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1. Introduction

The field of chemo- and biosensors, ranging from biomedical/clinical applications to environmental
applications and food analyses, has been growing in the last two decades. In fact, in all these fields,
there is a continuously increasing demand for rapid responses, quality control, usable devices, and
low-cost analyses. The growth is likely to be driven by continuous technological advancements in
sensor systems, which lead to the development of devices characterized by ever higher performances
capable of satisfying the increasingly strong requests in terms of sensitivity and detection limit in
the different application sectors. All these features could lead to an improved, healthy life, ranging
from a more reliable and controlled quality of food and environment to a faster and more specific
diagnosis [1–4].

The optical detection methods applied in chemo- and biosensors make use of both label-based
or label-free techniques. The former ones make use, for example, of fluorescent [4,5] or
chemiluminescent-based detection systems [6,7], while the latter are generally based on the direct
optical detection of the refractive index changes induced by chemical/biochemical reactions [8–10].

The proposed contributions in this issue focus on bacterium, oxygen, metal or metal ion, and
gas sensing devices for food/environmental applications, as well as on glucose and sepsis biomarker
detection for medical applications.

2. The Special Issue

This special issue is focused on chemo- and biosensors based on optical detection methods, with
both label-based and label-free techniques. The described applications in the nine full articles range
from the theoretical and experimental demonstration of polar-time evolutions of chemiluminescence
emission thanks to the anisotropic emission of light at the solid–liquid interface; to environmental and
food applications starting from gas sensing and proceeding to nitrogen, phosphorus and potassium,
metal ions, microorganisms, and oxygen sensors for food packaging. Moreover, two papers for
medical applications are included for glucose detection in urine samples and for the detection of sepsis
biomarkers in serum.

Berneschi et al. [11] described a method for the real-time monitoring of chemiluminescence (CL)
emission anisotropy at the liquid–solid interface based on a radial array of optical fibers. The spatial
distribution of a CL emission from an enzyme reaction and its time evolution were investigated, and the
study revealed that the anisotropic CL emission occurs when the enzymes catalyzing the CL reaction
are in close proximity to the liquid–solid interface.

A contactless optical sensor for NO2 is demonstrated by Faglia et al. [12], who developed a system
based on the photoluminescence properties of a 1D/2D hybrid structure realized by depositing ZnO
nanorods through magnetron sputtering on exfoliated MoS2.
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A Schiff base ligand was investigated via UV–Vis spectroscopy in the work of Alorabi et al. [13].
The high selectivity and sensitivity of the ligand, bearing azomethine (>C=N-) and thiol (-SH) moieties
capable of coordinating to metal ions (i.e., Cr3+, Fe2+, Fe3+, Hg2+), was demonstrated, making it an
attractive candidate to be used in colorimetric chemosensors for the detection of heavy metal ions.

Another sensor for metal ions is proposed by Helal [14], who employs a fluorescein-allyloxy
benzene conjugate. In this work, UV–Vis and fluorescence spectroscopy are used for the sequential
detection of palladium and chromium oxyanions in a mixed aqueous solution providing a limit of
detection (LOD) of 49 ppb for Pd2+, and 127 and 259 ppb for the two chromate ions CrO4

2− and
Cr2O7

2−, respectively.
In the paper of Monteiro-Silva et al. [15], UV–Vis spectroscopy was used for the direct quantification

of nitrogen, phosphorus and potassium (N, P, K) in nutrient-containing fertilizer solutions. This was
achieved by determining the spectral interference between N, P, and K in fertilizer solutions and by
employing an innovative self-learning artificial intelligence algorithm.

A sensor based on the surface plasmon resonance technique and molecularly imprinted
nanoparticles was reported by Saylan and coworkers for the direct and label-free detection of
Enterococcus faecalis in water samples [16]. In this approach, E. faecalis surface protein is imprinted on
the nanoparticles to create artificial recognition sites for bacteria detection. The reported LOD was
estimated to be 3.4 × 104 cfu/mL.

A comparative study of five differently stable types of phosphorescence-based oxygen sensors
for food packaging applications was conducted by Kelly at al. [17]. When exposed to a panel of
standard food simulants and upon direct contact with raw meat and cheese samples packaged under a
modified atmosphere, the sensors based on ungrafted polypropylene material and impregnated with
phosphorescent dye by the soaking method were shown to provide the best implementation in terms
of stability and performance.

Wang et al. [18] reported a label-free colorimetric method for the direct determination of urine
glucose using a smartphone ambient light sensor as a data reader. This method takes advantage
of a horseradish peroxidase—hydrogen peroxide—3,3′,5,5′-tetramethylbenzidine (HRP-H2O2-TMB)
coloring system that allows the determination of glucose present in urine samples based on the fading
of the color solution. Good repeatability, sensitivity and accuracy makes this approach potentially
applicable for the point-of-care monitoring of urine glucose.

A fluorescence-based integrated optical measurement system for the simultaneous detection of
C-reactive protein (CRP) and neopterin (NP) sepsis biomarkers is described by Giannetti et al. [19].
A limit of detection as low as 10 and 2.1 µg/L was achieved for CRP and NP in commercially available
human serum, respectively. The portable point-of-care testing system was also evaluated for the
detection of CRP and NP in serum samples collected from septic patients.

In conclusion, this special issue explores new insights on the label-based and label-free
methodologies for sensing applications for an improved, healthy life, ranging from a more reliable and
controlled quality of food and environment to a faster and more specific diagnosis.
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