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Abstract: In consideration of the endocrine disrupting effects caused by the butyl paraben (BP), a
portable visual sensor has been developed based on the photonic crystal and molecular imprinting
technology for the rapid screen of BP in toner sample which is a type of aqueous cosmetic to soften
the face skin. By integrating the self-reporting and molecular recognition properties, the molecular
imprinting photonic crystal (MIPC) sensor can display obvious color changes regularly according
to the concentration of BP. Based on the “color guide”, the content of BP in toner sample can be
estimated directly with the naked eye. In addition, the Bragg diffraction spectrum of MIPC can
red shift linearly with the increase of the concentration of BP in sample solution with correlation
coefficient as 0.9968. The quantitative determination of BP can be achieved through the optical fiber
spectrometer with detection limit as 0.022 mmol·L−1. With good selectivity, this MIPC film can
recognize BPs against the complex sample matrix, showing a standard addition recovery of 107% for
the real samples.

Keywords: photonic crystal; molecular imprinting technology; estrogen; preservative; butyl
p-hydroxybenzoate

1. Introduction

Butyl paraben (BP) has been widely used in humanity’s daily life. As the antimicrobial
additive, it can be found in cosmetics, pharmaceuticals, as well as food products [1–3].
In consideration of the estrogenic effects caused by parabens, the application of parabens
has aroused the increasing concerns on the latent hazards to health and environment [4,5].
It has been demonstrated that the chronic exposure to BP can cause breast cancer and
breast tumors, as well as the impairment of the sperm quality and fecundity [6–10]. The
European Union and China have stipulated the limit for BP at concentrations up to 0.14%
(g/g) as the preservative in cosmetic products, including lotion, toilet water, face creams
and rinse-off products, and so on [11].

Currently, some feasible methods have been applied for the BP detection, e.g., gas
chromatography–mass spectrometry method (GC-MS) [12], high performance liquid chro-
matography (HPLC) [13], capillary electrophoresis (CE) [14], liquid chromatography -mass
spectrometry (LC-MS) [15], and high-performance-liquid chromatography-photodiode
array analysis (HPLC-PDA) [16,17] etc. Although these methods are sensitive and have
wide measurement ranges, most of them need the expensive instruments, complicated
sample preconcentration steps, as well as the experienced technicians, which are challenges
for the real-time and rapid detection on the spot. Since the international trade is playing an
increasingly important role, it is necessary to develop a sensor for the rapid spot screen of
BP in the complicated samples. Especially, the portable visual sensor will be more welcome,
because it can provide the intuitive and reasonable signal on-site.
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The molecular imprinting polymers (MIPs) was proposed by Wulff in 1972. In the
technique, the monomer(s) are frozen in polymeric structures with the presence of the
template molecule [18–20]. After the removal of template molecule, the cavities comple-
mentary to the template in shape and binding sites are formed. Except specific recognition,
the superiorities of the MIPs, such as easy preparation, physical robustness, low-cost,
and thermal stability have resulted in increased researcher attraction [19–21]. MIPs have
been widely employed in various areas, such as chromatographic separation, catalysis,
and sensor platforms. Owing to the intuitiveness, different kind of colorimetric detec-
tion platforms have been developed by coupling with MIPs. For example, the MIP-
based fluorescent sensor, enzyme assisted colorimetric method, and surface-enhanced
Raman scattering (SERS), have been widely applied in clinic detection, food analysis, and
environmental monitoring [22–25].

The photonic crystal (PC) materials have drawn increasing interests for endowing the
MIPs with the self-reporting properties. PC is composed of several kinds of the regular
shaped materials which have different dielectric constants and are periodically arranged
in the PC skeleton [26–28]. Owing to the existence of photonic band gap in the PCs, only
the light with certain wavelengths can be reflected from their surfaces, resulting in the
characteristic structural colors of the PCs [29–31]. Any slight change of the lattice constant
of the PC skeleton caused by the stimuli, such as the acidity, temperature, humidity, ionic
strength as well as the concentration/speciation variations of the chemicals, will result
in the shift of the Bragg reflection peak. And the shift of the Bragg reflection peak will
consequently make the PC display the different colors according to the migration degree
of the Bragg reflection peak [32]. The composite of PCs and MIPs, known as the MIPC,
can integrate the advantages of both [33–35]. With the ability to transfer the molecular
recognition process specifically into the spectral signals, MIPCs can be used to sense the
targeted molecules visually, without needing the complex label techniques and expensive
instruments. The MIPCs have been applied successfully in many fields such as poison
analysis, clinical diagnosis, virus detection, customs security, and other fields [36–40].

In the present work, an MIPC sensor has been fabricated for the visual detection of
BP in toner sample without sample pre-treatment. It can sense the trace BP with high
sensitivity. Owing to the obvious regular color changes of MIPCs during the molecular
recognition process, a “color guide” has been fabricated. The content of BPs in toner
samples can be estimated by comparing the actual colors of the MIPCs with the “color
guide”. Furthermore, the accurate concentration of BP can be obtained through the optical
fiber spectrometer, since the shift value (∆λ) of the Bragg diffraction peak is positively
correlated with the BP concentration. The factors that affect the analytical performance
have been optimized and assessed.

2. Materials and Methods
2.1. Materials

Butyl paraben (BP, CAS 94-26-8), methyl paraben (MP, CAS 99-76-3), tetraethyl
orthosilicate (TEOS, CAS 78-10-4), procaine (CAS 51-05-8), and benzocaine (CAS 94-
09-7) were purchased from Aladdin (Shanghai, China). Acrylic acid (AA, CAS 79-10-
7), 2, 2-Azobisisobutyronitrile (AIBN, CAS 78-67-1), and methacrylic acid (MAA, CAS
79-41-4) were obtained from Tianjin Damao chemical reagent factory (Tianjin, China).
Hydrochloric acid (CAS 7647-01-0), absolute ethyl alcohol (CAS 64-17-5), glacial acetic
acid (CAS 64-19-7), concentrated sulfuric acid (H2SO4, 98%, CAS 7664-93-9), and 25%
ammonia water (NH3·H2O, CAS 1336-21-6) were purchased from Tianjin Zhiyuan chem-
ical reagent Co., Ltd (Tianjin, China). Further, 30% hydrogen peroxide (CAS 7722-84-1)
and 45% hydrofluoric acid (CAS 7664-39-3) were purchased from the Guangzhou chemi-
cal reagent factory (Guangzhou, China). Ethylene dimethacrylate (EDMA, CAS 97-90-5)
was purchased from Alfa Aesar chemical Co., Ltd (Shanghai, China). Hydroxyisobutyric
acid (CAS 594-61-6) was purchased from Shanghai Renxi technology Co., Ltd (Shanghai,
China). All of the above chemicals were of analytical grade. Ultrapure water (18.2 MΩ·cm)
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was used in all solutions. The transparent soda–lime glass (Na2O·CaO·6SiO2) slides
(50 × 9 × 1 mm3) were purchased from Jiangsu swift boat glass and plastic Co., Ltd
(Yancheng, China). Additionally, polymethyl methacrylate (PMMA) slides (50 × 12 ×
1.2 mm3) were used directly without any treatment. The PMMA slides were purchased
from Yali organic process factory (Guangzhou, China).

2.2. Apparatus

The silica colloidal microspheres were collected by a centrifuging apparatus (TG18-
WS, Hunan Xiangli instrument Co., Ltd. Changsha, China). Maya 2000 PRO fiber optic
spectrometer (Ocean Optics, Orlando, FL, USA) with haloid lamp cold-light source (LS-
3000, 360–2000 nm) was used to record the diffraction spectra. The self-assembly of the SiO2
based PC template was conducted by using a constant temperature and humidity chamber
(WS-01Y, Hengfeng medical equipment Co. LTD, Huangshi, China). The JSM7001F field
emission scanning electron microscope (Hitachi, Tokyo, Japan) was used for getting the
SEM images. The HPLC analysis was performed with Shimadzu LC-20 AD with DAD
detector (SPDM20A) (Tokyo, Japan).

2.3. Experimental Methods
2.3.1. Preparation and Self-Assembly of Silica Colloidal Microspheres

Anhydrous ethanol (16.25 mL), deionized water (24.75 mL), and aqueous ammonia
(25%, 6.75 mL) were mixed in a conical flask and stirred at 1100 r/min for 5 min at room
temperature. Next, 45.5 mL anhydrous ethanol and 6.75 mL tetraethyl orthosilicate (TEOS)
were added. After stirring at 1100 r/min for 1 min, the speed was reset at 400 r/min for
2 h. Then, the resulted SiO2 particles were collected by centrifugation and rinsed five times
with anhydrous ethanol. Subsequently, these silica particles were dispersed in anhydrous
ethanol, and stored in vials in different weight concentration separately.

Basing on the SiO2, the PC films were fabricated on glass substrates through vertical
deposition. The detailed procedures are as follows: firstly, the glass substrates were soaked
in H2SO4/H2O2 (7/3, v/v) solution for 12 h to clean the glass plates and make them become
hydrophilic. After being rinsed with ultrasonic water bath for 1 h, they were immersed
vertically in the glass bottles which contained appropriate amount of SiO2 colloidal solution
(8 mg·mL−1). Then, the bottles were putted in an incubator with temperature at 30 ◦C
and humidity at 40%. With the evaporation of the solution, the SiO2 was self-assembled
uniformly on the glass plate, resulting in the PC template with obvious structure color.

2.3.2. Fabrication of the Molecularly Imprinted Photonic Crystal (MIPC)

The fabrication approach (Scheme 1) is as following: First, 4 mmol AA and 1 mmol BP
were dissolved with water/methanol (3:5, v/v). After storing overnight at 4 ◦C, EDMA
(1 mmol) and AIBN (0.003 g) were added in the mixture. The resulted precursor solution
was then degassed with nitrogen for several minutes to remove oxygen. In the meantime,
a “sandwich” was prepared by sandwiching the PC template between two PMMA slides.
Then, 10 µL precursor liquid was injected into the “sandwich” gaps gently. After that, the
“sandwich” was put in the airtight container (60 ◦C) for 6 h for MIP polymerization.
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Next, the “sandwich” was immersed in 1% hydrofluoric acid until the glass and
PMMA slides were separated from each other. The obtained PMMA slides were then
immersed in 4% hydrofluoric acid for 5 min to remove the SiO2 completely. This way,
the molecular imprinted film with the inverse opal structure was formed on the PMMA
slides. Then, the PMMA slides were subjected to the elution repeatedly with a mixture
of methanol/water/acetic acid/hydrochloric acid (3.5:5.6:0.5:0.4, v/v/v/v) until no BP
was detected in the eluent at 258 nm by using an UV spectrometer (Jinghua Technology
Instrument Co. LTD, Shanghai, China).

2.4. Investigation of the Analytical Performance of the MIPCs

To investigate the effect of sample matrix on the sensing performance, different
amount of methanol was mixed in the sample matrix with the final content changing
from 10% to 30% (v/v). The corresponding diffraction spectra were recorded with fiber
optic spectrometer.

To explore the response time and the reusability of MIPCs, the same piece of MIPC film
was subjected to the adsorption and elution repeatedly, and the corresponding diffraction
spectra were recorded.

Benzocaine, procaine and methyl paraben solution with concentrations ranging from
0.0001 to 0.003 mol·L−1 were prepared. The responses of the MIPC films to these struc-
tural analogues of BP were tested and compared to investigate the molecular recognition
properties of the MIPCs.

2.5. The Application of MIPCs

A band of alcohol-free rose-water toner, which belongs to the skincare product, was
bought from the supermarket. For the toner used in this work, the main ingredients
are water, rose oil, nicotinamide and seaweed extract. It can be sprayed on the face for
making the skin soft. Since it is non-viscous and almost transparent liquid, so no sample
pretreatment procedures have been conducted. Before detection, some methanol was
added in the toner to make methanol content achieve 20%. The MIPC film was dipped into
the sample solution for 15 min, then the Bragg diffraction of the MIPC film was recorded
by the optical fiber spectrometer, and the color change of the MIPC was recorded by a
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camera. The sensing performance of MIPC film was evaluated based on the peak shifts of
the Bragg diffraction in response to the BP in real sample solution.

3. Results

Scheme 1 describes the overall procedures concerning the fabrication and application
of BP MIPCs: (A) fabrication of PC template by self-assembly of silicon spheres; (B) injection
of MIP precursor solution on the PC template; (C) thermal polymerization of BP imprinted
membrane; (D) preparation of inverse opal MIPC via eliminating of the silica spheres
and BP molecules; and (E) the utilization of MIPC in BP monitoring. Each step has been
optimized in order to get the MIPCs with excellent properties, such as the acute color
indication, fast response, high selectivity, and good reusability.

3.1. The Fabrication of PC Template and MIPC Sensor

Before the fabrication of a PC template, it is important to treat the glass plate with
H2SO4/H2O2 solution to make the glass plate hydrophilic and clean. On this kind of glass
plate, the SiO2 colloidal solution can be driven evenly to climb along the glass plate by
the capillary action. Then, with the evaporation of the solvent, the SiO2 can be orderly
arranged on the glass plate, and form the PC template with good quality.

Since the optical performance of PC is determined by the mono-dispersity and particle
size of SiO2, the procedures for the fabrication of SiO2 should be optimized first. The Stöber
method was modified to prepare the SiO2 microspheres. The purity of TEOS, the proportion
of ammonia, ethanol, and TEOS, and even the formula for mixing TEOS with ammonia
have been found to affect the shape, particle size, and mono-dispersity of silicon spheres in
the previous work [40,41]. The proportion of TEOS showed positive effect on the particle
size of the silicon sphere. It can be explained as the following: the more TEOS is used,
the more silicic acid will be released through the hydrolyzation of TEOS. And the particle
size of silica will increase accordingly owing to the subsequent condensation reaction of
silicic acid. By changing the synthesis conditions, SiO2 particles with different size were
produced. Further, the corresponding PCs were fabricated based on these SiO2 particles.
The wavelength of the Bragg diffraction peaks (λmax) of PC is found positively correlated
with the SiO2 particle size (d) and shows a linear correlation (λmax = 2.32d) with R2 as
0.95481 in the present work (Figure S1).

To achieve the naked-eye detection, the wavelength of the diffraction peaks of MIPCs
needs to vary evidently in the different visible light regions (380–780 nm) during the sample
responding. The MIPCs with structural color between green and yellow are preferable in
the present work. As this kind of MIPCs is expected to produce the obvious visual color
changes, no matter the color will red shift or blue shift in response to the target analytes.

In order to obtain the ideal MIPCs, the mono-dispersed SiO2 with average particle size
of 365 nm and polydispersity index of 0.019 was selected to fabricate the PCs. The resulted
PCs can display red color with the λmax of the Bragg diffraction at 750 nm (Figure 1a).
As shown in the SEM picture (Figure 1a), the monodispersed silica nanoparticles are
organized uniformly on the glass plate, producing the face-centered cubic (FCC) lattice.
As there are many silicon spheres arranged on the surface, this morphology is vividly
called “opal structure”.
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After the polymerization of the precursor on the PC template, MIPs can form in the
gap of silicon spheres. Then, through treating with HF, the SiO2 microspheres can be
dissolved, resulting in the holes at the original position of these SiO2 microspheres in the
MIP film as shown in Figure 1b. This kind of morphology is consequently called “inverse
opal structure”. By this way, the shape and the arrangement of the SiO2 microspheres can
be imprinted into the MIP film. Since the holes can keep the FCC arrangement, the MIP
film can display the opal characteristics of the original PC lattice. Consequently, the MIP
films are called MIPC.

Since the diameter of the hole in MIPCs is smaller than the original SiO2 sphere owing
to the contraction, the corresponding MIPCs will becomes orange with λmax blue-moving
to 646 nm. After further elution of the template BP, the molecular recognition sites can be
formed on the MIPC film. Owing to the further reduction of diameter of the hole (Figure 1c),
the λmax of MIPCs will approach to the boundary between green and yellow, which is
565 nm. It can be seen from Figure 1, even after removing the SiO2 microspheres and the
imprinted templates, the inverse opal structure of the resulted MIPC still sustains the FCC
arrangement. The periodic variation of refractive index of these porous films can give rise
to Bragg optical properties.

The MIPCs accommodate interconnected macropore array, to which nanocavities
complementary to BP in shape and binding sites are distributed. The presence of macro-
pores in MIPCs not only provide more interaction sites but also decrease the molecular
transport resistance, which is favorable for improving the MIPCs’ sensing efficiency. The
obtained MIPCs not only have the ideal structural color (between green and yellow), which
is conducive to change color in the visible light range, but have the stable and regular
microporous structure. These features are helpful for achieving the evident color change in
response to the slight shrinkage/swell of the cellular structure of the MIPC during sample
monitoring. Thus, in the present study, the SiO2 with particle size of 365 nm was chosen
for the fabrication of PCs and MIPCs.

It is known the recognition sites of MIPCs are resulted from the interactions between
the functional monomers and template molecules during the polymerization. The rigidity
of the MIPCs, which determines the swell/shrinkage properties of MIPCs, mainly depends
on the dosage of the cross-linker used.

To obtain MIPCs with a satisfactory physical and chemical performance, the formula
of precursor solution has been optimized in the present work. The insufficient functional
monomer will cause the deficient binding with template molecules, but the overdose of
functional monomer will produce a large amount of nonspecific binding sites through the
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interaction between the functional monomers during the polymerization. In order to obtain
a smart MIPC sensor to convert the molecular recognition process acutely into a visible
color change, the network skeleton should have good elasticity and durability, besides the
molecular recognition specificity. It should be able to expand and shrink reversibly. Thus,
the amount of MAA and EDMA has been investigated. Results (Figure 2a) indicate that the
satisfying sensing performance can be obtained when the molar ratio of BP/AA/EDMA is
1:4:1. Thus, this condition has been used for producing the MIPCs in the present work.
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the effect of EDMA and MAA on the peak shift of MIPCs; Concentration of BP: 0.001 mol·L−1).

Selecting a proper porogen is also key in order to improve the specific recognition
property of MIPCs. It is known that the variation of polarity between the sample solution
and the porogen that has been used to synthesize the MIPs will affect the polymer swelling
or shrinking, and had a profound effect on the polymer recognition performance [42].
The interaction between the template molecule and the MIPs is governed by different
molecular forces in organic solvents and in aqueous sample solution. The interactions
that are predominant in the polar environment are mainly the hydrophobic interactions
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and ionic bonds [43]. Since this sensor are expected to be applied in aqueous sample
solution, not only should the porogen dissolve BP, functional monomers, and cross-linkers
completely, but provide the polarity approximating the real sample solution as closely as
possible. Pure methanol was used as the porogen in the preliminary experiment. However,
the resulted MIPCs can only display the weak response to BP. In addition, they will crack
in the regeneration step, thus shortening the service time. Results (Figure 2b) indicate
that the addition of a proper amount of water in the precursor solution will be helpful
to improve the signal (∆λ) of the corresponding MIPCs in response to the BP sample.
Through adjusting the methanol content in the precursor solution, it is found that the
response sensitivity of the obtained MIPCs will decrease with the increase of methanol in
precursor solution. In the experimental range, when the porogen contains 50 µL methanol
and 30 µL water, the resulted MIPC can display the largest ∆λ value. In order to avoid the
further interruption of the hydrogen bond between BP and the functional monomers, the
amount of water was not increased continually.

Similar porogen in preparation of MIPs has been used in literature [43]. In that
work, the polymerization was conducted in the mixture of methanol/water (4:1, v/v).
For the aqueous sample, the MIPs prepared in the mixed solvent has shown much better
recognition properties than in the “classical” way in the presence of nonpolar solvents.

3.2. Analytical Performance for Sensing BPs
3.2.1. Effect of the Methanol Content in the Assayed Sample Solution

In the pure water samples, the MIPCs can only display the obscure peak-shift, because
the hydrogen bond between BPs and the binding sites may be inhibited in the strong
polar solution. Since methanol was used in the porogen to prepare the MIPCs in this
work, the effect of methanol in the sample matrix on the sensing properties has been
studied. Results show (Figure 3a) that the sensing signal can increase gradually with the
addition of methanol. The shift (∆λ) of the diffraction peak can approach the maximum
value when 20% (v/v) methanol is included in the sample matrix. Continue to increase
methanol, the ∆λ will decrease instead. Further, in pure methanol, the sensor shows no
response at all because of the too high solubility of BPs in methanol. That is, the adsorption
performance of MIPCs for BPs is poor when methanol content is high in the sample solution.
Attributed to the competitive distribution of BPs between MIPC and solvent phase, the
optimal concentration of methanol is 20% (v/v) in the sample solution. When the same
MIPC is inserted in blank samples with methanol content changing from 0 to 30%, no
change can be found for the Bragg diffraction.
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3.2.2. The Effect of pH on the Performance of MIPC

The effect of pH on the performance of MIPC has been studied in 0.001 mol·L−1 BP
solution by using the same piece of MIPC film. The phosphate buffer (10 mM) was used
to control the pH in the present work. From Figure 3b, it can be seen that the shift value
(∆λ) of the Bragg diffraction peak increases gradually as pH increases from 3 to 7, owing to
the synergies of the hydrogen bond and the structural complementarity effect between BP
and MIPC. However, when the pH is increased over 8, the ∆λ of the diffraction peak of the
MIPC tends to drop sharply. When pH value is greater than the pKa values of BP (8.41) and
acrylic acid (4.26), owing to the acid dissociation effect, the COOH groups on the MIPC
skeleton will turn into –COO− completely and the phenolic –OH of BP will also become
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the negatively charged form. Thus, the hydrogen bond force between MIPC and BP will be
weakened, leading to the decrease of the adsorption capacity for BP. Consequently, the ∆λ

of the diffraction peak of the MIPC has been found to decrease with the increase of pH in
alkaline solution. Hence, the MIPCs is suitable to be used in the solution with pH 5–8.

3.2.3. The Effect of Temperature on the Performance of MIPCs

To investigate the effect of temperature on the response properties of MIPC membrane,
the same piece of MIPC was operated in 0.001 mol·L−1 BP solution with the temperature
ranging from 10 ◦C to 60 ◦C. It is found that the temperature between 10 ◦C and 35 ◦C
can exert little influence on the performance of MIPCs (Figure 3c). However, when the
temperature is over 35 ◦C, the peak shift (∆λ) of MIPCs in response to BPs will decrease
gradually. When the temperature is higher than 60 ◦C, the ∆λ approaches to zero, which
means the well-aligned inverse opal structure can be demolished by the elevated tem-
perature. Therefore, the MIPC prepared in this experiment is suitable for the practical
application between 10 ◦C and 35 ◦C.

3.2.4. The Analytical Performance of MIPCs to BP

In BP solution, the analytes can be driven into the MIPC gel to combine with the
imprinted binding sites by the concentration difference between the inside and outside the
MIPC membrane. Owing to the augment of the ion strength and the swelling of the cavity
of the MIPCs, the lattice constant of the PC skeleton will vary considerably along with the
shifts of the Bragg diffraction peak. Results reveal that the Bragg diffraction peak of MIPC
will red shift gradually with the increases of the soaking time in the sample solution. Then,
the ∆λmax can be achieved when the soaking time approaches 15 min. So, the analytical
performance of the MIPCs were evaluated by immersing the same piece of MIPC film into
BP solution with different concentration for 15 min. As shown in Figure 4, the wavelength
of the Bragg diffraction can increase gradually with the increase of BP concentration. The
peak shift (∆λ) is proportional to the concentration of BPs in the range of 0.1–3.0 mmol·L−1,
and the detection limit is 0. 022 mmol·L−1 based on three times the ratio of signal/noise.
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Figure 4. The color changes (a), Bragg diffraction (b), and signal calibration curve (c) of MIPC film
upon response to BPs.

In addition to using the calibration curves between ∆λ and the concentration of BP for
the quantitation of BP, in the present work, the color changes of the MIPC can also be used
to estimate the concentration of the target analytes. In the blank solution the structure color
of the MIPC is green. Along with the increase of the BP concentration, the film can display
the colors changes regularly from the original green to yellow, and then to red. The pattern
of color change can be used as the standard “color guide”. Through comparing the actual
color of MIPC in the sample solution with the “color guide”, we can judge the presence of
BP and estimate the change of BP concentration with the naked eyes, except by using the
optical fiber spectrum.

3.2.5. The Selectivity of MIPCs Film to BP

As a sensor, the high selectivity is crucial to eliminate the interferences caused by the
possible structural analogues. With the similar structure (Figure 5a) to BP, benzocaine,
procaine, and methyl paraben (MP) were used to investigate the selectivity of the developed
MIPCs. As shown in Figure 5, the response of the MIPC to BP is much stronger than the
interferences, which means the MIPCs can recognize BP against these structure analogues.
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It is known that the signal intensity of MIPC is related to the extent to which the lattice
parameters of the PC skeleton can change during the response to analytes. Although methyl
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paraben is expected to nest in the cavity of the MIPCs easier owing to the smaller molecular
size, it cannot occupy efficiently the cavity that is designed for the BP with bigger size.
The insufficient swelling of the cavity cannot result in the obvious change of the lattice
parameters of the PC skeleton. Thus, the response of MIPC to methyl paraben is much
poorer than BP (Figure 5b).

Besides methyl paraben, other structure analogues such as benzocaine and procaine
have been selected as the interferents in order to further investigate whether the anilne
–NH2 group will cause interference. From Figure 5a, it can be seen that benzocaine and pro-
caine have similar structures with paraben. The main difference is that the phenolic –OH
is replaced with anilne –NH2. The selectivity experiment was conducted in the neutral
solution (pH 7). In this solution, the −COOH exist mainly as the negative form, so the
acid-base interaction between –COOH and anilne –NH2 can be ignored. Owing to the
imprinting effect and the stronger hydrogen bond interaction between MIPC skeleton and
BP, the response of the MIPC to BP is much stronger than benzocaine and procaine.

Given the outcome procured, it is distinct that the specific recognition sites have been
fabricated in the lattice structure of the MIPC films. The MIPC can recognize BP against
those with a similar structure.

Under the same conditions, non-imprinted photonic crystals (NIPCs) (Figure 5c) can
only show the weak response to all the tested chemicals, and cannot differentiate BP from
the interferences. It is demonstrated the imprinting technology has indeed played a positive
role in the improvement of the selectivity and adsorption capacity of the PC sensors.

3.2.6. The Reusability of MIPCs Film

The reusability is an important indicator for evaluating a sensor. In order to regenerate
the MIPCs efficiently without destroying the sensing film, the formula of the eluting
solution has been optimized. The mixtures of methanol and acetic acid by 9:1 or 8:2
(v/v) have been commonly used to remove the template molecules in literature [39,44,45].
However, these kinds of elution solution showed damaging effects on the MIPCs. After
repeated elution with the above solution, the MIPCs will crack, and the intensity of Bragg
diffraction peak will decrease obviously and even disappear eventually.

After optimization, the mixture of methanol, water, acetic acid, and HCl with volume
ratio as 3.5:5.5:0.5:0.5 was selected as the eluent in the subsequent experiment. With this
eluent, the MIPCs can be regenerated successfully and exhibit a satisfying performance in
sample detection. As is shown in Figure 6, after seven cycles of adsorption and elution, the
diffraction peak shift of MIPCs can exhibit good repeatability with RSD below 5%, which
indicates that the FCC lattice of MIPCs can be sustained after the repeated elution with
the eluent.
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4. Application

The European Union and China have stipulated the limit for BP in all cosmetic prod-
ucts, such as o/w lotion, toilet water, face creams, and rinse-off products, at concentrations
up to 0.14% (g/g) [11]. As to the toner sample used in the present work, the main ingredient
is water. Assuming the density of the toner is 1 g · mL−1, the concentration limit of 0.14%
(g/g) can be estimated to be 7.2 × 10−3 mol · L−1 according to the molecular weight of BP.
Since the detection limit of the developed method is 325 times lower than the controlled
value, the method is sensitive enough to be used for the detection of BPs in real samples.
The lotion sample was purchased from the supermarket. No BP was found in the sample
by using HPLC. Then the sample was divided into the control group and the spiked group.
In the spiked group, 0.0015 mol · L−1 BP was added. As shown in Figure 7, neither the color
or the diffraction spectrum of the MIPC changes in the control lotion sample. However, in
the spiked lotion sample, a significant peak shift can be found along with the obvious color
changing from green to orange for the same MIPC film. Based on the average peak shift
value (∆λ) of 26.1 nm (n = 5), the BP concentration in the spiked sample is calculated to be
0.0016 mol · L−1 by using the linear regression equation of the MIPC film. In comparison
with the spiked value, the standard addition recovery is indicated to be 107% for the real
sample. In addition, though comparing the standard “color guide” with the actual color of
MIPC film in the spiked sample solution, the concentration of BP can also be estimated to
be about 0.0015 mol · L−1. Results demonstrate that the developed MIPC can be used as
the credible visual sensor to realize the rapid screening and quality estimation for BP in
the real samples. Therefore, the visual sensor could become a rapid, reliable, and effective
supplement of the optic fiber method in toner samples evaluation.
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5. Conclusions

A smart visual sensor based on MIPC was developed for the detection of BP in toner
samples. In addition to its portability and good reusability, it could provide the intuitive
visual signal in response to BP. Through comparing with the “color guide”, the content of
BPs was estimated rapidly with the naked eye. In addition, the Bragg diffraction spectrum
of the MIPC senor red shifted linearly with the increase of the concentration of BPs in
sample solution with correlation coefficient as 0.9968. So, the quantitative detection for BPs
was also be achieved. With good selectivity, it recognized BPs against the complex sample
matrix, and showed a standard addition recovery of 107% in the real sample. After further
optimization and integrating with the artificial intelligence device, the visual sensor could
become a rapid, reliable, and effective supplement of the optic fiber method in the on-site
customs inspection.
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