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Abstract: A new transducer based on a screen-printed carbon electrode has been developed for
the quantification of thiram. Detection of this fungicide is based on the performance of two
enzymes: (1) aldehyde dehydrogenase catalyzes the aldehyde oxidation using NAD+ as a cofactor
and simultaneously, (2) diaphorase reoxidizes the NADH formed in the first enzymatic process
due to the presence of hexacyanoferrate(III) which is reduced to hexacyanoferrate(II). Taking into
account that aldehyde dehydrogenase is inhibited by thiram, the current decreases with pesticide
concentration and thiram can be electrochemically quantified below legal limits. The transducer
proposed in this work involves the modification of the carbon WE with the co-factors (NAD+ and
hexacyanoferrate(III)) required in the enzymatic system. The new device employed in this work
allows the detection of 0.09 ppm thiram, a concentration below legal limits (Maximum Residue
Limits 0.1–10 ppm).

Keywords: thiram; aldehyde dehydrogenase; diaphorase; screen-printed electrodes (SPEs); trans-
ducer

1. Introduction

Dithiocarbamate fungicides (thiram, ziram, mancozeb, maneb, zineb, etc.) are one of
the most important pesticides currently used in the control of a huge variety of diseases
on seeds, fruits and vegetables. However, several studies relate this family of fungicide
to health diseases such as Parkinson [1–3], teratogenesis [4] and carcinogenesis [5]. Due
to their toxicity, their Maximum Residue Limits (MRLs) are limited in the range of ppm
or even some dithiocarbamate pesticides are forbidden in several countries. Particularly,
thiram is a fungicide widely used in forestry to control fungal diseases and protect fruits and
vegetables [6]. MRLs of thiram in food for human and animal consumption are established
by the European Union (EU) from 0.1 to 10 ppm depending on the food product [7].

Traditional methods for the detection of dithiocarbamate fungicides, spectrophotom-
etry [8,9], HPLC [10,11] or chromatography [12,13], are based on the detection of carbon
disulfide liberated after acidic hydrolysis and show several drawbacks, such as time con-
suming, low sensitivity and complex instrumentation. Although new alternative methods
(fluorescence, colorimetric, chemiluminescence, surface-enhanced Raman scattering spec-
troscopy, etc.) have been used to facilitate the detection and quantification of this family of
fungicides [14–22], there is still a need to develop selective and sensitive procedures for
each substance. In that way, analytical methods with enzymes (cholinesterase, aldehyde
dehydrogenase, tyrosinase) open new gates for the identification and quantification of
dithiocarbamate fungicides. Electrochemical devices offer easy, quick and reproducible
alternatives for the detection of these compounds, while their sensitivity must be evaluated
for each application. In particular, Table 1 shows the comparison among various methods
for the determination of thiram in terms of sensitivity.
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Table 1. Comparison among several methods for the determination of thiram.

Detection Technique LOD (ppm) Reference

Spectrophotometry 0.3 [23]
Spectrophotometry 0.33 [24]

HPLC-UV 0.088 [25]
HPLC-EC 0.14 [26]

FI-CL 0.0075 [27]
FI-CL 0.005 [28]

CL-ELISA 0.009 [29]
Electrophoresis 0.5 [30]

SERS 0.115 [31]
SERS 0.024 [32]
SERS 0.0024 [33]

EC 0.013 [34]
EC 0.103 [35]
EC 0.09 This work

HPLC-UV: high-performance liquid chromatography-ultraviolet; HPLC-EC: high-performance liquid
chromatography-electrochemistry; FI-CL: flow injection-chemiluminescence; CL-ELISA: chemiluminescence-
enzyme-linked immune-sorbent assay; SERS: surface-enhance Raman scattering; EC: electrochemistry.

Enzymatic detection of thiram is based on the aldehyde dehydrogenase (ALDH),
which catalyzes the oxidation of several aldehydes (acetaldehyde, propionaldehyde, ben-
zaldehyde, etc.) to carboxylic acids using NAD+ as a cofactor (Scheme 1):
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(cofactor).

The quantification of aldehyde converted into carboxylic acid is easily determined
measuring NADH by different routes, for instance, electrochemistry. As thiram inhibits
ALDH activity, the pesticide concentration can be determined by measuring the decrease of
the intensity in respect to the signal obtained when thiram is not present in the system. In
addition, the conversion of aldehyde to acid is favored working with high concentrations of
NAD+ and alkaline pH media. However, the equilibrium of this reaction is shifted towards
the product side by coupling a second enzymatic reaction and the sensitivity improves
when diaphorase (DP) is also used.

In the two-enzyme system, the NADH previously generated in the first enzymatic
process is reoxidized by DP, while the simultaneous reduction of hexacyanoferrate(III) to
hexacyanoferrate(II) takes place (Scheme 2). Thus, the intensity of the sensor response is
proportional to the aldehyde concentration. Furthermore, the combination of enzymes
and screen-printed electrodes (SPEs) allows the fabrication of reproducible biosensors for
medical, biochemical, environmental and food control applications [36–41].

In the present work, the development of a new disposable transducer is described.
This electrochemical device combines, for the first time, a screen-printed carbon electrode
modified with NAD+ and hexacyanoferrate(III), and ALDH and DP enzymes for the
electrochemical detection of dithiocarbamate pesticide. This device is based on the thiram
inhibition of ALDH and enables the accurate and sensitive electrochemical detection of
this fungicide below legal limits.



Chemosensors 2021, 9, 303 3 of 10Chemosensors 2021, 9, x FOR PEER REVIEW 3 of 10 
 

 

 
Scheme 2. Two-enzyme system formed by ALDH, DP, NAD+ and K3[Fe(CN)6] catalyzes the alde-
hyde oxidation. 

In the present work, the development of a new disposable transducer is described. 
This electrochemical device combines, for the first time, a screen-printed carbon electrode 
modified with NAD+ and hexacyanoferrate(III), and ALDH and DP enzymes for the elec-
trochemical detection of dithiocarbamate pesticide. This device is based on the thiram in-
hibition of ALDH and enables the accurate and sensitive electrochemical detection of this 
fungicide below legal limits. 

2. Materials and Methods 
2.1. Reagents and Intrumentation 

Aldehyde Dehydrogenase, potassium-activated from baker’s yeast (S. cerevisiae) 
(ALDH, EC 1.2.1.5, Sigma-Aldrich, Madrid, Spain), Diaphorase from Clostridium kluy-
veri (DP, EC 1.8.1.4, Sigma-Aldrich), β-Nicotinamide adenine dinucleotide, reduced diso-
dium salt hydrate (NADH, Sigma-Aldrich), β-Nicotinamide adenine dinucleotide hydrate 
(NAD+, Sigma-Aldrich), Bovine Serum Albumin (BSA, Sigma-Aldrich), potassium hexa-
cyanoferrate(III) (K3[Fe(CN)6], Sigma-Aldrich), acetaldehyde (AA, Sigma-Aldrich), pro-
pionaldehyde (PPA, Sigma-Aldrich) and thiram (PESTANAL®, Sigma-Aldrich). All chem-
icals were analytical grade. Aqueous solutions were prepared using ultrapure water (Di-
rect-QTM 5 system, Millipore, Spain). Thiram pesticide is initially dissolved in ethanol (1 
mM) and subsequently diluted in 0.1 M phosphate buffer solution pH 8.0, containing 0.1 
M KCl. 

Screen-printed carbon electrodes (DRP-110, Metrohm DropSens, Oviedo, Spain) 
were used to perform the electrochemical measurements. The electrodic systems consist 
of a flat ceramic card with a circular carbon working electrode (WE, 4 mm diameter), a 
carbon counter electrode (CE) and a silver pseudo-reference electrode (RE). Spectroscopic 
determination of the enzymatic activity of ALDH and DP was conducted using SPELEC 
instrument (Metrohm DropSens, Spain) controlled by DropView SPELEC software. Elec-
trochemical measurements were performed at room temperature using a multi potenti-
ostat/galvanostat µStat 8000 (Metrohm DropSens) controlled by DropView 8400 software. 

2.2. Methods 
2.2.1. Fabrication of NAD+/K3[Fe(CN)6]/Carbon Transducer 

NAD+/K3[Fe(CN)6]/carbon transducer is fabricated by the modification of WE of 
DRP-110. For that purpose, a mixture of 10 mM NAD+ and 10 mM K3[Fe(CN)6] in 0.1 M 
phosphate + 0.1 M KCl buffer solution (pH 8) is prepared. A 10 µL drop solution is added 
on the WE surface and the SPE is dried at 30–40 °C. 

  

Scheme 2. Two-enzyme system formed by ALDH, DP, NAD+ and K3[Fe(CN)6] catalyzes the alde-
hyde oxidation.

2. Materials and Methods
2.1. Reagents and Intrumentation

Aldehyde Dehydrogenase, potassium-activated from baker’s yeast (S. cerevisiae)
(ALDH, EC 1.2.1.5, Sigma-Aldrich, Madrid, Spain), Diaphorase from Clostridium kluyveri
(DP, EC 1.8.1.4, Sigma-Aldrich), β-Nicotinamide adenine dinucleotide, reduced disodium
salt hydrate (NADH, Sigma-Aldrich), β-Nicotinamide adenine dinucleotide hydrate (NAD+,
Sigma-Aldrich), Bovine Serum Albumin (BSA, Sigma-Aldrich), potassium hexacyanofer-
rate(III) (K3[Fe(CN)6], Sigma-Aldrich), acetaldehyde (AA, Sigma-Aldrich), propionalde-
hyde (PPA, Sigma-Aldrich) and thiram (PESTANAL®, Sigma-Aldrich). All chemicals were
analytical grade. Aqueous solutions were prepared using ultrapure water (Direct-QTM
5 system, Millipore, Spain). Thiram pesticide is initially dissolved in ethanol (1 mM) and
subsequently diluted in 0.1 M phosphate buffer solution pH 8.0, containing 0.1 M KCl.

Screen-printed carbon electrodes (DRP-110, Metrohm DropSens, Oviedo, Spain) were
used to perform the electrochemical measurements. The electrodic systems consist of a
flat ceramic card with a circular carbon working electrode (WE, 4 mm diameter), a carbon
counter electrode (CE) and a silver pseudo-reference electrode (RE). Spectroscopic determi-
nation of the enzymatic activity of ALDH and DP was conducted using SPELEC instrument
(Metrohm DropSens, Spain) controlled by DropView SPELEC software. Electrochemical
measurements were performed at room temperature using a multi potentiostat/galvanostat
µStat 8000 (Metrohm DropSens) controlled by DropView 8400 software.

2.2. Methods
2.2.1. Fabrication of NAD+/K3[Fe(CN)6]/Carbon Transducer

NAD+/K3[Fe(CN)6]/carbon transducer is fabricated by the modification of WE of
DRP-110. For that purpose, a mixture of 10 mM NAD+ and 10 mM K3[Fe(CN)6] in 0.1 M
phosphate + 0.1 M KCl buffer solution (pH 8) is prepared. A 10 µL drop solution is added
on the WE surface and the SPE is dried at 30–40 ◦C.

2.2.2. Electrochemical Detection of Thiram

The methodology employed for the electrochemical detection of thiram consists
of two steps: (1) inhibition of the enzymatic reaction and (2) electrochemical detection
of thiram. In the first one, the preparation of solutions depends on the transducer se-
lected: all reagents involved in the enzymatic system (0.24 U/mL ALDH, 0.24 U/mL DP,
2 mM PPA, 1 mM NAD+, 1 mM K3[Fe(CN)6] and different concentrations of thiram) are
mixed when a carbon transducer is used. On the other hand, only 0.58 U/mL ALDH,
0.58 U/mL DP, 2 mM PPA and different concentrations of thiram are mixed in solution
when NAD+/K3[Fe(CN)6]/carbon transducer is employed. Once the solution is prepared,
a drop of 60 µL is added on the SPE for 20 min, ensuring that the solution covers WE,
RE and CE. After that and taking into account that the second step is intended to the
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electrochemical detection of thiram, chronoamperometry at a fixed potential for 60 s is
carried out. For preliminary optimization studies, carbon SPE (DRP-110) was used. For the
detection of thiram, NAD+/K3[Fe(CN)6]/carbon transducer was employed.

Prior to calculating the percentage of inhibition, the current intensities were corrected
with the electrochemical signal obtained without an aldehyde substrate but with ALDH,
DP and a high concentration of thiram (50 ppm).

The percentage of thiram inhibition is calculated as shown in Equation (1):

% Inhibition =

(
I0 − Ii

I0

)
× 100 (1)

where I0 represents the current of the control sample, that is, the product of the enzymatic
reaction without the addition of thiram, and Ii means the current of the product of the
enzymatic reaction in the presence of the selected concentration of thiram.

2.3. Determination of Enzyme Activities and Michaelis Constants

Enzyme activity of ALDH and DP is expressed in U (µmole of substrate transformed
per minute and per mg of protein) and was measured following spectroscopic methods [42]:

2.3.1. Aldehyde Dehydrogenase (ALDH) Activity

ALDH activity was measured following the rate of reduction of NAD+. For that
purpose, the increase of absorption band at 340 nm associated with NADH was monitored
during 3 min. The reaction mixture in the final volume of 1 mL consists of 135 µL of
0.05 mg/mL ALDH solution, 2.7 mM NAD+, 0.44 mM AA and 1 mM 4-aminothiphenol
in 0.1 M phosphate + 0.1 M KCl buffer solution (pH 8). Spectroscopic determination was
performed in transmission configuration considering Lambert-Beer’s law:

A = ε × b × C (2)

where A is the absorbance at 340 nm after 3 min, ε is the molar absorption coefficient
(ε340nm, NAD+ = 6300 M−1·cm−1), b is the optical pathway length and C is the units of
ALDH in the sample. Calculated ALDH activity under these experimental conditions was
0.26 U/mg.

2.3.2. Diaphorase (DP) Activity

DP activity was measured following the rate of reduction of K3[Fe(CN)6] by the
analysis of band at 420 nm during 3 min. The reaction mixture in the final volume of 1 mL
consists of 135 µL of 0.03 mg/mL DP solution, 2.7 mM NADH and 0.25 mM K3[Fe(CN)6]
in 0.1 M phosphate + 0.1 M KCl buffer solution (pH 8). Spectroscopic determination
in transmission configuration was calculated using Lambert-Beer’s law (Equation (2)),
considering A the absorbance at 420 nm after 3 min, ε the molar absorption coefficient
of K3[Fe(CN)6] (ε420nm, K3[Fe(CN)6] = 1040 M−1·cm−1), b the optical pathway length and C
the units of DP in the sample. Calculated DP activity under the selected experimental
conditions was 5.93 U/mg.

2.3.3. Michaelis Constants

Michaelis constants for NAD+, AA and PPA were calculated from chronoamperomet-
ric measurements, applying +0.40 V for 60 s. KM (NAD+) was calculated from experiments
performed in 0.39 U/mL ALDH, 0.39 U/mL DP, 2 mM AA, 1 mM K3[Fe(CN)6] 0.1% BSA
and different concentrations of NAD+ in 0.1 M phosphate + 0.1 M KCl buffer solution. KM
of AA and PPA were obtained in 0.39 U/mL ALDH, 0.39 U/mL DP, 1 mM NAD+, 1 mM
K3[Fe(CN)6] 0.1% BSA and different concentrations of AA or PPA in 0.1 M phosphate +
0.1 M KCl buffer solution.
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3. Results
3.1. Optimization of Experimental Conditions

Initially, the Michaelis constants of NAD+ was calculated by the analysis of the
chronoamperometric experiments carried out as is described in Section 2.3.3. KM (NAD+)
was obtained by the fitting of the electrochemical data to the Lineweaver-Burk model
(Figure S1). The calculated value was KM (NAD+) = 0.101 mM.

Both AA and PPA were evaluated as aldehyde substrates required in the enzymatic
system. The Michaelis constants of both aldehydes were calculated from data shown
in Figure 1 (procedure previously explained in Section 2.3.3). KM (PPA) = 1.473 mM is
higher than KM (AA) = 0.907 mM, but also, PPA shows a much higher vapor pression
(400.46 hPa at 23.6 ◦C) than AA (1.202 hPA at 25 ◦C). Selection of the substrate with
higher vapor pression, in this case PPA, facilitates the preparation of the samples because
the evaporation risk is reduced, the reproducibility of the electrochemical measurements
improves and more precise control of the enzymatic reaction is achieved. Then, PPA is
selected because it displays the best physical features and the volatility problems observed
with AA are avoided.
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Figure 1. Lineweaver-Burk plot obtained for different concentrations of PPA (blue dots) or AA
(orange dots) in 0.39 U/mL ALDH, 0.39 U/mL DP, 1 mM NAD+, 1 mM K3[Fe(CN)6], 0.1% BSA in
0.1 M phosphate + 0.1 M KCl buffer solution pH 8.0.

Concentration of K3[Fe(CN)6] involved in the enzymatic sensor system was evaluated
in 0.24 U/mL ALDH, 0.24 U/mL DP, 1 mM NAD+, 2 mM PPA, and 0.1% BSA in 0.1 M
phosphate + 0.1 M KCl buffer solution. Electrochemical response obtained at +0.40 V for
60 s is plotted in Figure 2. It shows that current increases up to 1 mM, while at higher
concentrations the value remains constant. Then, 1 mM K3[Fe(CN)6] is considered for the
next experiments.

In order to obtain the highest electrochemical signal, different concentrations of ALDH
and DP were tested. The ratio between ALDH and DP is a crucial parameter because a
lack of activity of one of them could hamper the reliability of the electrochemical mea-
surements [15]. According to previous works [15,21], ratio ALDH/DP = 1 was considered.
Amperometric experiments were performed applying +0.40 V for 60 s in 1 mM NAD+,
2 mM PPA, 1 mM K3[Fe(CN)6] and 0.1% BSA in 0.1 M phosphate + 0.1 M KCl buffer
solution. Figure 3 demonstrates that the current increases up to 0.24 U/mL, but at higher
enzymatic concentrations the electrochemical signal remains constant or even decreases.
Then, the optimal concentration of ALDH and DP is 0.24 U/mL.
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Figure 3. Calibration plot obtained with different concentrations of ALDH and DP (ratio = 1) and
1 mM NAD+, 1 mM K3[Fe(CN)6], 2 mM PPA and 0.1% BSA in 0.1 M phosphate + 0.1 M KCl buffer
solution pH 8.0.

3.2. Detection of Thiram Fungicide with NAD+/K3[Fe(CN)]6/Carbon Transducer

Detection of thiram is based on its inhibition effect on the enzymatic system. The
inhibition of ALDH by dithiocarbamate fungicides was shown to be competitive with
respect to NAD+ and non-competitive with respect to aldehydes [19]. Taking into account
the optimization of the experimental conditions (Section 3.1), the electrochemical detection
of thiram with carbon electrode was performed in a solution mixing all the reagents under
the experimental conditions previously optimized (0.24 U/mL ALDH, 0.24 U/mL DP,
1 mM NAD+, 1 mM K3[Fe(CN)]6, 2 mM PPA, 0.1% BSA in 0.1 M phosphate + 0.1 M
KCl buffer solution) and waiting 20 min before performing the chronoamperometry at
+0.40 V for 60 s. The electrochemical signal is corrected with the background current of
the transducer when no aldehyde but ALDH (0.24 U/mL), DP (0.24 U/mL) and high
concentrations of thiram (50 ppm) are present in solution.

Obtained results (blue columns in Figure 4) show that the minimum concentration of
thiram, which is electrochemically detected with the screen-printed carbon transducer, is
0.24 ppm. The RSD of blank signal without thiram is 2.2%. Then, this value corresponds to
the minimum value that can be considered as inhibition.
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Figure 4. Detection of thiram at +0.40 V after the incubation of the enzymatic system with various
concentrations of thiram and 0.24 U/mL ALDH, 0.24 U/mL DP, 1 mM NAD+, 1 mM K3[Fe(CN)6],
2 mM PPA and 0.1% BSA in 0.1 M phosphate + 0.1 M KCl buffer solution pH 8.0 with DRP-110
carbon transducer (blue columns). Detection of thiram with the transducer DRP-110 modified with
6 mM NAD+ and 6 mM K3[Fe(CN)6] in 0.58 U/mL ALDH, 0.58 U/mL DP and 2 mM PPA in 0.1 M
phosphate + 0.1 M KCl buffer solution pH 8.0 (orange columns).

In order to improve the sensitivity, WE was modified by drop-casting with the reagents
involved in the enzymatic system (Section 2.2). However, the enzymatic activity of ALDH
and DP decreases abruptly when they are retained on the electrode surface. Then, SPE is
only modified with NAD+ and K3[Fe(CN)6] while both enzymes are present in the solution.
The concentration of ALDH and DP (ratio 1:1) was newly optimized, obtaining 0.58 U/mL
of ALDH and DP as the optimal concentration (data not shown). WE was modified with
6 mM NAD+ and 6 mM K3[Fe(CN)6] since the concentration of both compounds will be
1 mM when they are dissolved after adding 60 µL of solution on the SPE. As Figure 3
demonstrates, 1 mM K3[Fe(CN)6] and NAD+ with 2 mM PPA and 0.1% BSA in 0.1 M
phosphate + 0.1 M KCl buffer solution pH 8.0 provides the highest electrochemical signal.

Modification of SPE with NAD+ and K3[Fe(CN)6] was conducted at different temper-
atures (from 4 to 50 ◦C), but the most reproducible results were obtained at 30 and 40 ◦C.
Taking into account that a high temperature reduces the drying time, 40 ◦C is selected
to fabricate the transducer. Furthermore, the thermal stability of NAD+ [43,44] shows
that no significant degradation is observed at 60 ◦C and its degradation takes place at
85 ◦C, when it results mostly in the generation of nicotinamide and ADP-ribose. Then,
electrochemical detection of different concentrations of thiram was performed at +0.40 V
for 60 s in 0.58 U/mL ALDH, 0.58 U/mL DP and 2 mM PPA in 0.1 M phosphate + 0.1 M
KCl buffer solution. The inhibition calibration of the enzymatic sensor (orange columns in
Figure 4) shows that the percentage increases from 0.12 to 6 ppm and remains constant at
higher concentrations of the pesticide. Then, the sensitivity of NAD+/K3[Fe(CN)]6/carbon
transducer allows the detection of 0.12 ppm.

The electrochemical parameters involved in the detection of thiram were optimized,
particularly, thiram calibration was also performed at a lower potential, +0.20 V. The
transducer was fabricated with 6 mM NAD+ and 6 mM K3[Fe(CN)6] as is previously
described. The calibration of thiram (blue columns in Figure 5) shows that 0.09 ppm
can be detected since the inhibition of 5.6% is obtained. However, there is a lack of
reproducibility as it can be observed in the error bars in Figure 5 (blue columns). Although
the reproducibility must be improved, the detection potential of +0.20 V shows a lower
blank current of the transducer than +0.40 V, and in that way, it is selected as a potential for
thiram calibration due to it providing better results.
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Figure 5. Detection of thiram at +0.20 V. Incubation was performed with various concentrations of
thiram and 0.58 U/mL ALDH, 0.58 U/mL DP and 2 mM PPA in 0.1 M phosphate + 0.1 M KCl buffer
solution pH 8.0. DRP-110 modified with 6 mM NAD+ and 6 mM K3[Fe(CN)6] (blue columns) and
with 10 mM NAD+ and 10 mM K3[Fe(CN)6] (orange columns) were used as transducers.

Different concentrations of NAD+ and K3[Fe(CN)6] (1, 3, 6, 10 and 15 mM) were
evaluated. The sensitivity of modifications with 1, 3 and 15 mM does not allow the
detection of lower concentrations of thiram than 0.24 ppm (1 mM) and 0.12 ppm (3 and
15 mM), so they are discarded. On the other hand, concentrations of 6 and 10 mM enable
the detection of 0.09 ppm, i.e., below the legal limits established in the MRLs. Regarding
the reproducibility, modification with 10 mM NAD+ and K3[Fe(CN)6] (orange columns in
Figure 5) improves the results previously obtained with 6 mM NAD+ and K3[Fe(CN)6]
modification (blue columns in Figure 5) and lower error bars are achieved. Under these
experimental conditions, thiram calibration (0.09–6 ppm) fits the equation y = 18.95Ln(x) +
54.83 (R2 = 0.98). LOD was calculated considering current (blank experiment)—3σ and the
calibration curve y = −1014x + 2714 (R2 = 0.988, Figure S2), obtaining a value of 0.118 ppm.

4. Conclusions

A new electrochemical transducer has been developed in this work. After testing
different modifications of the carbon surface, amperometric detection shows that the best
results are provided when only the cofactors NAD+ and K3[Fe(CN)6] (10 mM of both of
them) are fixed on the working electrode surface, while the ALDH and DP enzymes are
present in solution. This transducer simplifies thiram detection since the cofactors are
present on the WE surface instead of in solution. The sensitivity of this electrochemical
device allows the detection of 0.09 ppm thiram at +0.20 V, which is lower than the limits
established in the MRLs (0.1 ppm). Then, the electrochemical transducer developed in this
work opens up new possibilities in the detection of dithiocarbamate pesticides due to the
usefulness of modified carbon surfaces. In order to fabricate a quick, easy and reproducible
thiram SPE sensor, further studies will be focused on the modification of WE with all
components of the enzymatic system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9110303/s1, Figure S1: Lineweaver-Burk plot of NAD+. Figure S2: Calibration
plot of thiram used for LOD calculation.
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