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Abstract: The sensor drift problem is objective and inevitable, and drift compensation has essential
research significance. For long-term drift, we propose a data preprocessing method, which is different
from conventional research methods, and a machine learning framework that supports online self-
training and data analysis without additional sensor production costs. The data preprocessing
method proposed can effectively solve the problems of sign error, decimal point error, and outliers
in data samples. The framework, which we call inertial machine learning, takes advantage of the
recent inertia of high classification accuracy to extend the reliability of sensors. We establish a
reasonable memory and forgetting mechanism for the framework, and the choice of base classifier
is not limited. In this paper, we use a support vector machine as the base classifier and use the gas
sensor array drift dataset in the UCI machine learning repository for experiments. By analyzing the
experimental results, the classification accuracy is greatly improved, the effective time of the sensor
array is extended by 4–10 months, and the time of single response and model adjustment is less than
300 ms, which is well in line with the actual application scenarios. The research ideas and results in
this paper have a certain reference value for the research in related fields.

Keywords: long-term drift compensation; inertial machine learning; online self-training; data
preprocessing; support vector machine; gas sensor array; machine olfactory; chemical sensing

1. Introduction

Machine olfactory technology [1] plays an important role in food safety [2], medical
care [3], environmental monitoring [4], aerospace [5], and other fields, and this importance
is becoming more and more obvious with the development of economy and society. A
machine olfactory system typically consists of an array of gas sensors that chemically react
with the detected gas to collect sensing data and machine learning methods that analyze
and process the data [6].

The gas sensor is composed of chemically sensitive materials connected to the sensor,
and the measurement task is accomplished by allowing the molecules of the substance
being analyzed to interact with the chemically sensitive materials of the sensor [7]. Gas
sensor array is an important part of contemporary Internet of Things (IoT) technology, and
its market scale maintains a rapid growth. According to Yole Développement’s survey, gas
sensors are expected to be worth $2 B in 2026, up from $1.1 B in 2020, with a compound
annual growth rate of 10.9% [8]. In recent years, with the development of IoT technology,
gas sensing technology has been closely combined with intelligent industry and has been
widely studied and applied in food detection, animal and plant breeding, air detection,
disease diagnosis, industrial site, pipeline leak detection, hazard monitoring, and other
fields [6,7,9–11]. The mechanism of gas sensor detection is that the gas to be analyzed
chemically reacts on the surface of the sensor, causing a potential difference inside the
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sensor, and then the gas information is converted into an electrical signal to indicate the
composition or concentration of the gas. Compared with the traditional gas detection
methods, the gas sensor detection method has the advantages of low cost, quick response,
ease of use, and great potential and market in the field of gas detection [10]. Ideally, the
gas sensor array will always have the same response value when in the same gas or gas
mixture and will immediately return its baseline initial value when detection is stopped.
However, this ideal situation cannot be achieved in real applications. After a gas sensor is
used for a period, it will drift due to factors such as hardware aging and external pollutant
poisoning. Drift means that there will be inconsistencies in the sensor response results
when detecting the same gas in the same environment. The drift phenomenon can cause the
gas recognition model to fail in a relatively short period of time (a few weeks or months).
Sensor drift can interfere with gas classification and gas concentration prediction, which
has always been the most serious problem faced by gas sensors [1,12].

Sensor drift is objective and inevitable [13]. When a sensor drifts, its performance will
decrease, resulting in the inaccuracy of the collected data. Many scholars have performed
research on drift compensation from hardware or software perspectives [14]. Due to
the limitation of hardware technology, there is no stable, reliable, and inexpensive self-
compensating sensor, which is very difficult and costly to develop [10,15]. Compared
with hardware compensation, software compensation is cheaper and easier to implement,
mainly including univariate methods, multivariate methods and artificial intelligence
methods [14]. Both univariate and multivariate methods seek to correct the sensor signals,
while the artificial intelligence methods assume the classification model will grasp and
learn the drift features on its own. In univariate methods, each sensor calibrates its signal
without considering other sensors, making this type of method simpler to implement
and widely used. To ensure a good accuracy, a high sampling frequency is needed to
detect drift and compensate it in time [14,16,17]. In a sensor array, the moment of drift
phenomenon is different for different sensors. Using this law, the multivariate methods
integrate and analyze the signals of different sensors in the array to quickly identify the
drift phenomena and correct the signals of drifted sensors according to the signals of
non-drifted sensors [14,15]. Compared with the univariate methods, the algorithms of the
multivariate methods are more difficult to design. Artificial intelligence methods mainly
include statistical machine learning methods [1,12,18] and deep learning methods [14,19],
the former mainly include support vector machines, multilayer perceptual machines,
random forests, etc., and the latter mainly include convolutional neural networks and
recurrent neural networks, etc.

At present, many scholars have conducted in-depth research on drift compensation.
There is less research on hardware, mainly Sasago [20] created a FET-type hydrogen sensor
with a fast response time and low drift. Most of the related research is carried out from
the perspective of software compensation. Vergara [15] contributed the famous gas sensor
array drift dataset and proposed an integrated learning method based on support vector
machines, which provided a machine learning solution for drift compensation research. For
more convenient and practicable procedures, Zhu [21] presented a calibration model for
classification based on a single category of drift correction samples. Ma [22] developed an
online drift compensation model by adapting two domain adaptation-based strategies for
online learning. Liu [23] developed a novel active learning methodology that intelligently
selects sample labels for drift correction to tackle the issues of only a few drifted samples
being usable for label querying. Jiang [24] proposed a unique drift compensation approach
based on balanced distribution adaptation, which uses the weight balance factor to adjust
the conditional and marginal distributions between the two different domains. In recent
years, scholars have started to focus on deep learning techniques and introduced them
into the study of drift compensation. Zhao [14] tried to use long short-term memory
(LSTM) neural networks to improve the drift compensation effect, and Feng [19] proposed
a very innovative method called augmented convolutional neural network (ACNN), which
converts sensor signals into matrices and hands them over to convolutional neural network
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(CNN) for processing like pictures. Most of the extant studies tend to compensate or analyze
sensor data in the form of strong rules or fixed parameter models, which are excessively
dependent on historical data and experience and have a large degree of subjectivity. Almost
all current studies about online data preprocessing and analyzing are aimed at short-term
drift compensation, that is, batch k is used as the sample to predict batch k itself or
batch k + 1. The studies on long-term drift compensation are mostly based on post-event
data processing, which does not have good real-time performance. Deep learning-based
approaches, in either training or application sessions, have high hardware requirements
and can significantly increase the production cost of sensors. Overall, the existing studies
have improved the service life of the sensor to a certain extent, but it is far from enough.
If long-term drift compensation can be realized, the sensor life can be extended more
effectively, but there are few relevant studies.

Data processing is an indispensable part of machine olfactory system, which directly
determines the output of machine olfactory system. We try to study drift compensation
from the perspective of improved data processing algorithm. Inspired by inertial navigation
technology [25], we propose a novel method (named inertial machine learning) that can help
machine learning classifiers realize drift compensation. The inertial navigation technology
measures the angular velocity and acceleration information of the carrier relative to the
inertial space through inertial measurement components and uses Newton’s law of motion
to automatically calculate the carrier’s instantaneous velocity and position information.
Inertial navigation is a completely autonomous navigation technology, and its error (also
called drift) increases with navigation time [26]. The drift phenomenon of chemical sensors
is very similar to the error accumulation of inertial navigation. Since drift is a gradual
process, the record at time t is closer to the true value than the record at time t + n, and
the accuracy rate of batch k is more likely to be higher than that of batch k + 1. Like the
improved principle of inertial navigation, our method tries to use as accurate data as
possible to train the classifier, making use of the inertia with high accuracy classification
effect in a short term to maintain high accuracy for a longer time to achieve long-term drift
compensation to some extent. The inertial learning model proposed in this paper uses
several queues with upper capacity to store data, so that the model has the characteristics
of memory and forgetting. The model uses support vector machine (SVM) as the basic
classifier and is validated experimentally with gas sensor array drift data set, which can be
obtained online from UCI machine learning repository. Experimental results show that this
model can prolong the effective drift compensation time and extend the reliable service
time of the sensor by 4–10 months.

The rest of this article is organized, as follows. Section 2 is data preprocessing. Section 3
describes the inertial machine learning method. Section 4 consists of the experimental details
and comparative analysis, and finally, conclusions will be drawn in Section 5.

2. Data Preprocessing

The sensor array long-term drift dataset is large for two main reasons. The first reason
is that the dimension of data collected by sensor array is usually relatively large. The
second reason is that to study long-term drift, the period of data acquisition is required
to be particularly long. The question of how to properly compress data or extract key
information under limited hardware constraints is very important for online model training
and data analysis.

2.1. Data Acquisition

The gas sensor array drift dataset (GSAD), which is one of the famous data sets of
gas sensor drift problems, was adopted as the research object in this study. The dataset,
which was created and donated by Alexander Vergara [15] in 2012, contains 13,910 chem-
ical gas sensor data collected by 16 chemical gas sensors (including four TGS2600, four
TGS2602, four TGS2610, and four TGS2620) for six different concentrations of different
gases (including ethanol, ethylene, ammonia, acetaldehyde, acetone, and toluene). The
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data was collected during a 36-month period from January 2008 to February 2011 at the Gas
Delivery Platform facility of the Chemical Signals Laboratory at the BioCircuits Institute at
the University of California, San Diego. The dataset is divided into 10 batches by time, as
shown in Table 1.

Table 1. Data distribution of each batch in the GSAD dataset.

Batch Id Month Ids
Quantity and Proportion of Each Gas in the Batch

Ethanol Ethylene Ammonia Acetaldehyde Acetone Toluene

batch1 1, 2 90 20.2% 98 22.0% 83 18.7% 30 6.7% 70 15.7% 74 16.6%
batch2 3, 4, 8, 9, 10 164 13.2% 334 26.8% 100 8.0% 109 8.8% 532 42.8% 5 0.4%
bacth3 11, 12, 13 365 23.0% 490 30.9% 216 13.6% 240 15.1% 275 17.3% 0 0.0%
batch4 14, 15 64 39.8% 43 26.7% 12 7.5% 30 18.6% 12 7.5% 0 0.0%
batch5 16 28 14.2% 40 20.3% 20 10.2% 46 23.4% 63 32.0% 0 0.0%

batch6 17, 18, 19,
20 514 22.3% 574 25.0% 110 4.8% 29 1.3% 606 26.3% 467 20.3%

batch7 21 649 18.0% 662 18.3% 360 10.0% 744 20.6% 630 17.4% 568 15.7%
batch8 22, 23 30 10.2% 30 10.2% 40 13.6% 33 11.2% 143 48.6% 18 6.1%
batch9 24, 30 61 13.0% 55 11.7% 100 21.3% 75 16.0% 78 16.6% 101 21.5%

batch10 36 600 16.7% 600 16.7% 600 16.7% 600 16.7% 600 16.7% 600 16.7%

2.2. Feature Extraction

The dataset contains 128 feature vectors, as shown in Table 2. Vergara et al. focused at
two different types of characteristics that leverage the entire dynamic process that occurs
at the sensor surface, such as those that reflect the sensor element’s adsorption, desorption,
and steady-state response [14,15]. Si in Table 2 represents the ith sensor, and each sensor
has eight feature vectors, which are ∆R, ‖∆R‖, ema0.001 I, ema0.01 I, ema0.1 I, ema0.001D,
ema0.01D, and ema0.1D, respectively [14]. ∆R represents the difference of the maximal
resistance change and the baseline; ‖∆R‖ represents the ratio of the maximal resistance
and the baseline values; emaα means the exponential moving average that converts the
increasing/decaying and saturating discrete time series collected from the chemical sensor
into a real scalar; α is the scalar being a smoothing parameter of the operator that defines
both the quality of the feature and the time of its occurrence along the time series, and it
has three different values: 0.1, 0.01, and 0.001; I and D represent the rising transient portion
and decaying transient portion of sensor response respectively.

Table 2. Placement order of extracted features in the feature vector.

Features (S1) Features (S2) Features (S3) . . . Features (S16)

1. 9. 17. . . . 121.
∆R_S1 ∆R_S2 ∆R_S3 ∆R_S16

2. 10. 18. . . . 122.
‖∆R‖_S1 ‖∆R‖_S2 ‖∆R‖_S3 ‖∆R‖_S16

3. 11. 19. . . . 123.
ema0.001 I_S1 ema0.001 I_S2 ema0.001 I_S3 ema0.001 I_S16

4. 12. 20. . . . 124.
ema0.01 I_S1 ema0.01 I_S2 ema0.01 I_S3 ema0.01 I_S16

5. 13. 21. . . . 125.
ema0.1 I_S1 ema0.1 I_S2 ema0.1 I_S3 ema0.1 I_S16

6. 14. 22. . . . 126.
ema0.001D_S1 ema0.001D_S2 ema0.001D_S3 ema0.001D_S16

7. 15. 23. . . . 127.
ema0.01D_S1 ema0.01D_S2 ema0.01D_S3 ema0.01D_S16

8. 16. 24. . . . 128.
ema0.1D_S1 ema0.1D_S2 ema0.1D_S3 ema0.1D_S16
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2.3. Data Cleaning and Normalization

Although there are no null data in the data set studied, the possibility of their occur-
rence should also be considered, so we add a null data check and index reconstruction to
the algorithm design to enhance the universality and robustness of the data processing. We
hope that the algorithm studied can carry out online adaptive learning and data analysis
to adapt to real application scenarios. Therefore, it is impossible to obtain the full view
of the data domain and accurate feature correlation in the field of relatively small sample
training sets. Due to this consideration, we use min–max normalization to process the
data set, and the deeper analysis of the reason for this is explained in Section 2.4. All
data items are processed with absolute value as shown in Formula (1), and the processed
data items mainly include emaαD and some of the anomalies that are most likely due to
errors in the data collation process. For the outliers suspected to be abnormal in the data
set, we used two methods. Method 1 was shown in Formula (2) to correct the problem
of decimal point dislocation, and Method 2 set an upper threshold θ to compress outliers
to a moderate range, as shown in Formula (3). The data normalization method adopts
min–max normalization, as shown in Formula (4).

X = |X|, (1)

xi,j =

{
xi,j/10, xi,j/X.meanj ∈ [5, 20]

xi,j/100, xi,j/X.meanj ∈ [50, 200]
, (2)

xi,j = min(xi,j, X.meanj/θ), (3)

xi,j = xi,j/X.maxj, (4)

where X is the sample feature vectors of the data set, xi,j is the entry in the ith row and the
jth column of X, X.meanj is the mean value along the jth column direction, θ is the upper
threshold of the compression outliers and its recommended value is 0.2, and X.maxj is the
max value along the jth column direction. The process of data cleaning and normalization
is shown in Figure 1.
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2.4. Additional Notes

At present, principal component analysis (PCA) or the Pearson product moment
correlation coefficient (PPMCC) is used in most relevant studies to analyze or process
the whole data set. PCA’s main goal is to reduce the dimensionality of a data set with a
lot of interconnected variables while keeping as much variance as feasible [27]. PPMCC
is a measure of the correlation of two variables X and Y measured on the same object
or organism, that is, a measure of the tendency of the variables to increase or decrease
simultaneously [28]. Many scholars use the two algorithms to reduce the dimensionality of
the data set, and the classification effect of the data set processed by these algorithms is
much better than that of the unprocessed case. However, we believe that it is impossible to
know the full range of data in the vast majority of scenarios, and what we have mastered
should be a relatively small number of training set samples. On the other hand, different
sensors, different operating environments, different gases to be examined, and different
frequencies of use cause different degrees of drift. If the processed data set is divided
into the training set and the test set to prove the effect of an algorithm, it means that
the algorithm or model is artificially helped to know the distribution of data in advance,
thereby improving the experimental effect. Although the two methods have a good effect,
they cannot be applied in practical application scenarios, especially when the training set
is small. Therefore, we prefer to conduct experiments without correlation analysis. In
addition, the Z-Score method requires accurate expectation and variance, but both will
change significantly when the sensor drifts. Based on the above consideration, we choose
a simplified min–max normalization as shown in Formula (4) to rescale the data set. In
this min–max normalization method, the lower bound is zero and the upper bound is
the largest value in each dimension of the training set. Even in the test set (or the actual
application environment), if there is a signal larger than the set upper bound, it can be
reduced to a smaller value under the action of Formula (3) to avoid becoming an outlier
and affecting the entire sample set.

3. Inertial Machine Learning Method

The study of Vagrin [15] proved that the machine learning algorithm’s effect continues
to decrease as time goes on. We want to develop algorithms that can take advantage of the
inertia of high accuracy in the short term to continue or extend the validity of the algorithm.
In addition, considering the need for online data processing, this algorithm cannot have
high hardware requirements.

3.1. Online Inertial Learning Framework

In this paper, an online inertial machine learning framework with memory and for-
getting abilities is proposed, which dynamically adjusts training samples and generates
new classifiers for training. Based on the training of sample set at time t, the classifier at
time t is obtained, which classifies the data to be detected at the next time t + 1. After the
classification results are processed and integrated, the sample set at time t + 1 is generated,
and this cycle is followed. The purpose of the forgetting mechanism is to ensure that data
sets do not grow large over time and to reduce the undue influence of long-term historical
data. The memory mechanism of the framework is also designed to keep the data set
balanced as much as possible to ensure that it fits as many base classifiers as possible. The
existing drift compensation models can be incorporated into the framework to further
improve the recognition effect. The operating mechanism and workflow of the framework
are shown in Figure 2.
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In the framework, the queue data structure is chosen as the vehicle to remember
historical data. The number of queues is the same as the number of types k of gases to
be detected. All the data in the k queues form the training set, which is used to train the
classifier. The data in the queue follows a first-in, first-out principle, while the data in the
training set is unordered. In the initial phase, the sample is entered into a corresponding
queue Qi according to its label i. When the number of data items in k queues is greater
than the set coefficient ` for starting training, the model starts training and generates the
classifier based on the sample set at the time. In this phase, after the classifier completes
the data preprocessing at time t, the pseudo-label of the data at time t is obtained, and the
pseudo-label data is regarded as the real sample and entered the corresponding queue, and
so on. When the number of data items in a queue Qi exceeds the rated capacity, the data
items in the queue Qi are removed from the queue so that the data in each queue do not
grow indefinitely over time. The framework is designed to take advantage of the inertia of
short-term classification with high accuracy to extend the effective classification time.

3.2. Description of Each Phase and Algorithm Design

From the perspective of storage queues, there are three main phases as follows:

1. Initially, the storage queues are empty. Data items are queued in time series to build
the initial sample set. In real applications, this process is the data initialization phase,
which can be done in the lab or using calibration data to populate the queue. The end
milestone of this phase is that the number of data items in all queues reaches the start
learning coefficient.

2. In this phase, the starting learning conditions are reached, the classifier starts to be
trained, and no real sample data will be queued. The pseudo-label data enter the
queues sequentially as real samples. If the number of data items in a queue reaches
the upper limit, every time the pseudo-label data enters the queue, the queue of the
corresponding category will perform the dequeue operation accordingly. The end
milestone of this phase is that the number of data items in all queues reaches the
upper limit (i.e., queue capacity).

3. All storage queues in this phase are full. The classifier will continue to work and
continuously enqueue the pseudo-label data predicted by the classifier, and each
enqueue is accompanied by a dequeue operation.
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The coefficient for starting learning is defined as `, and the queue capacity as λ, which
can be expressed as follows:

` = (`1, `2, `3, · · · , `k)
λ = (λ1, λ2, λ3, · · · , λk)

(5)

These two coefficients need to be set manually. The principle of setting the starting
learning coefficient ` is based on the sample set, and its value is usually equal to the amount
of data in the sample set. If the data set is extremely unbalanced, in order to ensure the
stability of the algorithm, it is necessary to discard some redundant data and retain the
latest sample data. The setting of the queue capacity λ not only limits the unlimited growth
of data but also controls the balance of training samples as much as possible. The settings
of the two coefficients should follow:

∀i ∈ [1, k], λi ≥ `i, (6)

Otherwise, it will not be able to enter the online learning and data analysis phase.

3.3. Evaluation Method

The accuracy rate (ACC) is the main algorithm evaluation index of this study, and its
formula is shown as follows:

ACC = (TP + TN)/(TP + FP + FN + TN), (7)

where TP (true positives) means that the actual class is positive and the predicted class
is also positive, FP (false positives) means that the predicted class is positive but actual
class is negative, FN (false negatives) means that the predicted class is negative but actual
class is positive, and TN (true negatives) means that the actual class is negative and the
predicted class is also negative.

3.4. Base Classifier

The classification algorithms or models in this framework are not limited. The support
vector machine (SVM) [29] is a very popular choice in most relevant researches. The
SVM has strict mathematical theory support and strong generalization ability, has high
classification effect in dealing with high-dimensional small sample problems, and has
good effect in short-term drift compensation [1,10,14,15]. In this study, the support vector
machine was used as the base classifier, the radial basis function was used as the kernel
function, the penalty parameter was set to 1, and the one-to-one method was adopted
to achieve multi-classification. Only the support vector machine is used to classify the
data set, and the classification results are sorted and analyzed. Tables 3 and 4 show the
classification effects of different training sets and test sets.

Table 3. The classification accuracy of only SVM (use batch m as the training set and batch n as the
testing set where m = 1, 2, . . . , 9 and n = m + 1, m + 2, . . . , 10).

Train Set
Batch

ACC (%) of Test Set Batch

2 3 4 5 6 7 8 9 10

1 76.21 49.43 33.54 23.85 33.73 33.29 25.51 34.25 41.41
2 90.16 86.95 68.02 42.04 42.56 31.29 59.36 37.47
3 69.56 94.92 72.17 73.45 40.81 61.7 49.66
4 86.29 45.56 39.8 17.68 22.97 14.77
5 56.43 44.45 39.79 43.61 19.27
6 78.24 75.17 36.8 51.77
7 86.05 65.31 62.61
8 61.27 20.02
9 25.05
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Table 4. The classification accuracy of only SVM (use batch 1-m as the training set and batch n as the
testing set where m = 1, 2, . . . , 9 and n = m + 1, m + 2, . . . , 10).

Train Set
Batch

ACC (%) of Test Set Batch

2 3 4 5 6 7 8 9 10

1 76.21 49.43 33.54 23.85 33.73 33.29 25.51 34.25 41.41
1–2 88.27 86.95 87.3 32.52 43.75 29.25 53.4 38.91
1–3 87.57 95.43 69.69 68.44 55.1 74.25 43.08
1–4 96.95 69.6 66.95 52.72 72.34 42.58
1–5 72.39 72.57 54.08 72.97 43.91
1–6 85.8 90.13 67.44 54.3
1–7 90.81 76.38 65.19
1–8 77.02 67.75
1–9 66.77

4. Experiments and Results
4.1. Experimental Datasets and Environment

We designed data sets dataset1 and dataset2 for long-term drift study according to the
following rules.

• dataset1: Use batch 1 as the training set and batch k as the test set, where k = 2, 3, 4, 5,
6, 7, 8, 9, 10.

• dataset2: Use batch 1–2 as the training set and batch k as the test set, where k = 3, 4, 5,
6, 7, 8, 9, 10.

Since there is no toluene gas sample in batch 3–5, it is meaningless to use batch
1–3, batch 1–4 or batch 1–5 as the training set. In addition, the assumption of using this
framework is that the samples are collected in the laboratory or calibrated manually, so
using longer-term data as the training sets is not in line with practical application scenarios.

This study used Anaconda (Python 3.8, individual edition) as the development envi-
ronment. The experimental environment used Intel i5-6200U 2.40 GHz CPU, 8 GB RAM.
This project required third-party libraries including NumPy 1.20.1, Pandas 1.2.4, SciPy 1.6.2,
Scikit-learn 0.24.1, and Matplotlib 3.3.4.

4.2. Experimental Results for Dataset1

Set ` = (90, 98, 83, 30, 70, 74) according to the data distribution of batch1. To keep the
data set balanced, let the values in λ be the same. Define λi = c where i = 1, 2, · · · , 6 and c
is a constant. Set c equal to 100, 200, 300, 400, 500, and 600, respectively, and conduct the
experiment. Experimental results, total time (TT), and average step time (AST) are shown
in Table 5.

Table 5. Experimental results and average time for dataset1.

c
ACC (%) of Test Set Batch TT

(s)
AST
(ms)2 3 4 5 6 7 8 9 10

100 68.09 47.29 38.51 33.50 46.96 19.07 19.39 11.91 37.72 231.85 17.22
200 75.08 76.23 45.96 63.45 69.74 22.53 11.22 0.0 22.86 431.94 32.08
300 87.94 83.35 45.96 64.97 56.91 29.69 39.12 11.70 23.39 622.45 46.23
400 87.94 83.35 80.74 73.10 57.09 46.50 33.00 23.62 17.22 843.44 62.64
500 87.94 83.35 80.75 73.10 70.83 56.88 43.20 45.11 8.31 988.20 73.39
600 87.94 83.42 62.73 73.10 70.83 60.92 43.54 45.74 10.64 1232.71 91.55

4.3. Experimental Results for Dataset2

Set ` = (254, 432, 183, 139, 602, 79) according to the data distribution of batch1–2. Set
c equal to 602, 700, 800, 900, 1000, 1100, and 1200, respectively, and conduct the experiment.
Experimental results and average time are shown in Table 6.
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Table 6. Experimental results and average time for dataset2.

c
ACC (%) of Test Set Batch TT

(s)
AST
(ms)3 4 5 6 7 8 9 10

602 98.80 91.93 96.45 69.87 60.20 37.07 38.09 23.22 1584.59 129.66
700 98.80 90.68 96.45 72.04 65.65 46.26 51.28 26.81 1804.33 147.64
800 98.80 90.68 96.45 72.04 65.57 46.94 50.85 25.94 2040.36 166.96
900 98.80 90.68 95.43 72.04 59.56 42.86 45.74 32.14 2444.38 200.01

1000 98.80 90.68 95.43 72.04 59.75 43.54 46.17 23.86 2809.77 229.91
1100 98.80 90.68 95.43 72.22 67.37 47.96 51.28 30.67 3269.14 267.50

4.4. Experimental Comparison and Analysis

Through the analysis of the above experimental results, the experimental effect of
dataset2 is higher than that of dataset1, indicating that sufficient initial samples significantly
improve the results. The higher the value of c is, the stronger the final classification ability
will be. At the same time, the increase of c will also lead to longer storage queues, more
complex calculation, and ultimately more time consumption. When c reaches about
2–5 times the max(`), the growth efficiency of accuracy begins to slow down. Therefore,
we can try to set c to be equal to max(`) ∗ b where b ∈ [2, 5]. Currently, due to the lack
of more research data, it is impossible to conduct in-depth research on the value of λ.
In practical applications, the value of λ should also be determined based on the data
processing capacity and real-time requirements of sensors. In dataset1, the relatively good
case is c = 500, while in dataset2, the relatively good case is c = 1100. The experimental
comparison between ours and only SVM is shown in Tables 7 and 8, and Figure 3. The
comparison of the computing times is shown in Figure 4.

Table 7. Experimental comparison for dataset1.

ACC (%) of Test Set Batch

2 3 4 5 6 7 8 9 10

Only SVM 76.21 49.43 33.54 23.85 33.73 33.29 25.51 34.25 41.41
Ours (c = 500) 87.94 83.35 80.75 73.1 70.83 56.88 43.2 45.11 8.31

improvement value 11.73 33.92 47.21 49.25 37.1 23.59 17.69 10.86 −33.1
improvement ratio (%) 15.39 68.62 140.76 206.5 109.99 70.86 69.35 31.71 −79.93

Table 8. Experimental comparison for dataset2.

c
ACC (%) of Test Set Batch

3 4 5 6 7 8 9 10

Only SVM 88.27 86.95 87.3 32.52 43.75 29.25 53.4 38.91
Ours (c = 1100) 98.8 90.68 95.43 72.22 67.37 47.96 51.28 30.67

improvement value 10.53 3.73 8.13 39.7 23.62 18.71 −2.12 −8.24
improvement ratio (%) 11.93 4.29 9.31 122.08 53.99 63.97 −3.97 −21.18

Through the analysis of the above experimental results, it is easy to see that the effec-
tiveness of the framework on the base classifier is improved. The decline in classification
accuracy is more gradual in both dataset1 and dataset2. Starting with batch 7, their accuracy
decreased significantly. Dataset2 also consistently outperforms dataset1 due to the larger
training set. For both dataset1 and dataset2, the accuracy and effective time of the online
inertial machine learning framework are significantly improved compared to using base
classifier only. Using only support vector machines, the performance degrades significantly
after about 1–2 batches, while using our framework can extend the effective time by an
extra 1–4 batches (about 4–10 months). From the perspective of time consumption, the
single step time (including the updating of sample set and classification model) is within
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300 ms, which has no significant impact on real-time requirements and is suitable for
practical application scenarios.
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5. Conclusions

In this paper, we design a data preprocessing method and an inertial machine learning
framework that have no special hardware requirements and aim to achieve online long-
term drift compensation without increasing manufacturing costs. The data preprocessing
method revises a variety of common errors and adopts the min–max normalization, instead
of using PCA, PPMCC, and Z-Score methods like most current studies, which can better
realize practical engineering application. This method obviously improves the training
samples and lays a good foundation for subsequent classification experiments. The inertial
machine learning framework takes advantage of the recent inertia of high classification
accuracy to extend the reliability of sensors. By analyzing the experimental results on the
gas sensor array drift dataset, the classification accuracy is greatly improved, the effective
time of the sensor array is extended by 4–10 months, and the time of single response and
model adjustment is less than 300 ms, which fits well with realistic application scenarios
for low-cost online data processing.
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The source code is available at https://github.com/dongxiaorui1988/OIML_SALDC
(accessed on 10 December 2021). In the future, more models will be coded and used as the
base classifier to further study the framework proposed in this paper.
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