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Abstract: In this case study, we provide a few examples for affinity-sensors based on optical detection
concepts and compare them with electronic read-out schemes. We concentrate and briefly summarize
two of the most advanced versions in each category: one is a surface-plasmon field-enhanced
fluorescence spectroscopic approach, while in the electronic sensing domain we concentrate on
graphene-based field-effect transistors as the read-out platform. Both transduction principles are
surface-sensitive and-selective, however, with penetration lengths into the analyte solution (e.g., into a
flow cell attached) that are very different and that depend on totally different physical principles:
while for surface-plasmons the evanescent character of the plasmon mode, propagating along the
noble metal-solution interface with a penetration length in the order of 100 nm (for Au/water and
a laser wavelength of = 632.8 nm), the “penetration depth” in electronic transistor-based sensing
is governed by the Debye length which, for a physiological salt environment, amounts to less
than 1 nm. Taking these differences into account, one can optimize the sensor read-out by the
appropriate interfacial architecture used to functionalize the transducers by immobilizing one of the
affinity interaction partners. We will discuss this for both concepts by giving a few examples of the
achievable limit of detection for both methods. The examples discussed include a classical system,
i.e., the binding of human chorionic gonadotropin (hCG) to its surface-immobilized antibodies or
Fab fragments, the detection of lipopolysaccharides in a tethered bimolecular lipid membrane, and,
as an example for small analyte detection by antibodies, the monitoring of aflatoxin B1, a member of
the food toxin family of mycotoxins.

Keywords: surface-plasmons; surface-plasmon fluorescence spectroscopy; penetration depth;
electronic sensing; field-effect transistor; graphene; debye length; antibody; human chorionic go-
nadotropin; tethered bimolecular lipid memebrane; lipopolysaccharides; mycotoxin

1. Introduction

If one looks at the 2020 Glossary of the National Agricultural Library of the United
States Department of Agriculture for the definition of “immunosensors”, one finds the
following: “Analytical devices that use antibodies as the specific sensing element and detect con-
centration dependent signals” [1]. This reference describes perfectly what we will cover in
this report with a particular focus: firstly, we will describe and compare two of the many
different transduction principles, i.e., an optical device, based on surface plasmon fluores-
cence spectroscopy (SPFS), and then an electronic one, using graphene-based field-effect
transistors (gFETs). We aim at comparing results obtained in a number of case studies
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using these top-of-the-line techniques in their respective categories. And, as we will show,
both can be applied very well to monitor and quantify in situ and in real time the associa-
tion (binding) and dissociation—and hence the “sensing”—of analytes from solution to
surface immobilized antibodies used as receptors. Both techniques deliver concentration
dependent signals; yet, are based on completely different physical transduction principles.
For both techniques, we will present for these case studies the sensitivity of the detec-
tion of bio-analytes and will compare the relative advantages/disadvantages of the two
transduction concepts and their respective limits of detection.

2. Surface Plasmon Optical Detection
2.1. The Basics of Surface Plasmon Fluorescence Spectroscopy

The schematics of the set-up used for the surface-plasmon (fluorescence) optical record-
ing of bio-analyte association/binding and dissociation reactions between surface-attached
antibodies as receptors and analytes from solution is shown in Figure 1. A classical surface
plasmon resonance (SPR) spectrometer in the Kretschmann configuration [2] is modified
by a module consisting of a collection lens, a spectral filter to differentiate the emitted fluo-
rescence light from elastically scattered surface plasmon modes, (an attenuator if needed
to avoid running the photomultiplier near saturation,) and a monitoring unit, typically
a photomultiplier, operated in the photon counting mode for intensity measurements.
For the spectral analysis of the fluorescence the emitted light is coupled via an optical fiber
to a spectrometer. Both attachments allow for the application of fluorescence detection
principles to be implemented as surface plasmon field enhanced fluorescence spectroscopy
(SPFS) for the recording of the kinetics of receptor-ligand binding reactions, as well as for
the determination of the corresponding affinity constants by titration experiments [3].
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Figure 1. Schematics of the extension of a classical surface plasmon spectrometer in the Kretschmann configuration by a
fluorescence detection unit, consisting of a collecting lens, an attenuator (if needed), a set of filters for the separation of
fluorescence emission from scattered light, and different modules for the detection of fluorescence: either a PMT to measure
the absolute intensity values of the emitted light or a fiber-optic coupled spectrometer for the detection of the spectral
properties of the emitted fluorescence light.

One of the guiding criteria in the design and construction of sensor platforms for
surface-specific detection concepts in immuno-sensing is the correlation of the supramolec-
ular architecture of the interfacial binding matrix and the spatial extent (the penetration
depth) of the probing field from the transducer surface into the analyte solution. For the
quartz crystal microbalance, this is the shear field that extends from the oscillating quartz
surface into the analyte solution and amounts to c. 250 nm (@ 5 MHz frequency) [4];
in surface-plasmon optics with modes propagating at the Au/water interface with a wave-
length of =632.8 nm, the evanescent field shows a 1/e decay into the analyte solution of
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about 100 nm [5]; while in electronic sensing the relevant length scale is given by the Debye
length which, for physiological buffer solutions, amounts to less than 1 nm (cf. below).
No matter how short the decay length of the probing field may be, in any of these sensing
formats, the analyte, binding from solution to the surface-immobilized receptor, should do
so as close as possible to the transducer-solution interface where the mechanical, optical,
or electrical field, probing this binding reaction, is maximal.

However, additional considerations may have to be taken into account: e.g., as it is
shown in Figure 2 the fluorescence yield of a chromophore near a metal surface that acts
as a broadband acceptor system would be efficiently quenched for any labeled analyte
molecule that comes closer to the metal surface than about two Förster radii which amount
to some 10–15 nm (cf. the dashed curve in Figure 2) [6]. A surface architecture of receptor
sites that keeps the binding analyte sufficiently away from the quenching surface will thus
lead to an enhanced fluorescence intensity as the sensing signal. This concept is realized
in the following sandwich assay designed for the quantitative detection of a pregnancy
hormone marker, i.e., human chorionic gonadotropin (hCG) [7].
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Figure 2. Comparison of the distance dependence of the optical field enhancement of a surface plasmon evanescent
wave mode excited at a prism/Au/water interface (solid curve), and the Förster energy transfer, expressed as the relative
fluorescence intensity (dashed curve) from a chromophore placed at a certain distance above the metal/water interface.
Simulation were performed, assuming a laser wavelength of =632.8 nm and an Au refractive index n = 0.125 + 3.56 i.

2.2. Sandwich Fluorescence Assays for Human Chorionic Gonadotropin Monitoring

Human chorionic gonadotropin (hCG) is a glycoprotein hormone secreted by the
trophoblastic cells of the placenta during pregnancy. It is a member of the glycoprotein hor-
mone family, which includes luteinizing hormone (LH), follicle-stimulating hormone (FSH),
and thyroid-stimulating hormone (TSH). Its function is to maintain the corpus luteum
and stimulate steroid secretion from the ovary in the early stages of gestation. Apart from
its physiological action, hCG is found in pathological cases such as choriocarcinoma or
testicular cancer [8].

Quantitative determinations of hCG and hCG-derivatives in serum or urine are impor-
tant in the diagnosis and in monitoring pregnancies, hCG-secreting malignancies, and in
testing for Down’s syndrome. hCG is usually detectable in serum about 7–9 days after
conception when implantation occurs (cf. Table 1). This defines high requirements to the
specificity and the sensitivity of the detection methods.
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Table 1. Expected values for hCG levels (World Health Organization Third International Standard
75/537) during normal pregnancy (in mIU/mL) [9].

1st week 10–30
2nd week 30–100
3rd week 100–1000
4th week 1000–10,000

2nd & 3rd month 30,000–100,000

Today, the clinically available hCG detection methods are mainly based on immunoas-
says. The selectivity of the ligand-binding of antibodies allows these biomolecules to be
employed in analytical methods that are highly specific even in complex biological matrices,
such as blood, plasma, or urine. By combining the selectivity of antibody–analyte interac-
tions with the vast array of antibodies preformed during the immunization processes of
host animals and the availability of numerous readily detectable labels, immunoassays can
be designed for a wide variety of analytes, with extraordinarily low detection limits as well
as relatively low cost. In general, immunoassays are categorized based on the types of de-
tection principles and labels that are employed and are divided into: radioimmunoassays,
enzyme immunoassays, chemiluminescence immunoassays, fluorescence immunoassays,
and a few others.

Among the various optical immunosensor systems, SPR is the most popular one [10].
In earlier work, we used SPR as the method to characterize the assembly of the supramolec-
ular structure of the binding matrix, composed of a biotinylated self-assembled monolayer
(SAM), a layer of streptavidin, a layer of biotinylated antibody fragments, Fab, the analyte
hCG, and a monoclonal Alexa Fluor-labeled detection antibody (AF-IgG). The correspond-
ing multilayer is schematically shown in Figure 3A. As the detection limit we obtained
approximately LOD = 10 nM [11], corresponding to about 5000 mIU/mL.

SPFS offers the ability to simultaneously monitor the interfacial refractive index
changes, n, as well as the fluorescence signals, both in real time. The surface enhanced
fluorescence signal greatly increases the possibility for the detection of even trace amounts
of analyte substances in solution [12]. In this chapter, we will present some results of
hCG immuno-sensing, based on the SPFS technology, including the effect of an optimized
surface antibody orientation, affinity constant determination of different antibody-antigen
systems, LOD measurements, etc.

The streptavidin-biotin (or avidin-biotin) complex represents the highest noncovalent
affinity interaction in nature. The reported affinity constant of 2.5 × 1013 M−1 between
streptavidin and biotin [13], and the fact that biotin can be linked to almost any biomolecule
make streptavidin and biotin a universal coupling system in biotechnology. On the other
hand, the formation of ordered SAMs is usually the primary choice for surface modification
and bio-functionalization of gold or silver surfaces, which are required for the resonant
excitation of surface-plasmon modes. Therefore, the combination of the streptavidin-biotin
interaction scheme and the concept of a SAM structure should be one of the simplest and
most robust fabrication strategies for immune-sensors based on surface-plasmon optics.

This approach for the optimization of surface functionalization for molecular recog-
nition process has been reported by Spinke et al. [14] with the conclusion that the best
choice of the biotin-containing molecules for the SAM formation contain a spacer seg-
ment between biotin and the thiol unit. A second aspect of this strategy is the dilution of
this molecule within the monolayer by hydroxyl-thiols, with a molar ratio of biotin-thiol
of χ = 0.1 in the mixed thiols solution. This allows for the optimization of the binding
properties of the monolayer, i.e., to maximize the specific binding, while simultaneously
minimizing the nonspecific interactions between streptavidin and the surface to below the
detection limit.



Chemosensors 2021, 9, 11 5 of 19Chemosensors 2021, 9, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 3. Schemes of different supramolecular structures for hCG detection in a sandwich assay 
with biotin/streptavidin as the universal immobilization system: (A) Streptavidin/ biotinylated 
antibody (bio-IgG)/ hCG/ Alexa Fluor-labeled antibody (AF-IgG); (B) Biotinylated Fab / hCG/ AF-
labeled antibody structure. 

SPFS offers the ability to simultaneously monitor the interfacial refractive index 
changes, n, as well as the fluorescence signals, both in real time. The surface enhanced 
fluorescence signal greatly increases the possibility for the detection of even trace amounts 
of analyte substances in solution [12]. In this chapter, we will present some results of hCG 
immuno-sensing, based on the SPFS technology, including the effect of an optimized sur-
face antibody orientation, affinity constant determination of different antibody-antigen 
systems, LOD measurements, etc. 

The streptavidin-biotin (or avidin-biotin) complex represents the highest noncova-
lent affinity interaction in nature. The reported affinity constant of 2.5 × 1013 M−1 between 
streptavidin and biotin [13], and the fact that biotin can be linked to almost any biomole-
cule make streptavidin and biotin a universal coupling system in biotechnology. On the 
other hand, the formation of ordered SAMs is usually the primary choice for surface mod-
ification and bio-functionalization of gold or silver surfaces, which are required for the 
resonant excitation of surface-plasmon modes. Therefore, the combination of the streptav-
idin-biotin interaction scheme and the concept of a SAM structure should be one of the 
simplest and most robust fabrication strategies for immune-sensors based on surface-plas-
mon optics. 

This approach for the optimization of surface functionalization for molecular recog-
nition process has been reported by Spinke et al. [14] with the conclusion that the best 

Figure 3. Schemes of different supramolecular structures for hCG detection in a sandwich assay
with biotin/streptavidin as the universal immobilization system: (A) Streptavidin/biotinylated
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In the subsequent work of Spinke et al. [11], an even better supramolecular structure
for a hCG immunoassay was reported. Instead of using the whole antibody, a biotinylated
Fab fragment of an anti-hCG IgG was employed. This Fab fragment is mono-biotinylated
in the hinge region to ensure proper orientation of the fragment on the surface with the
binding site facing to the analyte solution, away from the surface. Furthermore, the size
of the Fab fragment is only 5 nm × 7 nm × 4 nm [15], comparable with one streptavidin
molecule; thus allowing for a higher receptor/binding site density on the transducer
surface. This optimized biomolecular interaction structure is schematically shown in
Figure 3B.

One of the disadvantages of the “two-steps” sandwich immunoassay is that the hCG
and the fluorophore-labeled detection antibody binding protocols need to be completed
separately, which increases the consumed time of each individual cycle.

Combining these two separate coupling steps leads to the “one-step” sandwich im-
munoassay [16]. Figure 4A shows the kinetic fluorescence working curve of this “one step”
method based on the antibody combination Bio-Fab/hCG/AF-β-IgG. After surface activa-
tion, a series of 1 mL mixed samples prepared in PBS buffer with the hCG concentration
of 0 mIU/mL (negative sample), 0.5 mIU/mL, 1 mIU/mL, 8 mIU/mL and 64 mIU/mL,
respectively, together with a fixed concentration of 5 nM AF-β-IgG were injected into
the flow cell and circulated for 30 min in the loop. The Bio-Fab surface was regenerated
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in intervals with glycine buffer pulses (10 mM glycine-HCl, pH 1.75). The fluorescence
response signal at the end of 30 min was recorded for the dose-response plot (cf. Figure 4B
and the zoom-in given in Figure 4C), in which the straight fit line illustrates the excellent
linearity within this regime of extreme low surface coverage. Extrapolating the linear fit
curve to the baseline level resulted in a detection limit of LOD = 0.15 mIU/mL, equivalent
to 0.28 pM, at the same order of magnitude as with the “two steps” SPFS sandwich assay.
The benefits of the proper orientation of the Fab fragment as well as their higher surface
density were obvious and the simplified action even saved 10 min of time for each cycle in
the assay.
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2.3. Extending the Sensitivity by A Polymer Brush Architecture as Binding Matrix

As it was shown in Figure 2, the evanescent field of the surface plasmon modes that
excite the chromophores as labels in the SPFS detection scheme extends some 100 nm into
the analyte solution. Consequently, binding matrices that offer receptor sites only in a
2D arrangement at the sensor surface do not guarantee the best possible overlap between
the probing optical field and the location of the affinity interactions. Hence, wherever
possible, the use of an extended binding matrix, e.g., a polymer brush or a hydrogel
layer, with immobilized receptor proteins allows for a better match of the optically probed
“slice” of the analyte solution with the bound species of interest (cf. Figure 5A) and the
evanescent optical field employed to monitor affinity binding events. This has been realized
in the CM5 chip from Biacore [17], where a carboxymethylated dextran polymer brush
used to immobilizes any receptor molecules of interest extends in the swollen state some
100–150 nm out into the buffer medium.
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antibodies, extending the spatial range of analyte binding events that can be probed by the evanescent optical field of
a surface plasmon mode (dotted red curve); (B), binding assay in the very low analyte concentration regime (orders of
magnitude below the half-saturation concentration c1/2 = Kd). The linear increase of the fluorescence intensity indicates
the diffusion-limited mass transfer of the analyte molecules (fluorescently labeled AF-RaM antibodies) to the surface-
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function of the corresponding bulk concentration. The intersection of the fit to this calibration curve (red line) with the
baseline (background fluorescence level, black dashed line) results in a LOD of 500 aM.

For SPFS, this extended interfacial architecture also offers a considerable sensitivity
advantage as the corresponding optical field also in this case allows for the excitation of a
significantly higher number of labelled analyte molecules than in a strictly 2D functional-
ization architecture. This is schematically depicted in Figure 5A, showing a polymer brush,
which is immobilized on the sensor Au substrate surface with its multiple functionalization
by covalently attached antigens. Any dye-labeled analyte molecule diffusing into the brush
form solution will then be bound by its immuno-receptor within the evanescent optical
field, will be optically excited and will consequently emit a fluorescence signal that is
proportional to the analyte concentration. The recorded fluorescence intensity can then be
analyzed quantitatively in terms of kinetic and the affinity constants.

Such a series of binding events is summarized in Figure 5B for extremely low bulk
concentrations for which the time dependent fluorescence increase measured in a flow-cell
by SPFS reflects the mere mass-transfer limited diffusion of the (chromophore-labeled)
analyte molecules form the bulk solution across the unstirred layer to the sensor surface.
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For each intensity trace, firstly the baseline fluorescence is recorded, then the analyte
solution injected. According to Fick’s law that governs this diffusive process one observes
a linear increase of the fluorescence intensity until the analyte solution is replaced against
pure buffer, which leads to an immediate stop of the fluorescence increase. After regenerat-
ing the sensor brush by a glycine pulse, the next injection of an analyte solution results in
another linear increase of the fluorescence intensity.

Plotting the slopes of the linear fluorescence intensity increase as a function of the cor-
responding bulk analyte concentration for which it was recorded then leads to a calibration
curve that is linear over 6 orders of magnitude (Figure 5C) and allows for the determination
of the bulk analyte concentration from the recording of the slope of the time-depending
binding curve. The intersection of this calibration curve with the three baseline deviation
level measured separately (as the fluorescence stability limit and background of the set-up)
gives the limit-of-detection for this sensing platform as LOD = 500 aM (5.10−16 M).

2.4. Immuno-Detection of Lipopolysaccharides in A Tethered Bimolecular Lipid Membrane

The final example for the quantitative, SPFS-based recording of the concentration-
dependent binding of antibodies to their antigens concerns lipopolysaccharides (LPS,
structure given in Figure 6A) located in a bimolecular artificial lipid membrane [18,19].
By preparing on the surface of the optical transducer a so-called tethered bimolecular lipid
membrane (tBLM) [20], doped with LPS mixed into the distal leaflet of the membrane,
the O-antigen part of the polysaccharide is exposed to the buffer solution (Figure 6B).
The thickness of the resulting membrane was obtained by analyzing the angular scans of
SPR measurements using a layer model [21], resulting in a final thickness of the distal layer
of 3.5 ± 0.1 nm, slightly higher than that of a pure DPhyPC layer (~3.3 nm), which accounts
for the presence of LPS.

Next, SPR and SPFS were used to monitor the specific binding of primary and fluo-
rescently labeled secondary antibodies to the O-antigen fraction of LPS-containing tBLM
interface. Due to the rather diluted LPS in the membrane, the addition of primary antibod-
ies leads to only a small shift in the SPR signal (shown in Figure 7A, left scale). Similarly,
the SPR signal hardly changes upon the addition of the secondary antibody (also shown
in Figure 7A). The SPR response is proportional to the amount of bound material on the
surface, which in the present case is rather limited.

However, the fluorescence signal, originating from the chromophore-labeled sec-
ondary antibody, shows a significant increase upon binding to the primary antibodies and
is stable upon rinsing (Figure 7A, right ordinate). The control experiment with the addition
of the antibodies to a pure DPhyPC membrane showed only little non-specific binding
(data not shown).

Next, a series of angular SPFS measurements with various antibody concentrations
ranging from 1 × 10−13 M to 8 × 10−8 M have been performed after the signal reached
a stable intensity level (Figure 7B). The specific adsorption of the 130 kDa secondary
antibodies can be detected easily down to concentrations of 500 pM. The fluorescence
intensity increases with increasing antibody concentration until it reaches a saturation level.
In order to obtain a quantitative analysis of the binding, the SPFS signals were normalized
between the background level and the saturated intensity, corresponding to full binding
site coverage. Plotting these normalized intensities as a function of bulk primary antibody
concentration, the binding of the antibodies could be analyzed using a Langmuir isotherm.
A Langmuir adsorption coefficient of KA = 3 × 108 M−1 could thus be obtained (Figure 7C).
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Figure 6. Detection of LPS (structure given schematically in (A)), using antibody labeling;
(B), schematics of the sensor surface architecture: a DPTL self-assembled monolayer is completed by
vesicle fusion to a bilayer containing LPS. The O-antigen part of the incorporated LPS is exposed to
the buffer solution for (primary and chromophore-labeled secondary) antibody binding.
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Figure 7. (A), SPR (left ordinate) and SPFS (right ordinate) kinetics data taken at a fixed angle of
observation during the sequential additions of primary and labeled secondary antibodies; (B) shows
the angular scans indicating the angle-dependent fluorescence emission from fluorescently labeled
secondary antibodies following the surface plasmon excitation; (C) plot of the normalized fluores-
cence intensity versus primary antibody concentration; the fluorescence increases until it reaches
saturation. The solid line is a fit to a Langmuir adsorption isotherm with KA = 3 × 108 M−1.

3. Electronic Bio-Sensing

Among the biosensors that use the quantitative recording of electrical charges, current,
or voltage as the transduction concept, the various versions of electrochemical sensors
have certainly found the most wide-spread applications [22,23]. However, more recently,
electronic detection principles, based on the use of transistor devices, offer an attractive
alternative. Demonstration of the sensing capabilities can be found in a wide range of
examples in literature [24,25]; and also, our group has demonstrated this for organic
field effect transistors (OFETs) used for the sensitive detection of antibodies by surface-
immobilized antigens [26].

A drawback of the OFET detection of bio-affinity reactions, measured in real-time
in a flow cell, is the requirement of a suitable passivation strategy, shielding the organic
transducer against ion diffusion from the buffer [27]. The electronic signal of the transistor
(source-drain current) is modulated by these gate (bulk and/or surface) electric potentials
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that depend on the surface charges, which, without a protective layer, are altered by
faradaic interaction with the surface. As a result, an unprotected sensor in physiological
buffer solution will drift forever.

This challenge can be addressed using graphene as the semiconducting material of
the transistor [28]: the assembly and use of electronic sensors based on reduced graphene
oxide (rGO) as the gate material are by far easier [29,30]. These devices can operate in
aqueous buffer solutions even without any protective coating because the intrinsic high
conductivity of graphene guarantees that most of the current from the source to the drain
electrode flows through the graphene layer (and is there modified by any analyte binding
as the transduction mechanism) even if the conductive buffer solution at physiological ionic
strength generates a short-cut to some extent between the source and drain electrodes [29].
This will reduce the fabrication costs of the transistors for commercial use significantly!
The (eventually) cheap fabrication of graphene transistors and their ease of operation,
including the potential for multiplexing and high integration into arrays, together with the
simple data handling by the read-out electronics promises to offer a very versatile label-free
detection scheme for all kinds of analytes inducing potential changes at the surface of
the transducer.

3.1. rGO Based Field Effect Transistors

Reduced graphene oxide field-effect transistors (rGOFET) fabrication was performed
using previously demonstrated protocols [31], very schematically shown in Figure 8.
The transistors are typically operated in the liquid-gate mode. Graphene oxide flakes were
assembled and reduced on the gate substrate, followed by the surface functionalization by
a linker monolayer, 1-pyrenebutanoic acid succinimidyl ester (PBSE), which is widely used
for functionalization of carbon-based nanomaterials [32,33].
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Figure 8. Schematics of a graphene (or reduced graphene oxide, rGO)-based field effect transistor with source and drain
electrodes and a liquid gate, integrated into a flow cell for in situ bio-analyte detection. Surface functionalization is achieved
by pyrene derivatives as the linkers that allow for the stable immobilization of antibodies as receptors for recognition and
reversible analyte binding, an antigen, from the sample solution pumped through the flow channel attached.

The operation mode of these field-effect transistor devices starts with the recording
of the source-drain-current response to sweeps of the gate voltage, ISD versus VG scans,
at variable conditions of the bulk solution, mostly in buffered electrolyte solutions with
varying ligand concentrations. This results in a shift or a slightly modified slope of the
cathodic branch of the ISD-VG curve [31]. This is attributed to a slight modification of the
surface potential by different charge densities at the device-solution interface, or of the
interfacial dipole layer, e.g., by slight reorientations of-helical structures in the receptor
molecule resulting from ligand binding to available binding sites. By selecting a suitable
gate voltage, the sensor signal is then typically the change of the channel current, ISD,
in dependence of the analyte concentration for titration experiments, or as a function of
time after injecting a sample with a different analyte concentration for kinetic data.
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3.2. Immuno-Sensing of Antigens by rGO FETs

As an example, the operation of these rGO-FETs as biosensors is demonstrated testing
a well benchmarked system, i.e., protein binding of bovine serum albumin (BSA) to its
antibody, immobilized on the graphene channel [34]. A titration of the analyte (BSA),
by stepwise increase of the analyte concentration and measurement of ∆ISD in real-time is
shown in Figure 9 top. For each increase in analyte concentration from c0 = 100 nM up to
c0 = 25 µM the measured ISD decreases until saturation is reached gradually for the highest
concentration. The kinetics of each concentration step were fitted with single exponential
functions (cf. red curves shown Figure 9 top) and yielded the time constant, k, for each
titration step. The time constant increases with higher bulk concentration. The obtained
results are in accordance to the Langmuir model for a two-component interaction of analyte
in the bulk (antigen) with the receptor (antibody) on the surface. Finally, the system was
rinsed with pure buffer, and the sensor signal returns to the level before measurement,
again with single exponential kinetics (cf. the blue fit curve) implying good reversibility
of binding (which is necessary for the Langmuir model). The obtained exponent from
this dissociation yields the dissociation rate constant, koff. According to the Langmuir
model the relation from these binding constants is k = kon*c0 +koff, therefor a linear fit of
the time constants against the titration concentration yields the association rate constant,
kon as the slope, which is used to calculate the affinity constant, KA. The approach has
been demonstrated and reported, measuring the affinity constant for BSA binding to its
antibody of KA = 1.6 × 105 M−1 [31], which is the equivalent to a dissociation constant
value of Kd = 6.2 µM.
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Figure 9. (top), Measurement curve of BSA binding from the bulk to surface-immobilized anti-BSA
antibody; BSA concentrations from 100 nM to 25µM (near saturation, red labels) were rinsed over the
sensor surface. The instability/drift in the first minutes originates from charging of the graphene,
and is stabilizing after a few minutes. (bottom), Langmuir adsorption isotherm from the plot of ISD,
normalized to the saturation response, obtained for each titration step after equilibrium. The isotherm
(red curve) is obtained from fitting with the Langmuir model, showing a dissociation constant (at half
saturation) Kd = 3 M.
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To test the consistency of the approach, a second evaluation using the current responses
corresponding to the surface coverage towards the saturation concentration was performed
and the resulting Langmuir isotherm plotted is shown by Figure 9 bottom. The signals
were normalized to the saturation concentration and each intermediate titration step
was assigned as the according equilibrium surface coverage fraction (i.e., ISD for each
concentration after equilibrium is reached). These were plotted against the bulk analyte
concentration, obtaining the Langmuir isotherm. The affinity constant should be the
concentration at which 50% surface coverage is achieved or from plotting the surface
coverage Θ for a given concentration, the affinity constant KA is obtained:

Θ = ISD (c0)/ISD (c∞) = KA c0/(1 + KA c0) (1)

The surface coverage is plotted in Figure 9 bottom as a logarithmic function of the bulk
analyte concentration, and the expected Langmuir isotherm shape is obtained. Data fitting
(full red curve) with the Langmuir model yields an affinity constant KA = 3.3 × 105 M−1,
which can be expressed as the dissociation constant, or half saturation, Kd = 3 µM. Com-
parison of the result with the data from kinetic evaluation (Kd = 6.2 µM), shows good
confirmation that the Langmuir model is suitable for quantitative description of the bind-
ing behavior of BSA to the antibody immobilized on the graphene channel. Moreover,
this shows that electronic read-out of FET based sensors is a quantitative, label-free method
for general biosensing purposes.

3.3. Debye Length Dependence

The detection of proteins by electronic biosensors is influenced by transduction-
specific parameters, like Debye length change or the change of charge carrier mobility
from coulombic or faradaic interaction with the electrolyte with dependence on its ionic
strength [31].

The Debye length increases for lower ion concentrations of the electrolyte [34], on the
other hand, the electron mobility of the semiconductor and the double layer capacitance
increase at the same time, thus a stronger response signal of the FET is obtained when
detecting BSA at low electrolyte ion concentrations (cf. Figure 10 top). Demonstration
of this influence on the detection signal was performed by adjusting the buffer pH to 7.4,
sufficiently above the isoelectric point of BSA (pH 5.4) to ensure positive charge of the
analyte molecules which should lead to a negative response signal of the FET channel
current. A quantitative evaluation of the Debye length influence on the sensing sensitivity
was shown experimentally. The experiment was conducted by variation of the PBS buffer
ionic strength at constant pH, establishing a baseline for each ionic strength concentra-
tion, followed by injection of a 50 µM BSA in the same buffer and rinsing with the pure
buffer before switching to the next ionic strength. As the double layer capacitance of
the graphene-liquid interface and the charge carrier density of the graphene change with
decreasing ionic strength an increase of the Source-Drain current was observed with lower
ion concentrations (Figure 10 top). The charge carrier mobility decreased with lower ionic
strength but an increase in the gate insulator capacitance had a bigger influence resulting
in a higher measured current when gate voltages close to the Dirac Point (minimum in
ISD-VG, Vi) were applied. However, the effect of charge mobility increases when higher
gate voltages (bigger difference to Vi) are applied and then outweighs the effect from
changing capacitance leading to a total current increase with increasing electrolyte ion
strength. The obtained responses from Figure 10 top were superimposed with theoretical
data, calculated directly from the Debye-length theory and are shown in Figure 10 bottom.
The Debye length was calculated in dependency on the ionic strength and a variable capac-
itance. Good agreement was found for this theoretical model with experimental results
of 50 µM BSA injections and the dependence was found to be correlated by a factor of
28.6 m/A [31].
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Figure 10. (top) Measurement of the association (binding) and dissociation signal of 50 µM BSA, while step-wise decrease
of the ionic strength (shown by the different shades of blue) from 170 mM to 8.5 mM at a constant VG= −0.2 V. Washing
steps with the same buffer solution as used as BSA matrix are indicated by the blue arrows. (bottom) The black curve
shows the calculated dependence of Debye length to ionic strength from theory and the red dots show of responses from A
overlapping with theory.

3.4. Limit of Detection in Electronic Bio-Sensing

Naturally, the limit of detection for antigen-antibody interactions that can be achieved
with this electronic biosensor is of interest. Accordingly, we measured the real-time current
change resulting from 1 nM BSA injection in PBS buffer after a baseline was established
with pure PBS buffer and rinse with the same buffer solution after BSA binding reached
saturation level (Figure 11). Also, for such low concentrations, the signal to-noise-ratio
is superb and ∆ISD can be monitored smoothly. Estimating from this measurement via
regression, the LOD for the analyte should be in the 100 pM concentration range. Applying
the Langmuir model [35] from Equation (1) to this finding, with c0 << 1/KA, at such low
concentration the surface coverage can be calculated by:

Θ = KA c0 (2)

using the obtained results from above for KA = 3.3 × 105 M−1, and c0 = 100 pM, resulting
in a surface coverage of bound analyte Θ = 3.3 × 10−5. This means that the interfacial
surface potential change resulting from one molecule of analyte binding to only 1 out of
30,000 antibodies immobilized on the graphene is sufficient to result in a measurable and
quantifiable current read-out signal change.
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Figure 11. Measurement of the source-drain current ISD for a single kinetic response to a 1 nM BSA
concentration (red arrow), after a baseline in pure PBS buffer was established and followed by rinsing
with the same buffer again (blue arrows) for monitoring of the association and dissociation rate
constants [34].

3.5. Small Analyte Detection by Antibodies

Finally, we want to discuss the detection of food pathogens, particularly aflatoxins,
by their respective antibodies. This group of mycotoxins is produced predominantly by
Aspergillus parasiticus and Aspergillus flavus which materialize in a wide range of agricultural
products. The hydroxylated metabolite of aflatoxin B1 (AFB1) is called aflatoxin M1
(AFM1) and is found in milk, organs, blood and urine of animals which have ingested feed
contaminated with AFB1 [36]. These toxins are hepatotoxic and carcinogenic [37] with high
resistance against thermal treatments like pasteurization, therefore control measurements
for food safety are established. As an example, the European Commission has established
50 pg·mL−1 as the maximum allowable level of AFM1 in milk [38].

Comparing the electronic read-out method presented to an optical displacement
assay [39] several advantages can be found: (i) real-time binding of the analyte is possible
and only limited by diffusion which makes the method faster in comparison; (ii) kinetic
information of the binding is obtained directly enabling measurement of the association
and dissociation constants; (iii) less processing steps, since no secondary antibodies are
used; (iv) no bulky detection instrumentation is needed for electronic read-out and the
used devices are based on “plastic electronics” and are cheaper and disposable.

As a first step we measured the non-specific binding of aflatoxin to bare rGO and
found that non-specific binding was totally suppressed for rGO surfaces which were
funtionalized with an antibody that is specific for a totally different analyte (BSA in this
case). For such surfaces, rinsing of even high concentrations of AFB1 through the flow cell
did not result in any response in the source-drain current, ∆ISD.

Judging from Figure 12 left, the issue of sensitivity and specific binding of AFB1 to the
antibody can be evaluated. For the shown measurement, the AFB1 monoclonal antibody
was immobilized directly on the rGO gate of the transistor. Different concentrations of AFB1
analyte were injected in the flow cell (as indicated by the green arrows in Figure 12 left)
and were alternated with injections of only PBS buffer (blue arrows). This caused a direct
sensor response (source-drain current change, ∆ISD) of the FET. The sensor responses
of ISD change were obtained in a good signal-to-noise ratio, also for very low analyte
concentrations in the picomolar range. Similar sensitivity resolution is achieved by the
much more demanding optical approach of surface-plasmonics reported earlier [39].
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By plotting the ISD values from A against the toxin concentration in solution and
fitting the data to a Langmuir model one obtains for the half saturation concentration of
the immune sensing system c1/2 = Kd = 800 pM.

4. Conclusions

The race in biomedical diagnostics between optical detection principles (UV/Vis ab-
sorption, fluorescence, surface plasmon spectroscopy, etc.) and electrical/electro-chemical/
electronic concepts is not decided yet. Both approaches continue to offer solutions for fast,
multiplexed, simple and cheap detection of oligonucleotides, PCR amplicons, genomic
DNA (fragments), proteins, peptides, exosomes, organelles, etc.

If it comes to the detection of small (low mass) analytes and/or if the achievable
analyte binding density at the transducer surface is low, label-free optical detection schemes
have a problem because the change in the optical interfacial architecture induced by
the mere binding of the analyte may be simply too minute to be detected—a classical
challenge even in commercial instruments like the Biacore SPR setups [16]. In some
cases the use of labelling techniques employing fluorescent chromophores [3], quantum
dots [40], Au Nanoparticles [41], or magnetic beads [42] may help; however, in many
cases the labelling of the analyte is not an option or undesirable, or the (small) size of the
analyte molecule simply prevents the attachment of a suitable label, e.g., for hormones,
odorants [43], or food pathogens like mycotoxins.

Here, the use of electrochemical and electronic detection principles, based, e.g., on the
use of transistor devices offer an attractive alternative, in particular, if the analyte is charged
as it the case for DNA oligonucleotides no matter how short they are, or for peptides and
proteins. This has been demonstrated convincingly in many examples reported in the
literature [44]. With the introduction of graphene as the semiconducting material used for
the fabrication of the gate of a transistor [33] the electronic read-out concept became even
more attractive.

This will be complemented by the development of artificial receptors, e.g., aptamers [45],
affimers [46] or seligos [47]. Affinity-diagnostics with graphene FETs functionalized by
these synthetic immuno-receptors for proteins but also for the detection of small analytes
are just at the beginning of a very dynamic development in biosensing. All these electronic
biosensing platforms are highly sensitive, label-free, disposable and cheap, with signals that
are easy to analyze and interpret, suitable for multiplexed operation and for remote control,
compatible with NFC technology, etc., in many cases a clear and promising alternative to
optical sensors.
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A completely new route for affinity sensing was recently opened by demonstrating the
combination mode of surface-plasmon optical and electronic read-out schemes: the planar
Au substrate used for the SPR monitoring of the changes of the interfacial multilayer archi-
tecture build by the layer-by-layer protocol for polyelectrolytes, at the same time was used
as the gate electrode in an EGO-FET set-up (cf. Figure 13). This allowed for the parallel
monitoring of surface reactions in real-time by combined SPR and FET interrogation [48].
With the current interest in developing a better understanding of the basic physical mecha-
nisms operation for the various versions of optical and electronic bio-sensing it is hoped
that this dual-sensing will lead to deeper insights into the fundamentals of the involved
bio-affinity reactions but will also lead to even better performance of the resulting practical
immuno-sensing devices.
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