reduced form of Pt-metalloporphyrin (Pt-Porf−) can reduce the H2O2 and transforms into
the initial form (Pt-Porf) on the electrode surface (Equation (2)).

Pt-Porf + e −→ Pt-Porf− (1)

2Pt-Porf− + H2O2+ 2H+
−→ 2Pt-Porf + 2H2O (2)

The oxidation current is due to the electrochemical oxidation of water and hydrogen peroxide.
The hydrogen peroxide oxidation is mediated by the Pt-metalloporphyrin immobilized on the GCE,
as can be seen in the following simplified mechanism, presented in Equations (3) and (4):

Pt-Porf −→ Pt-Porf + + e (3)

2Pt-Porf + + H2O2 −→ 2Pt-Porf + O2 + 2H+ (4)

Similar observations were reported by other authors [4,37].
In the studied concentration range, the anodic and cathodic response currents of the Pt-Porf-GCE

are directly proportional to the H2O2 concentration, as illustrated in Figure 10A,B).Chemosensors 2020, 8, x FOR PEER REVIEW 11 of 15 
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(B) cathodic current at −500 mV (R: 0.9996, SD: 2.3115 × 10−7) on the Pt-Porf-GCE and the concentration
of hydrogen peroxide, in MES buffer solution, at 50 mV/s, 25 ◦C.
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The results indicate that the detection of hydrogen peroxide by using the modified Pt-Porf-GCE is
accurate. The oxidation and reduction currents were found to increase linearly with increasing H2O2

concentration. The calibration graphs from Figure 10A, B, plotted between the catalytic current and
H2O2 concentration on the Pt-Porf-GCE give a linear dependence in the concentration range from
1 × 10−6 M to 5 × 10−5 M, R2 = 0.999, for both diagrams.

This is a range of concentration larger than that obtained in the case of fluorimetric detection and
is appropriate for measurements in technical gold cyanidation [38] cosmetics [39] and agriculture [10].

4. Conclusions

Metalloporphyrins(II) are highly recognized for their capacity to act as sensitive substances used
in formulation of optical, fluorescent, and electrochemical sensors. In this respect, a novel Pt-porphyrin
structure, namely: Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl) porphyrin, was successfully synthesized
and was fully characterized by UV-vis and fluorimetry (Supplementary Materials), FT-IR, 1H-NMR
and 13C-NMR methods.

The fluorescence response of this Pt-porphyrin in the presence of different concentrations of
hydrogen peroxide was investigated. It was proved that in the detection domain 1.05–3.9 × 10−7 M
H2O2 (that is highly relevant for biological testing) the investigated porphyrin can act as fluorescent
sensitive substance, with a high confidence coefficient of 99.7%. In comparison with other previous
strategies [8,16,17], this fluorescent approach gave a 40 times lower detection limit of 0.3 × 10−7 M,
and the procedure is simpler, less expensive and less time consuming. The fluorimetric response is
accurate and stable in the presence of several interfering mixtures of anions, cations and strongly
oxidizing species frequently present in the targeted environments. Glucose, lactic acid, dichromate
anion, iodine, acetic acid, NaCl, and permanganate anion, solely or in combined mixtures, have no
significant influence on H2O2 detection, although their concentration was 100-times higher than that
of detected H2O2.

On the other hand, Pt-Porf-GCE was realized and several electrochemical characterizations
were comparatively performed with the bare GCE, in the absence or presence of hydrogen peroxide.
The oxidation and reduction currents were found to increase linearly with increasing H2O2 concentration
on modified Pt-Porf-GCE. The calibration graphs plotted between the catalytic current (both anodic
and cathodic currents) and H2O2 concentration on the Pt-Porf-GCE gave a linear response in the
concentration range from 1×10−6 M to 5×10−5 M with exceptional confidence coefficient of 99.9%.

Different methods for the determination of hydrogen peroxide, based on several sensitive materials
were accomplished in order to improve the linear concentration range and the limit of detection and
are summarized in Table 1.

Table 1. Linear concentration ranges and detection limits of recently developed electrochemical and
optical sensors for the determination of hydrogen peroxide, using different sensitive materials.

Sensitive Material Detection Method
Linear

Concentration
Range (µM)

Detection
Limit (µM) Reference

Graphene Sheets-CeO2/Au Voltammetric
sensing 1–10 0.26 [40,41]

Pd and Au nanoparticles
(ratio 70:30%) /GCE

Electroreduction of
hydrogen peroxide 10–1270 7.06 [42]

Au and Ag nanoparticles/GCE Electroreduction of
hydrogen peroxide 5–10 1.3 [43]

Thin layers of ruthenium/rhodium/Au
foils

Amperometric
detection-anodic

oxidation
1–500 - [44]

L-Methionine cobalt (II)
phthalocyanine

functionalized MWCNTs/GCE

Amperometric
detection 0.1–0.8 0.05 [45]
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Table 1. Cont.

Sensitive Material Detection Method
Linear

Concentration
Range (µM)

Detection
Limit (µM) Reference

4-Nitrophenyl boronic acid or its
pinacol ester

Direct colorimetric
detection 5–50 1 [46]

Pd-Au nanowire sensors
Non-enzymatic

hydrogen peroxide
reduction

1–1000 0.3 [47]

Bioconjugates of Au nanoclusters
with Horseradish peroxidase

Luminescence
quenching of Au 0.1–100 0.03 [48]

Fe3O4 and CdTe core-shell
nanocomposites

Quenching of
luminescence of
quantum dots

100–1000 35 [49]

Eu3+-tetracycline -polyacrylonitrile-
polyacrylamide hybrid

Increasing of
luminescence 0.45–10 0.45 [50]

Zinc porphyrin−fullerene-derivative Nonenzymatic
electrochemical sensor 35–3400 1.44 [51]

Platinum-porphyrin/GCE

Quencing of
fluorescence 0.1–0.39 0.03

This work
Nonenzymatic

electrochemical sensor 1–50 0.3

Based on two different fluorimetric and electrochemical methods, this Pt-porphyrin has the
potential to cover detection of hydrogen peroxide in diverse fields, from medical tests to technical,
cosmetics, food, and agriculture monitoring, with high accuracy. The future implications will be
focused on obtaining of the Pt-porphyrin from recovered platinum from spent automotive catalysts
producing added value from this recovery and decreasing costs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9040/8/2/29/s1,
Figure S1: UV-vis spectra of Pt(II)-TAPP (the same concentration 3 × 10−5 M) in different solvents:
hexane (1); chlorobenzene (2); tetrahydrofuran (3); chloroform (4); dichloromethane (5); benzonitrile (6);
dimethylformamide (7); dimethylsulfoxide (8). Effect of the solvent polarity on the intensity and position
of the bands, Figure S2: Effect of the solvent polarity on the position and intensity of the bands in fluorescence
spectra of Pt(II)-TAPP (the same concentration 3 × 10−5 M), in: hexane (1); chlorobenzene (2); tetrahydrofuran (3);
chloroform (4); dichloromethane (5); benzonitrile (6); dimethylformamide (7); dimethylsulfoxide (8).
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