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Abstract: The 1,3a,6a-triazapentalene (TAP) is an aromatic heterocyclic fluorescent dye with interesting
features such as its small size, large Stokes shift, solvatochromism, and emission wavelengths that
are spread across the visible spectrum. TAPs have been synthesized via different synthetic strategies
involving click−cyclization−aromatization domino reactions, gold-catalyzed cyclization of propargyl
triazoles or triazolization of acetophenones. As a result, TAPs with diverse substitution patterns were
obtained, showing varying fluorescence properties. Based on these properties, several TAPs have been
selected and studied as fluorescent imaging probes in living cells and as sensors. This mini review
provides an overview of the research on the bicyclic TAPs and does not comment on the literature
about benzo or otherwise fused systems. The synthetic methodologies for the preparation of TAPs, the
substituent effects on the fluorescence properties, and the behavior of the TAP core as an element of
biological imaging probes and sensors are discussed.

Keywords: 1,3a,6a-triazapentalene; synthetic methods; fluorescence properties; fluorescent imaging
probes; fluorescent sensors; living cells

1. Introduction

Organic fluorophores have been widely applied in modern science and technology
as biological labels and probes [1–6], fluorescent sensors [7–11], etc. Advances in these
applications are often driven by the development of new fluorescent dyes, aiming to acquire
the desired physicochemical and photophysical properties. Therefore, the design of novel
organic dyes and studying synthetic pathways for their preparation are relevant research
areas that have received ample attention in recent decades [12–16]. However, most organic
fluorophores are relatively large and hydrophobic, limiting their use in aqueous systems.
In this regard, the 1,3a,6a-triazapentalene (TAP) sparked considerable interest upon its
introduction a decade ago as a novel 10π-electron fluorophore due to its small size [17,18].
Generally, 1,3a,6a-triazapentalenes can be categorized into two types: (1) (hetero)aryl-fused
and (2) the non-fused, simply bicyclic parent TAPs (Figure 1).
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Figure 1. Numbering of the 1,3a,6a-triazapentalene (TAP) core (a) and the general structures of
non-fused TAPs (b) and (hetero)aryl-fused TAPs (c).

The (hetero)aryl-fused TAPs were reported for the first time in 1965 [19], and published
methods to synthesize fused TAPs involve the deoxygenation of 1-(o-nitro(hetero)aryl)pyrazoles
and thermolysis or photolysis of 1-(o-azido(hetero)aryl)pyrazoles [18–22], among others [23,24].
In general, the fluorescence properties of these fused TAPs are much less described, and this is
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why we will not include them in this literature study. However, we should mention a recent
(2020) synthetic method based on intramolecular N-N bond formation of pyrazole-substituted
aminopyridines and aminodiazines in the presence of hypervalent iodine(III) leading to tri-
cyclic TAP derivatives with fluorescent behavior, that was published by Suzenet et al. [25].
This is a very interesting new development in TAP chemistry.

The bicyclic TAPs, which are the subject of this mini review, have been prepared via
different synthetic pathways. Hirobe et al. were the first to report the bicyclic (non-fused)
triazapentalenes in 1978 [26]. However, during the decades that followed, this heterocyclic
scaffold was somehow not further studied, until a reappearance was made in 2011 [17].
Namba et al. cleverly applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC)
reaction for the synthesis of the parent TAPs, which resulted in a number of valuable
studies published by this group throughout the past decade [27–30]. Furthermore, these
findings also encouraged other researchers to study the TAP fluorophore and to develop
alternative methods for their preparation [31,32].

In this mini review, we will cover the different synthetic methods toward bicyclic
triazapentalenes, along with the photophysical data and applications of the respective dyes.
Throughout the remaining part of this text, TAP will only refer to bicyclic, non-aryl-fused
triazapentalenes.

2. Synthetic Methods and Spectroscopic Properties
2.1. Aminopyrazole-Mediated Syntheses

The bicyclic 1,3a,6a-triazapentalenes, firstly reported by the Hirobe group, were syn-
thesized via two different reaction pathways (Scheme 1) [26]. One pathway involved the
synthesis of 3-acetyl-2-methyl-TAP 4. Starting from the parent pyrazole 1 and hydroxylamine-
O-sulfonic acid 2, 1-aminopyrazole 3 was prepared and further reacted with 3-chloropentane-
2,4-dione at elevated temperatures. In the next step, the resulting TAP 4 could be deacety-
lated under acidic conditions to afford the colorless 2-methyl-TAP 5 in the 95% yield. In
another pathway, the 2-phenyl-TAP derivative 8 was synthesized through the amination of
phenacylpyrazole 7 with O-(mesitylenesulfonyl)hydroxylamine 6. Interestingly, the deacety-
lated TAP 5 appeared to be sensitive to air and distinctly less stable compared to the 3-acyl
derivative 4. The 2-phenyl-TAP 8 was slightly more stable than its methyl analog 5. From this
initial study, the authors already recognized the stabilizing effect of an electron withdrawing
group on the TAP core.
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Scheme 1. Synthesis of 2-methyl-TAP 5 and 2-phenyl-TAP 8.

2.2. CuAAC-Based Syntheses

Namba et al. envisioned the renowned copper-click reaction as a valuable tool for the
preparation of TAPs [17]. Starting from terminal alkynes 9 and 1-azidopropane building
blocks 10 containing leaving groups (LG) at positions 2 and 3, the azide-alkyne cycloaddi-
tion in the presence of catalytic Cu(I) provided 1,2,3-triazoles as intermediate substrates.
Next, cyclization of the 1,2,3-triazoles easily occurred in the basic environment via the sub-
stitution of one leaving group and was followed by the elimination of the second leaving
group, causing aromatization (Scheme 2). Normally, the substituents on the azidopropanes
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were trifluoromethanesulfonate (triflate) groups. By changing the substituents on the
alkynes and introducing additional side groups on the azido substrates, 3-unsubstituted
TAP derivatives with various functionalization patterns were obtained by means of this
general reaction pathway.
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2.2.1. The 2-Substituted 1,3a,6a-Triazapentalenes

Various 2-substituted TAPs 12 were synthesized by the Namba group starting from
terminal alkynes 9 and 3-azido-propane-1,2-diyl bistriflate 10a (Scheme 3) [17,28]. The
reactions were carried out with copper(I) iodide, bis[2–(N,N-dimethylamino)ethyl] ether
(BDMAEE) ligand and triethylamine (TEA) base in tetrahydrofuran (THF). It was found
that the presence of an electron withdrawing group at the C2 position led to better reaction
yields. Whereas the reaction with 4-nitrophenylacetylene reached a 96% yield of TAP
12g, TAP 12d with a 4-methoxyphenyl substituent was only obtained with a yield of 56%.
Intriguingly, the unsubstituted triazapentalene 12b was obtained for the first time by
the direct desilylation of crude 2-trimethylsilyl-TAP 12a. However, TAPs lacking an aryl
substituent and 4-methoxyphenyl-TAP 12d gradually decomposed under UV irradiation.
Therefore, it was confirmed that an electron poor aryl group is needed to stabilize the
TAP core.
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Scheme 3. The synthesis of 2-substituted TAPs 12 and the parent TAP 12b.

The fluorescent properties of TAPs were investigated by Namba et al. already in this
first report and in subsequent articles. As indicated in Table 1, it was clear that the emission
maxima of 2-substituted TAP in dichloromethane (DCM) underwent a bathochromic shift
as the Hammett σp value of the para substituted phenyl groups increased from −0.28 to
0.81 (Table 1) [17,28]. As a result of introducing additional electron withdrawing groups on
the aryl group, compounds 12i and 12j exhibited bathochromically shifted yellow and red
fluorescence, respectively [28]. Moreover, the Stokes shifts of these 2-substituted TAPs were
between 83 and 166 nm, which are rather large values. Notably, compounds 12f and 12i
showed a strong positive solvatochromism as the emission maxima increased with 72 nm
and 99 nm, respectively, when changing the solvent from benzene to acetone. The trends
based on the Hammett values and the solvatochromic effect might be of use to predict
the emission wavelengths of TAPs with other substituents at position 2 and in different
solvents. Unfortunately, the quantum yields of the fluorescence of most 2-substituted TAPs
were rather low (3–44%).
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Table 1. Fluorescence properties and reaction yields of selected 2-substituted TAPs 12c–g in DCM.
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2.2.2. The 2,5-Disubstituted 1,3a,6a-Triazapentalenes

The 2,5-disubstituted 1,3a,6a-triazapentalenes were prepared via the general procedure
by using 2-substituted 3-azido-2-methoxypropyl triflates 10b [27]. In this case, the aromati-
zation failed when using triethylamine as the base. In addition, in the presence of DBU as a
stronger base or in an acidic environment, elimination of the methoxy group did not happen.
However, the elimination occurred by using KHMDS at −78 ◦C, and 2,5-disubstituted TAPs
13 were obtained successfully (Scheme 4) [27]. Nearly all reaction yields were good, except for
the examples with a phenyl group at the C5 position (13d) or with a 4-nitrophenyl substituent
at position 2 (13i). Note that the latter derivatives were prepared without heating to reflux
temperature or by using lithium diethylamide base, respectively.
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Scheme 4. Synthesis of 2,5-disubstituted TAPs 13.

An interesting observation was that the quantum yields of fluorescence for 13ad were
dramatically increased as a result of introducing a functional group at the C5 position of
2-cyanophenyl-TAP 12f, as shown in Table 2 [27]. Moreover, these functional groups at
the C5 position had no obvious effect on the emission wavelengths, except for the intro-
duction of a 5-cyano group that caused a hypsochromic effect on both the absorption and
emission wavelengths. When changing the aryl substituent at the C2 position of different
5-methyl-TAPs, the quantum yields substantially increased when the Hammett values σp
increased from 0 to 0.71, as shown in Table 3. For the 4-methoxyphenyl (σp = −0.28) and
the 4-nitrophenyl (σp = 0.81) substituents, the quantum yields were only 0.02 and 0.03,
respectively. Thus, for some examples, a relation could be noticed between the quantum
yield of 2-arylated 5-methyl-TAPs and the Hammett parameter of the phenyl substituent.

Table 2. Fluorescence properties and reaction yields of 5-substituted 2-cyanophenyl-TAPs 13a–d in DCM.

Chemosensors 2021, 9, x  4 of 16 
 

 

Table 1. Fluorescence properties and reaction yields of selected 2-substituted TAPs 12c–g in DCM. 

 

R2 

 
       

Compound 12c 12d 12e 12f 12g 12h 12i 12j 

Yield (%) 89 56 81 70 96 73 71 72 

λabs,max (nm) 326 330 345 381 412 376 420 466 

Hammett σp 0 −0.28 0.04 0.71 0.81 -a -a -a 

λem,max (nm) 419 413 456 509 556 510 572 632 

Stokes shift (nm) 93 83 111 128 144 134 152 166 

φF (%) 3 6 24 18 16 44 34 10 
a No data available. 

2.2.2. The 2,5-Disubstituted 1,3a,6a-Triazapentalenes 

The 2,5-disubstituted 1,3a,6a-triazapentalenes were prepared via the general proce-
dure by using 2-substituted 3-azido-2-methoxypropyl triflates 10b [27]. In this case, the 

aromatization failed when using triethylamine as the base. In addition, in the presence of 

DBU as a stronger base or in an acidic environment, elimination of the methoxy group did 

not happen. However, the elimination occurred by using KHMDS at −78 °C, and 2,5-di-

substituted TAPs 13 were obtained successfully (Scheme 4) [27]. Nearly all reaction yields 

were good, except for the examples with a phenyl group at the C5 position (13d) or with 

a 4-nitrophenyl substituent at position 2 (13i). Note that the latter derivatives were pre-

pared without heating to reflux temperature or by using lithium diethylamide base, re-

spectively. 

 

Scheme 4. Synthesis of 2,5-disubstituted TAPs 13. 

An interesting observation was that the quantum yields of fluorescence for 13ad were 

dramatically increased as a result of introducing a functional group at the C5 position of 

2-cyanophenyl-TAP 12f, as shown in Table 2 [27]. Moreover, these functional groups at 

the C5 position had no obvious effect on the emission wavelengths, except for the intro-

duction of a 5-cyano group that caused a hypsochromic effect on both the absorption and 

emission wavelengths. When changing the aryl substituent at the C2 position of different 

5-methyl-TAPs, the quantum yields substantially increased when the Hammett values σp 

increased from 0 to 0.71, as shown in Table 3. For the 4-methoxyphenyl (σp = −0.28) and 

the 4-nitrophenyl (σp = 0.81) substituents, the quantum yields were only 0.02 and 0.03, 

respectively. Thus, for some examples, a relation could be noticed between the quantum 

yield of 2-arylated 5-methyl-TAPs and the Hammett parameter of the phenyl substituent. 

Table 2. Fluorescence properties and reaction yields of 5-substituted 2-cyanophenyl-TAPs 13a–d in DCM. 

 

R5 

Me OMe -CN Ph H 

R2 = C6H4CN 13a 13b 13c 13d 12f 

Yield (%) 63 60 57 19 70 

λabs,max (nm) 385 378 360 383 381 

λem,max (nm) 518 505 453 506 509 

Stokes shift (nm) 133 127 93 123 128 

φF (%) 55 57 45 48 18 

R5

Me OMe -CN Ph H

R2 = C6H4CN 13a 13b 13c 13d 12f
Yield (%) 63 60 57 19 70

λabs,max (nm) 385 378 360 383 381
λem,max (nm) 518 505 453 506 509

Stokes shift (nm) 133 127 93 123 128
ϕF (%) 55 57 45 48 18



Chemosensors 2021, 9, 16 5 of 15

Table 3. Fluorescence properties and reaction yields of 2-substituted 5-methyl-TAPs 13e–i in DCM.
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R5 = CH3 13e 13f 13g 13h 13i
Yield (%) 81 72 59 63 27

λabs,max (nm) 340 340 370 385 370
Hammett σp 0 −0.28 0.04 0.71 0.81
λem,max (nm) 422 (419) a 421 (413) a 466 (456) a 518 (509) a 575 (556) a

Stokes shift (nm) 82 81 96 133 205
ϕF (%) 7 (3) b 3 (6) b 27 (24) b 55 (18) b 2 (16) b

a Fluorescence maximum of corresponding 5-unsubstituted analog. b Fluorescence quantum yield of corresponding 5-unsubstituted analog.

2.2.3. The 2,4-Disubstituted 1,3a,6a-triazapentalenes

To investigate the effect of substituents at the C4 position, various 4-methyl and 4-
phenyl-TAP analogs were synthesized by the Namba group (Scheme 5) [29]. The yields
of the 4-methyl-TAP analogs were more variable (19–94%) (Table 4). On the other hand,
the 4-phenyl-TAPs were obtained in moderate-to-high yields (50–88%) (Table 5). For some
derivatives, the low yields were attributed to decomposition during purification. To expand
the scope of 4-methyl-TAP analogs, 1,4-diethynylbenzene 9b and cyclic strained alkyne
9c were applied to synthesize 14a and 14b, respectively, via the reaction with 3-azido-
3-methylpropane-1,2-diyl bistriflate. The designed compound 14a was not obtained as
the reaction stopped after the mono-TAP was formed. This intermediate was readily
decomposed during purification. Compound 14b was obtained successfully in 49% yield
via the general procedure but without the use of a copper catalyst. For comparison, similar
reactions were carried out to afford the corresponding 4-unsubstituted TAPs 12k and 12l
in 46% and 51% yields, respectively.
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Table 4. Fluorescence properties and reaction yields of 2-substituted 4-methyl-TAPs 14c–h in DCM.
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2.2.4. The 2,6-Disubstituted 1,3a,6a-Triazapentalenes

To obtain the 2,6-disubstituted TAPs, the initial plan was to use the general procedure
starting from 3-azido-1-methylpropane-1,2-diyl bistriflates and terminal alkynes. How-
ever, the methylazidoditriflate was not stable enough to prepare. In 2013, Namba et al.
reported a Payne-type rearrangement of 1-(oxiranylmethyl)-1,2,3-triazoles [33]. Based on
this earlier study, a reported procedure was developed for the synthesis of 2,6-disubstituted
1,3a,6a-triazapentalenes 21. The intermediate 20 was formed by the triflic acid-mediated
epoxide-opening reaction, then followed by the subsequent reactions of acetylation and
base-induced elimination (Scheme 6) [30]. Due to the poor stability of the 6-methyl-
substituted TAPs, all reaction yields were relatively low (Table 6), while the more stable
6-(methoxycarbonyl)-TAP 23 was obtained in 40% yield. On the other hand, the 6-phenyl-
TAP was not obtained after attempts under various conditions.
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Scheme 6. Synthesis of 2,6-disubstituted TAPs 21 and 23.

Introducing the methyl group at the C6 position of 2-substituted 1,3a,6a-triazapentalenes
not only induced a long-wavelength shift of the emission maxima but also affected the quantum
yields (Table 6) [30]. Nearly all the quantum yields were somewhat increased, except for
compounds 21d and 21e. Notably, the methoxycarbonyl group at the C6 position (23) quenched
the fluorescence. It was assumed that the electron withdrawing group disturbed the charge
transfer between the TAP core and C2 substituents.

Table 6. Fluorescence properties and reaction yields of selected 2-substituted 6-methyl-TAPs 21a–e in DCM.
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2.3. Gold-Catalyzed Cyclization of Propargyl-1,2,3-Triazoles

In 2010, Shi et al. reported an efficient method to synthesize propargyl-1,2,3-triazoles
24 via the iron-catalyzed alkylation with propargyl alcohols and found that the N2-
substituted propargyl triazoles 24 could be further transformed via the intramolecular
gold-catalyzed triazole-yne cyclization (Scheme 7) [34]. Later in 2014, the same group
demonstrated that this cyclization resulted in the formation of TAPs 27 by using propar-
gyl triazoles 24 bearing an electron withdrawing group (Scheme 7) [31]. The electron
withdrawing group on the triazole ring, mainly ketones and esters, changed the electron
density distribution of the intermediate bicyclic system. This electron density redistribution
induced an effective regioselection followed by protodeauration to afford differently sub-
stituted triazapentalenes 27. In general, ester-substituted TAPs were obtained in slightly
lower yields. However, the diester-substituted TAPs were shown to form in high yields
(over 80%). Furthermore, starting from mono ester-substituted TAPs, 3-unsubstituted TAPs
were obtained via LiOH-induced saponification/decarboxylation.

As mentioned by Hirobe et al. [26], the electron withdrawing group at the C3 position
significantly improved the stability of the TAP core. In addition, the 2,3- bis(methoxycarbonyl)-
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TAP exhibited a quantum yield of fluorescence of 15%, which was much higher than 3-
(methoxycarbonyl)-TAPs and 3-(4-toluoyl)-TAPs (lower than 1%).
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2.4. Triazolization-Mediated Synthesis

In 2016, our group reported the synthesis of 3-arylated triazapentalene derivatives by
using the multicomponent triazolization reaction followed by cyclization as shown in Scheme
8 [32]. Starting from 3-aminopropane-1,2-diol 28, acetophenones 29, and p-nitrophenyl
azide [35], the intermediate 1,2,3-triazoles 30 were prepared. Then, the 3-(triazol-1-yl)propane-
1,2-diols 30 underwent sequential substitution and elimination by treatment with triflic
anhydride in the basic environment (pyridine/dichloromethane) to afford 3-substituted
TAPs 31.
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Compared to previous methods, this two-step pathway started from commercially
available compounds and there was no need for toxic transition metal catalysts. However,
only TAPs with electron poor aryl groups at the C3 position were successfully obtained.

The fluorescence properties of 3-substituted TAPs were studied in acetonitrile, DCM
and toluene [32]. Surprisingly, compound 31a with a 4-nitrophenyl group at the C3 position
showed no fluorescence, which was different from its fluorescent isomer 2-(4-nitrophenyl)-
triazapentalene 12g. In contrast with the other 3-aryl-TAPs 31, compound 31a exhibited a
longer absorption maximum wavelength and a broader absorption peak (Table 7). These
properties of 31a might be due to the intramolecular charge transfer caused by the nitro
group. Compared to the 2-cyanophenyl TAP 12f, the Stokes shift of compound 31b (63 nm)
was relatively small in DCM, but the quantum yield of fluorescence was quite high (57%).
The Stokes shifts of compounds 31b and 31c increased as the polarity of the solvent
increased, and the full widths at half maximum of emission of compounds 31b and 31c
were similar to each other. Remarkably, the quantum yield of the fluorescence of compound
31c was 79% in DCM, which was the highest quantum yield measured so far for any TAP
derivative, although this was a lot less in the polar solvent acetonitrile (4%).
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Table 7. Fluorescent properties and reaction yields of 3-substituted TAPs 31 in DCM.
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3. Post-Modifications
3.1. Acetylation and Nitrosation

Although 2-substituted TAPs 5 and 8 were sensitive to air, acetylation and nitrosation
of these compounds could be carried out. The TAPs reacted at the C3 position, resulting in
3-acetyl and 3-nitroso derivatives in high yields (Scheme 9) [26]. The successful electrophilic
substitution reactions clearly demonstrated the electron rich nature of the TAP core.
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Scheme 9. The acetylation and nitrosation.

3.2. Linearly Bonded 1,3a,6a-Triazapentalene Dimers and Trimer

Starting from the azidotriflate 33 with protected alkyne function, a 2,5-disubstituted
TAP with tert-butyldimethylsilyl ether (TBS) protecting group was synthesized via click
reaction followed by cyclization. The azidotriflate 33 was prepared via a multistep synthe-
sis [36]. After removing the TBS group, the monoethyl-substituted triazapentalene 34 was
applied as the starting material together with one more equivalent of 33 in a reiteration of
this TAP formation, to develop the linearly bonded oligomeric systems 35 (Scheme 10) [36].
The TAP dimers (n = 2) with different substituents at the C2 position were reported by the
Namba group, including a 2-unsubstituted TAP dimer. Unfortunately, the TAP trimers
(n = 3) were, in general, too difficult to obtain due to decomposition during the elimination
reactions (Table 8). An exception was the derivative with a tridecyl group at the C2 position.

The properties of TAP monomers, TAP dimers, and the TAP trimer were rather
similar in the diluted solution in DCM, showing that introducing additional TAP rings
had no drastic effect on the fluorescence characteristics [36]. Interestingly, the linearly
bonded TAP dimer 35 (n = 2, R = Ph) showed different fluorescence properties when
varying the concentration, which suggested changes in the aggregation state. The phenyl-
TAP-dimer showed mechanochromic fluorescence in the solid phase and a fluorescence
wavelength redshift while going from the crystalline to the amorphous state upon grinding.
Emission lifetimes were determined for the solid dimer 35 (n = 2, R = Ph) at 540 nm before
(λem,max = 535 nm) and after grinding (λem,max = 590 nm), and were found to be 4.9 and 1.2,
respectively. Notably, density functional theory (DFT) calculations verified the planar form
of trimer-TAP (R = C13H27).
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TBS

n = 1 52 53 64 59 69
n = 2 75 31 59 17 38
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a Unsuccessful synthesis from dimer TAP. b Decomposed during purification.

3.3. Azo-Coupling Reaction of 3-aryl-1,3a,6a-Triazapentalene

Starting from TAP 31c, the reaction with benzenediazonium tetrafluoroborate was
studied by our group in an attempt to introduce a phenyl group after radical coupling
(Scheme 11) [37]. Surprisingly, azo-coupling was observed instead of CH-arylation, which
was most probably due to the marked nucleophilic character of the triazapentalene. It
was intriguing that under the reaction circumstances, a rearranged 2-aryl-TAP 37 was
readily formed and isolated as the major product, accompanied by an azo-coupled 3-aryl-
TAP 36 as the minor product. The molecular structures of the products were elucidated
using single-crystal X-ray diffraction analysis. A mechanism towards TAP 37 involving the
formation of an open chain nitrilimine and alternative ring closure was proposed. Different
attempts were carried out to reduce azo compound 37, which led to cleavage of the TAP
core rather than the formation of the amino derivative.
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4. Applications

The fluorescent TAP core has been studied by the Namba group as an element of
biological imaging probes and sensors. All TAP products discussed within this section
were synthesized via the CuAAC-based strategy.

The first application concerns the use of TAP as a fluorescent probe for live cell imag-
ing [28]. Compound 12i was selected as the fluorescent dye due to its small but significant
solubility in water and because it combines a long fluorescent wavelength with accept-
able stability under UV irradiation (Scheme 12). After treatment with a DMSO solution
of the fluorescent dye 12i, staining of Hela cells was clearly observed with fluorescence
microscopy and no cytotoxic effect was seen during the observation period.
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Then, the TAP 12i was developed as a fluorescent reagent to label glycine ethyl ester
and tripeptide Gly-Pro-Leu [28]. By treating methyl ester TAP 12i with lithium hydroxide,
a benzoic acid derivative was obtained that was directly converted into an activated N-
hydroxysuccinimide (NHS) ester 38. As the purification from the DCC-derived urea was
troublesome, instead, polymer-supported DCC was used and could be filtered off to give
pure reactive ester 38. Subsequently, compound 38 was reacted with glycine ethyl ester
and tripeptide Gly-Pro-Leu to obtain the labeled glycine 39 and tripeptide 40, respectively.
Compounds 39 and 40 showed the same fluorescence maximum at 567 nm with 37% and
24% fluorescence quantum yields in DCM, respectively. The fluorescence measurements
for these compounds in water demonstrated decreased Stokes shifts and quantum yields.
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The second application was based on compound 12e (Figure 2), which showed high
fluorescence intensity in phosphate-buffered saline (PBS) and was applied as a fluorescent
probe to observe cellular differentiation processes in various living cells [38]. After treat-
ment with a PBS solution of 12e, cytoplasmic and nuclear morphological changes during
the differentiation processes were monitored by fluorescence microscopy. It was found
that the fluorescence probe 12e had no toxicity, neither was there an effect on the cellular
differentiation processes, and the probe could be easily washed away from the cells that
can continue to culture for following studies.
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Figure 2. The 2-([1,1’-Biphenyl]-4-yl)-TAP 12e.

In a third application, TAP analogs of biphenyl-type kinesin spindle protein (KSP)
inhibitors 41 and 42 (Figure 3) were prepared and investigated as bifunctional fluorescent
probes [39]. Both analogs showed inhibitory activity against KSP ATPase, although 42 was
more potent (half maximal inhibitory concentration (IC50) was 6.8 µM). Further microscopic
studies were carried out with 42 in cultured cells in order to visualize the intracellular
distribution. The partial colocalization of compound 42 with KSP, combined with its
inhibitory activity, demonstrated the potency of the TAP fluorophore to be used as a probe
for the visualization of bioactive substances and their targets.
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Figure 3. Structure and properties of 2-(4-(trifluoromethyl)phenyl)-TAP 41 and 2-(4’-(trifluoromethyl)-
[1,1’-biphenyl]-4-yl)-TAP 42 in DCM.

Most recently, a compact vinyl ketone functionalized TAP 45 was cleverly designed
by Namba et al. as a thiol-specific fluorescent labeling reagent [40]. Starting from the
previously reported 2-methoxycarbonyl-TAP 43, the electrophilic α,β-unsaturated ketone
TAP 45 was prepared via a high-yielding multistep synthesis involving Weinreb amide
44 (Scheme 13). The 2-vinyl ketone-TAP 45 was then reacted with various thiols via thiol
Michael additions to obtain compounds 46. Remarkably, the fluorescence intensity of 45
was turned off due to the conjugation of the vinyl ketone at the C2 position. After the
addition of the thiol group, this conjugation was interrupted, and the fluorescence of
compound 46 was turned on again while also exhibiting shorter emission wavelengths as
compared to 45. A water-soluble R8 peptide was also successfully labeled in a phosphate
buffer (pH 7). Although no fluorescence was observed in water, the labeled peptide be-
came luminescent after uptake and localization in the hydrophobic regions of A549 cells.
Advantageously, the vinyl ketone TAP did not cause any background fluorescence and
was not found to be cytotoxic. Next, a captopril-TAP conjugate was prepared for drug
imaging. Captopril is a cysteine derivative that inhibits angiotensin converting enzyme
(ACE) and has been used for the treatment of hypertensive patients. The inhibitory activity
and confocal laser microscope imaging studies in vascular endothelial cells demonstrated
that the fluorophore had no impact on the activity of captopril and that the fluorophore
could be used as a probe for mechanistic studies.
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In a final application, TAP derivative 51 was used as a fluorescent sensor for iron
(Scheme 14) [41]. Starting with a protected catechol-containing alkyne 48 and azide 10a,
TAP 49 was obtained via the CuAAC reaction strategy. In order to increase the stability, an
acetyl group was introduced into compound 49 at the C3 position through acylation. The
acetylated compound 50 was further conjugated to serine trimer 47 by saponification and
amide coupling. After deprotection with HCl, the TAP labeled enterobactin 51 was obtained.
The influence of iron on the fluorescent properties of sensor 51 was studied with Fe(acac)3
as an Fe3+ ion source at different concentrations. When increasing the amount of Fe3+ in a
DMSO solution of 51, the fluorescence intensity was decreased gradually, with complete
disappearance at 1.2 equivalents of Fe(acac)3. The emission maximum did not change.
In DMF and tert-butanol, a similar phenomenon was observed. Fourth-period metals
also caused a clear decrease in fluorescence intensity, although no complete quenching
was observed, even while adding 5.0 equivalents. Thus, 1,3a,6a-triazapentalene-labeled
enterobactin 51 was shown to be a selective and highly sensitive fluorescence-quenching
sensor for iron (III).
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5. Conclusions

In this mini review, we have discussed the different synthetic methodologies of bi-
cyclic 1,3a,6a-triazapentalenes. An alternative to the earlier synthesis from pyrazoles and
aminating reagents was provided by the CuAAC-based strategy, which could be used to
synthesize a wide scope of 2-substituted TAPs. The gold-catalyzed cyclization pathway af-
forded excellent yields of highly functionalized TAPs with electron withdrawing functional
groups at the C3 position. Unfortunately, the starting materials for these methods often
need to be prepared via a multistep synthesis. The triazolization-mediated synthesis pro-
vided access to 2-unsubstituted TAPs from readily available starting materials. Therefore,
this was complementary to the previous strategies.

As a result of the profound studies by Namba et al., the substituent effects on the
properties of TAP are known and could allow one to design the fluorophores according to
the requirements of a particular application. For example, the stability of the TAP core could
at first be ensured by introducing an electron withdrawing group at the C3 position, while
the fluorescence wavelength could be adjusted by variation of the substituent at the C2
position. Further adjustments of the properties could be made with the substituent at the C4,
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C5 or C6 position. For instance, the extinction coefficient and therefore brightness of TAPs
could be increased by introducing a substituent at the C4 position. For the TAP compounds
that require high quantum yields, often it is a good idea to introduce a substituent at the
C5 or C6 position.

Applications of TAPs were mainly focused on live-cell fluorescence imaging, in par-
ticular drug imaging, although an application as iron chemosensor was also reported.
The small size of the TAP core is often mentioned as an advantage compared to other
fluorescent probes. Up to this moment, reports about TAP probes and sensors have been
limited to 2-substituted TAPs, which are obtained via the CuAAC method. Problems that
often occur and still need to be solved are poor solubility and weak fluorescence intensity
of the TAP probes in water.

We are only at the start of the applications of this new and compact fluorophore TAP.
Hopefully, this review will stimulate further investigations.
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