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Abstract: We established an innovative approach that included direct, viability, and nested PCR
for rapid and reliable identification of the fecal indicator organism Escherichia coli (E. coli). Direct
PCR enabled successful amplification of the target uidA gene, omitting a prior DNA isolation
or purification step. Furthermore, we applied viability PCR (v-PCR) to ensure the detection of
only relevant viable bacterial cells. The principle involves the binding of propidium monoazide
(PMA), a selective nucleic acid intercalating dye, to accessible DNA of heat killed bacteria cells and,
consequently, allows viable and heat killed E. coli cells to be discriminated. To ensure high sensitivity,
direct v-PCR was followed by a nested PCR step. The resulting amplicons were analyzed by a rapid
30 min microarray-based DNA hybridization assay for species-specific DNA detection of E. coli. A
positive signal was indicated by enzymatically generated silver nanoparticle deposits, which served
as robust endpoint signals allowing an immediate visual readout. The presented novel protocol
allows the detection of 1 × 101 viable E. coli cells per PCR run.

Keywords: E. coli; water monitoring; direct viability nested PCR; microarray-based DNA hybridization

1. Introduction

Globally, at least two billion people use a drinking water source contaminated with
feces. Microbiological contamination can cause gastrointestinal disorders, as well as symp-
toms of poisoning [1]. During the last decade, the number of human diseases caused by
pathogens in drinking water has increased. Contaminated water can transmit diseases
such as cholera, dysentery, typhoid, and polio [2–4]. In addition to common bacteria, such
as Salmonella and Shigella, other pathogens, such as Campylobacter, enterohemorrhagic E.
coli (EHEC) or Norovirus, have emerged. In many cases, these microorganisms are spread
through human or animal feces into the aquatic environment. For that reason, microbio-
logical monitoring of the quality of drinking water is crucial to ensure that these bacteria
and viruses exist in concentrations that are harmless to humans. These pathogens usually
appear with increased quantities of E. coli or other innocuous bacteria. Therefore, it is
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necessary to routinely monitor the appearance of E. coli or other enterococci in drinking
water samples. E. coli serves as a ‘fecal indicator organism’ for water monitoring and is
defined as the best biological drinking water indicator for public health protection [5].
According to the drinking water ordinance in Germany, not a single E. coli cell is allowed
in 100 mL of water. Only when the analysis reveals zero colony-forming units is the
water declared drinkable [https://www.dvgw.de] (accessed on 25 October 2021). Thus,
suitable detection methods for specific identification and sensitive quantification of these
indicator organisms are mandatory, with the additional challenge of precisely detecting
viable cells. Common techniques for routine diagnosis of E. coli in drinking water rely
upon culture-based approaches. According to the drinking water ordinance, three different
detection procedures are approved and ISO (International Organization for Standardiza-
tion) certified [DIN EN ISO 9308-1, DIN EN ISO 9308-2, DIN EN ISO 9308-3]. Primarily,
traditional cultivation for quantifying bacteria in drinking water is applied (membrane
filtration combined with subculture on different media). Nevertheless, this method has
several disadvantages. First and foremost, it takes 18–24 h for the sample-to-answer pro-
cess [3]. Furthermore, nutrient-rich traditional media support the growth of non-targets
that can mimic or suppress target organisms, yielding false negative results. Second, wa-
ter quality is evaluated by the “most probable number” method which is based on the
growth of target organisms in a liquid medium and the subsequent calculation of the
“most probable number” (MPN) of organisms with reference to MPN tables. This approach
for quantifying is used in the Bluewater Biosciences ColiPlate™ kit [6]. In addition, the US
Environmental Protection Agency (EPA)-approved Colilert Quanti-Tray is used to monitor
the presence or absence of coliforms and E. coli, as well as to quantify their levels within 18 to 21 h
[http://www.idexx.de/water/water-testing-solutions.html] (accessed on 25 October 2021) [6].

To circumvent these long verification procedures, molecular-based methods, such as
polymerase chain reaction (PCR), could be applied to obtain results within a few hours.
The classical PCR approach does not differentiate between viable and heat killed cells
since DNA persists after cell death. However, only reproducible or metabolically active
bacteria produce toxins, which pose a health hazard to humans. Therefore, viability PCR
was introduced, which inhibits amplification of DNA originating from dead cells [7]. This
approach represents one of the most successful techniques to detect only viable bacterial
cells and has been effectively established and evaluated for live-dead discrimination in
multiple microorganisms (bacteria [8–16], protozoa [17–19], viruses [20–22], fungi [23]). The
principle is based upon supplementation of PMA, a membrane-impermeable, photoreactive
dye, which is unable to permeate intact cell membranes of viable bacteria [24]. PMA
can only penetrate damaged membranes of dead bacteria and covalently modifies the
DNA. This cross-linkage is induced by photoactivation. As a consequence, PMA-modified
template DNA cannot be amplified by PCR [7,13].

To realize a simple and rapid sample preparation, direct PCR was implemented, which
has been previously described [25]. In this approach, bacterial cell lysate is directly added
to the PCR mixture after simple heat lysis. DNA sequences coding for the lacZ gene (β-
galactosidase), the uidA gene (β-D-glucuronidase), and the ycjM gene (glucosyltransferase)
have been used to detect total coliforms and E. coli [26]. In the approach presented herein,
the uidA gene was chosen as a potential target gene for PCR amplification.

Our work focused on establishing a molecular biology-based platform technology
for sensitive and reliable detection of living E. coli cells. By combining direct, viability
and nested PCR, rapid and precise analysis of viable bacteria is possible, omitting time-
consuming sample preparation. Subsequent precise specification was realized using on-
chip DNA hybridization, enabling easy visual signal readout. Innovative spoon-shaped
polypropylene substrates were designed to avoid evaporation of the hybridization solution,
enable a targeted and permanent incubation of the PCR product with the immobilized
capture probes, and facilitate an easy-to-manage, rapid washing mode. We highlight the
optimization of the complete process chain for the reliable and rapid detection of viable
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E. coli cells in drinking water, beginning from DNA extraction to on-chip identification of
the bacteria by naked eye (Figure 1).
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Figure 1. Scheme, illustrating individual steps of the v-PCR based detection approach.

2. Materials and Methods
2.1. Culturing and Harvesting Defined Cell Numbers of E. coli Bacteria

The E. coli strain (DSM-423, Leibniz Institute DSMZ–German Collection of Microor-
ganisms and Cell Culture, Braunschweig, Germany) was grown on Lysogeny Broth (LB)
medium (Carl Roth, Karlsruhe, Germany) at 37 ◦C shaking at 160 rpm. Growth was
monitored by measuring the optical density at 600 nm (OD600) using a biophotometer
(Eppendorf AG, Hamburg, Germany). Bacterial cells were harvested when they reached
the exponential growth phase. Cell numbers (1 × 106–1 × 100 CFU/mL) were calculated
assuming that OD600 = 1 corresponds to 8 × 108 CFU/mL [27]. The cell sediment was
washed twice with 1× phosphate buffered saline (1× PBS) and treated with PMA. To gen-
erate dead bacteria, the cell sediment was incubated at 70 ◦C for 10 min and immediately
cooled down before treatment with PMA.

2.2. PMA Treatment for Viability PCR

In the present study, combination of direct, viability and nested PCR was performed.
The viability PCR approach was applied to discriminate between viable and heat killed
E. coli cells. PMA (Biotrend chemicals GmbH, Köln, Germany) was dissolved in nuclease-
free water to create a stock solution of 10 mM and stored at −20 ◦C until usage. Viable
and heat killed bacterial cells were treated with 10 µM PMA followed by thorough mixing.
Afterward, tubes were first kept in the dark for 10 min (occasionally inverting). Then, the
PMA reagent was light activated for 10 min using an in-house constructed photoactivator
(Figure 2). Cells were centrifuged at 10,000× g for 5 min, washed twice in 1× PBS, and
finally resuspended in 1× PBS with the pellets stored at −20 ◦C until DNA extraction.
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2.3. Thermal Cell Lysis for Direct PCR

To circumvent laborious genomic DNA extraction and purification, a direct PCR
approach was employed. PMA treated bacterial cell sediments were mixed with 10 µL
nuclease-free water and incubated for 5 min at 95 ◦C for thermal cell lysis. Emerging lysates
containing the E. coli gDNA were cleared by centrifugation at 12,000× g for 10 min, and
PCR was subsequently performed [28].

2.4. gDNA Extraction

The Qiagen DNeasy Blood and Tissue Kit was used as a positive control for bacterial
DNA extraction. Genomic DNA was extracted using the protocol for pretreatment of
gram-positive and gram-negative bacteria.

2.5. Direct, Viability, and Nested PCR Amplification

For nested PCR, two primer sets were constructed to target different regions of the
uidA gene (Table 1). One primer pair amplified a large fragment of E. coli in the first
round (uidA_long; 1.37 kb) and a short DNA fragment (uidA_short; 96 bp), which is
located within the first product, in the second round. Primers and capture probes for the
uidA amplification were designed using the “primer3”-program (https://primer3.ut.ee/,
accessed on 25 October 2021). All primers and capture probes were purchased from
Eurofins MWG Operon (Ebersberg, Germany).

The reaction mix for direct v-PCR contained 2 mM MgCl2, 1 × KCl buffer, 0.25 mM
dNTPs, 0.25 µM of each primer (uidA_long, Table 1), 2.5 units Taq polymerase (innuTaq
DNA Polymerase Kit, Analytik Jena AG, Germany) and 10 µL heat-lysed E. coli cells in a
final volume of 20 µL. For nested PCR, a second round of amplification was conducted
utilizing the same conditions but with 0.25 µM of each primer (uidA_short, Table 1) and
1 µL of 1:100 diluted PCR product from the first round of PCR. All PCR reactions were
performed in a FlexCycler2 (Analytik Jena AG, Jena, Germany). PCR reactions had the
following temperature-time profile: initial denaturation at 94 ◦C for 180 s, 35 cycles (first
round)/20 cycles (second round) of denaturation at 94 ◦C for 30 s, annealing at 60 ◦C
(first round)/58 ◦C (second round) for 30 s, elongation at 72 ◦C for 90 s (first round) or
30 s (second round) and a final elongation at 72 ◦C for 10 min (first round) or 5 min
(second round).

The resulting PCR products were either verified on a 1% (w/v) agarose gel (Carl Roth,
Karlsruhe, Germany) for long amplicons (1.37 kb) or on a 2% (w/v) agarose gel for short
amplicons (96 bp). DNA was stained with 1:50,000 diluted GelRed (VWR International
GmbH, Darmstadt, Germany). Alongside the samples, the molecular weight marker
GeneRuler (1 kb or 100 bp) DNA Ladder (Fisher Scientific, Germany) was run on the
agarose gels.

https://primer3.ut.ee/
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Table 1. Primers and capture probes.

Species Primers and
Probes Sequence 5′ → 3′ Tm (◦C) Modification

Amplicon
Length

(bp)

Target
Gene

E. coli

uidA_long_F ATT TGA AGC CGA TGT CAC GC 60.01 1.37 kbp

uidA

uidA_long_R TCC CTT TCT TGT TAC CGC CA 59.71

uidA_mid_F CCG ACG AAA ACG GCA AGA
AA 60.15 5′-biotin 556 bp

uidA_mid_R TCA GCG TAA GGG TAA TGC GA 59.65 5′-phosphate

uidA_short_F AGT CAA CGG GGA AAC TCA
GCA A 56.43 5′-biotin 96 bp

uidA_short_R GCA ATA CTC CAC ATC ACC
ACG CTT 57.79 5′-phosphate

process control AGA ATC AAG GAG CAG ATG
CTG AAA AAA 5′-NH2, 3′-biotin

uidA_DM1 GTC CAC CCA GGT GTT CGG C 5′-NH2-C12

uidA_DM2 TTT TTT TTT TTT TTT GTC CAC
CCA GGT GTT CGG C 5′-NH2-C12

uidA_DS1 TGG TTT TTG TCA CGC GCT ATC
AGC 5′-NH2-C12

uidA_DS2 TTT TTT TTT TTT TTT TGG TTT
TTG TCA CGC GCT ATC AGC 5′-NH2-C12

Eco4 TTT TTT TTT TTT TTT
GAATCACAAAGTGGTAAGCG 5′-NH2-C12

Legionella 1
forward GAGGGTTGATAGGTTAAG 52 5′-biotin

167 bp legUreverse CCAGGAATTTCACAGATA 49 5′-phosphate
mdx74 CTTAATCAACCACCTACGCAC 68 5′-NH2-C12-Poly-T

Legionella 2
forward CCGATGCCACATCATTAGC 57 5′-biotin

150 bp mipNreverse CCAATTGAGCGCCACTCATAG 61 5′-phosphate
mdx84 TGCCTTTAGCCATTGCTTCCG 69 5′-NH2-C12-Poly-T

Clostridium
forward ATGATTGGGATTATGCAGCAAAGGT 63 5′-biotin

112 bp cpareverse CCAACTGATGGATCATTACCCTCTG 66 5′-phosphate
mdx40 TCTATAAATATATCCTGCTGTTCCTT 67 5′-NH2-C12-Poly-T

Yersinia
forward AACAGTTTCAGGGCAGTTCAGTG 63 5′-biotin

128 bp ystreverse AACATACATCGCAGCAATCCCAAT 62 5′-phosphate
mdx43 CGACACCAATAACCGCTGAG 68 5′-NH2-C12-Poly-T

2.6. Generation of Single-Stranded DNA

To generate single-stranded DNA (ssDNA) amplicons were heat-incubated for 5 min
at 95 ◦C and immediately cooled on ice for 2 min.

2.7. Microarray-Based DNA Hybridization and Signal Detection

Specificity of the short DNA amplicons was evaluated by microarray-based DNA
hybridization experiments [29].

White polypropylene (PP) sheets (Modulor GmbH, Berlin, Germany) were used to
generate solid chip substrates. The flexible material was stamped in a spoon-like shape
with 1.3 cm diameter of the cavity. Thereafter, PP spoons were successively cleaned in an
ultrasonic bath with acetone, ethanol and water for 10 min each.

The uidA gene region was chosen for design of species-specific capture probes. The
capture probes (Eurofins MWG Operon, Ebersberg, Germany) were dissolved in 1 ×Micro
Spotting Solution (ArrayIt Corporation, Synnyvale, CA, USA) to a final concentration of
20 µM and spotted (Nanoplotter 2.1, GeSim, Grosserkmannsdorf, Germany) in a microarray
format (Figure S2) in the PP spoon cavity. Afterward UV light exposure at 254 nm for 10 min
ensured optimal binding of the capture probe nucleic acids to the surface [30]. PP spoons
were washed with 0.1 × saline-sodium citrate (SSC)/0.5% (w/v) sodium dodecyl sulphate
(SDS) to remove unbound DNA molecules and dried. A biotin-labelled non-complementary
probe was immobilized as a process control to verify binding of the streptavidin-labelled
enzyme and subsequent silver deposition.

Specific biomolecule interaction on the PP spoon microarray was achieved using a com-
bined protocol that encompassed DNA hybridization and enzyme binding (streptavidin
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horseradish peroxidase complex; Sigma Aldrich Chemie GmbH, Taufkirchen, Germany)
in one step. For this purpose, 80 µL reagent solution (20 µL single-stranded PCR (ssPCR)
product and 1 µL enzyme in 5 × SSC/0.1% (w/v) SDS) were placed in the PP spoon cavity
and subsequently covered with PCR foil (VWR International GmbH, Darmstadt, Germany)
to avoid evaporation. The reagent solution was incubated for 30 min at 50 ◦C (INCUCELL,
MMM Medcentre Einrichtungen GmbH, München, Germany).

Afterward PP spoon cavities were washed five times with solution 1 (2× SSC/0.1%
(w/v) SDS), solution 2 (2× SSC), solution 3 (0.2× SSC) and nuclease-free water. Finally,
enzymatic silver deposition on the microarray was performed by applying the EnzMet™
HRP detection kit according to the manufacturer’s recommendations (Nanoprobes Inc.,
Yaphank, NY, USA; component A–C) [29,31–33]. In addition, the silver deposits were
quantified by their grey values. Respective spots were scanned (ProScan 7200, reflecta
GmbH, Rottenburg, Germany) and analysed using the software ImageJ (National Institutes
of Health, Bethesda, MD, USA). The mean grey value of the biotin-positive control was
set at 100%, and the grey value signals of the capture probes are presented as grey value
percentages of the positive control.

3. Results
3.1. Viability PCR Using an in-House Constructed PMA-Photoactivation Device

First, for photoactivation of PMA and consequent covalent binding of the dye to
accessible DNA of nonviable bacteria, a photoactivator is mandatory. Therefore, we
constructed an LED device (Figure 2). Compared to commercial systems, the in-house
designed and custom-build photoactivator offers several advantages. Creation of the
mentioned device was inexpensive and allowed for the illumination of samples in 1.5 mL
microreaction tubes. The device uses LED lights with 470 nm emission for an efficient
activation of PMA or other similar dyes. The device was set up with two different LED
types. The first layout contained 16 Standard 5 mm oval LEDs (each 37.5 mW) and the
second nine Kingbright SuperFlux LEDs (each 86 mW). To prevent heating of the sample, a
40 mm cooling fan (3 W) was installed. The price for all components was less than 100 €.

3.2. Impact of Amplicon Length on PMA Pretreatment of Heat Killed E. coli Cells

Although PMA pretreatment selects DNA templates from viable bacteria, one ma-
jor drawback of this technique remains: the exclusion of heat killed cell signals can be
incomplete, leading to false-positive results. Consequent overestimation of the viable cell
population can occur by choosing a too short amplicon length and is problematic for reliable
pathogen detection. Therefore, in preliminary experiments, the impacts of fragment length
and the concentration of PMA were investigated to reliably amplify DNA from viable E.
coli and exclude heat killed bacteria (data not shown). Optimal PMA concentrations were
determined by testing a range of different PMA concentrations (10–100 µM) on 1 × 108

viable and heat killed bacteria by amplifying a 1.5 kb fragment of the 16S ribosomal DNA
(rDNA). The usage of 10 µM PMA resulted in effective suppression of the heat killed cell
signal without affecting viable cells.

To determine the influence of amplicon size on suppression of the heat killed cell
signal, uidA DNA fragments from viable and heat killed bacteria were amplified using
three different primer pairs (uidA short fragment 96 bp, uidA medium-length fragment
556 bp and uidA long fragment 1370 bp). Resulting DNA fragments were analysed on an
analytical agarose gel (Figure 3).
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Figure 3. Impact of different fragment lengths on signal reduction of heat killed cells, displayed on an analytical agarose gel.
Viable and heat killed E. coli cells were treated with or without (w/o) PMA. Direct PCR or classical PCR was performed
using isolated gDNA as a template with three different primer pairs for three different target regions of the uidA gene (long
1370 bp, medium 556 bp, short 96 bp). Two independent PMA-treatments and PCR amplifications were performed for each
condition. The No Template Control (NTC) includes all PCR reagents except for DNA.

Treatment with the photoactive dye PMA followed by amplification of short (96 bp)
and medium-length DNA fragments (556 bp) resulted in incomplete signal inhibition for
heat killed bacteria. As seen in Figure 3, there are distinct bands for the short fragments,
and weak bands remain for the medium-length fragments. Only PCR amplification of the
long fragment (1.37 kb) entirely suppressed the heat killed cell signal after PMA treatment,
which is vital for effective detection of viable bacterial cells. Thus, optimal amplicon size
resulted in the suppression of the heat killed cell signal without affecting viable cells.

3.3. Evaluation of v-PCR

Since the efficiency of v-PCR was limited to longer DNA fragments, a nested PCR
approach was necessary to create short PCR products that allow for subsequent detection
by microarray-based DNA hybridization. In the first round of PCR, a 1.37 kb fragment of
the uidA gene was amplified by direct v-PCR. In the subsequent second round of PCR, a
96 bp fragment of the target uidA gene was generated. First, optimal conditions for the
nested PCR were elucidated (Supplement Figure S1). It was determined that 1 µL of a
1:100 dilution of the first round PCR product was optimal as a template nucleic acid in the
following second round PCR approach.

To verify the limit of detection (LOD) for nested PCR, different amounts of E. coli cells
were prepared, treated with PMA, and uidA fragments of DNA from viable and heat killed
bacteria were subsequently amplified by nested PCR. As depicted in Figure 4, amplification
was successful for up to 10 viable bacteria per PCR run (20 µL).
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To evaluate the newly designed primers and capture probes for the E. coli uidA gene,
genomic DNA of other relevant pathogens in drinking water was used for nested PCR
amplification (Figure 5). Only genomic DNA from E. coli served as a template for the
amplification of uidA fragments. No amplicons were generated using DNA extracted from
Enterococcus faecalis (E. faecalis), Pseudomonas aeruginosa (P. aeruginosa), Clostridium
perfrigens (C. perfrigens), Yersinia enterocolitica (Y. enterocolitica), Legionella pneumophila
(L. pneumophila) or Bacillus subtilis (B. subtilis). The last mentioned is not a relevant water
pathogen but served as negative control.
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Figure 5. Primer test for amplification of the E. coli uidA gene by nested PCR displayed on an analytical agarose gel. The
results of the second round are shown for E. coli, E. faecalis, P. aeruginosa, C. perfrigens, Y. enterocolitica, L. pneumophila, and
B. subtilis.

The next step in the analytical chain is verification of amplified PCR products by
microarray-based DNA hybridization on novel solid support substrates. The mentioned
substrates have a spoon-shaped format for easy handling performance (Figure 6).
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3.4. Microarray-Based DNA Detection on a Novel Designed Spoon-Shaped Substrate

An innovative DNA hybridization assay was created that enabled reliable and specific
identification of E. coli separate from other relevant water pathogens due to immobilized
capture probes based on the uidA gene. First, specific capture probes for the indicator
organism E. coli were designed that hybridize with sequence segments within the uidA
gene (Table 1). These capture probes were spotted in a microarray format (five replicate
pattern for each capture probe) on novel easy-to-handle PP spoons.

Prior to DNA hybridization, conventional heat denaturation of dsPCR product was
conducted (5 min) to generate single-stranded PCR products. The presence of ssDNA is
a crucial and limiting factor for efficient DNA hybridization [29]. The well-established
hybridization protocol was improved to significantly shorten the assay time. To this end,
DNA hybridization and enzyme binding were combined. Therefore, different buffers and
incubation intervals had to be tested and validated (data not shown). We successfully estab-
lished a protocol that reduces the hands-on-time to only 30 min. Moreover, identification of
E. coli was realizable using a simple visual readout of black silver spots on the microarray.
In accordance with PCR product levels elucidated by analytical agarose gels, microarray
detection allowed for the quantification of 10 viable E. coli cells per PCR run (Figure 7).

Regarding chip-based analysis of many relevant water pathogens, additional capture
probes of appropriate bacteria were investigated. Moldiax GmbH provided those and the
required PCR primers (Table 1). Figure 8 illustrates the reliable detection of three further
relevant indicators in drinking water, namely Clostridium, Legionella, and Yersinia. In
addition to the particular detection of a single species, we also mixed PCR fragments of
various pathogens and successfully identified them on the microarray.
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4. Discussion

Within this study, a model system comprising the complete process for the reliable
and rapid detection of viable E. coli cells is highlighted, beginning from DNA extraction to
on-chip identification of the bacteria by naked eye. The optimized protocol enabled the
reduction of the total assay time to approximately five hours.

The focus was on the reliable detection of viable E. coli cells by discriminating between
living and heat killed bacteria. Due to their higher potential health risk, viable bacterial
cells are of great interest for water monitoring. Therefore, v-PCR was performed, which
allows for thermal amplification of genomic DNA fragments only from viable bacterial cells
possessing an intact cell membrane. PMA serves as a photoreactive and cell membrane-
impermeable dye, which selectively and covalently binds to accessible double-stranded
DNA (dsDNA) released by heat killed bacterial cells with compromised membranes. As a
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consequence of this PMA pretreatment step, the PMA-modified DNA cannot be amplified
by PCR. Thus, only genomic DNA from viable cells serves as a template for thermal
amplification [7,24,34]. Nonviable/dead bacteria were generated by heat exposure at 70 ◦C
for 10 min. Other inactivation conditions were not considered at this stage of investigation.

For the illumination of samples, an innovative and cost-minimized LED photolysis
device was developed in-house (Figure 2). The device uses LED lights with 470 nm
emission for efficient activation of PMA. The price for all components was less than 100€.

To avoid a time-consuming gDNA extraction, isolation and purification protocol,
direct PCR was performed. For this purpose, bacterial cells were lysed by heat for 5 min
and directly applied in the amplification reaction. Direct PCR is increasingly utilized for
clinical, forensic, agricultural and genetic applications since it saves time and considerably
reduces costs by lowering the number of necessary chemicals [35].

Some studies have elucidated that treatment of heat killed bacterial cells with PMA
does not completely suppress the amplification signal [12,36–38]. For that reason, the
effect of the fragment length on PMA treatment was evaluated to target only viable E. coli
cells in drinking water samples to suppress interference from heat killed bacteria. The
results confirmed that efficient PMA treatment followed by DNA amplification of short
or medium-length uidA fragments did not entirely suppress the signal from heat killed
cells (Figure 3). Only long amplicons led to complete signal suppression of heat killed
E. coli cells. The results indicate that fragment length is a crucial factor in v-PCR design.
For efficient detection of only relevant viable cells, it is necessary to amplify a long PCR
fragment to exclude dead bacteria. These findings for E. coli are in accordance with
previous studies in different organisms [15,36,39,40]. Since the operation of v-PCR was
limited to long DNA fragments, nested PCR was necessary to generate short amplicons for
subsequent specificity testing. Compared to standard PCR methods, nested PCR enhances
the sensitivity of amplification by several orders of magnitude due to exploitation of
the product from the first amplification round as a template [41]. In addition, nested
PCR was favorable in the current study for preparing short amplicons for subsequent
on-chip hybridization experiments. Using this approach, process time for hybridization
was considerably reduced. By applying nested PCR, amplification was successful for up to
10 viable bacterial cells per PCR run (Figure 4).

In addition to E. coli, several other relevant pathogens in cold drinking water, E. faecalis,
P. aeruginosa, C. perfrigens, and Y. enterocolitica, as well as L. pneumophila in warm water,
have to be considered. Thus, the nested PCR primers for E. coli genomic DNA needed to be
verified. In the nested PCR approach with template DNA in other than E. coli, no amplicon
was generated (Figure 5). Therefore, suitability of the nested PCR primers for E. coli as a
water contaminant was demonstrated.

Often underestimated but still a major requirement for the hybridization with com-
plementary capture probes, is the generation of single-stranded DNA [29,42]. After PCR
amplification, the PCR product is typically double-stranded. To realize subsequent suc-
cessful DNA hybridization, it is crucial to generate ssDNA [29,42]. In the present study,
heat denaturation of the short-nested PCR product (96 bp) was adequate for efficient hy-
bridization between target and capture DNA molecules. No elaborate post-amplification
treatment, such as lambda exonuclease incubation or magnetic bead-based separation, was
necessary to generate single-stranded DNA. In addition, heat denaturation favored the
on-site operation purpose and additionally reduced the risk for contamination.

To further verify the functionality and sequence-specificity of the generated amplicons,
a rapid and easy-to-handle on-chip hybridization assay was performed. First, specific
capture probes for the indicator organism E. coli were designed that hybridized within the
uidA gene. This gene, encoding the intracellular enzyme β-D-glucuronidase, was chosen
as target gene for PCR amplification since it is present in all E. coli and Shigella species but
not in other coliform bacteria [43–46]. Therefore, it enables a selective detection of E. coli
in water.
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White polypropylene (PP) was used as a planar low-cost chip substrate. The major
advantage of PP is that no prior chemical surface modification or plasma activation is
necessary, and capture probes can be directly immobilized on the chip surface after clean-
ing [47,48]. Use of PP ensures consistent quality of the microarray surface without other
environmental influences. Furthermore, the white color simplifies visual detection of the
black silver spots in our experiments [47].

To avoid time-consuming and laborious washing procedures, PP chips were shaped
as spoons (‘cavity with a stick’—Figure 6). This innovative design was selected to avoid
evaporation of the hybridization solution from the microarray area due to covering the
spoon cavity harboring the spotted microarray with PCR foil. The cavities enabled a
targeted and permanent incubation of the PCR product with the immobilized capture
probes. Moreover, the spoon shape enabled an easy-to-manage, rapid washing mode.
Instead of laborious error-prone handling steps, the spoons can be easily dipped into the
washing solutions, one after another. The format allows a simple switch between dipping
in buffers and incubation of the limited DNA hybridization solution for highly convenient
assay performance.

To further minimize the detection time, a combined protocol, including both hybridiza-
tion and enzyme immobilization, was examined [47]. Figures 7 and 8 illustrate the limit of
detection and specificity obtained through the on-chip hybridization experiments. Up to
10 viable E. coli cells per PCR run (volume = 20 µL) were detectable.

For each sample, results of the array-based hybridization were specific and no false
positive signals were obtained at the positions of the non-complementary probes. These
experiments indicate the rather easy adaption of our assay to additional bacteria species.
So, the main advantage of the microarray-based detection relies in the parallel testing of
broader bacterial panels, which will be an important part of ongoing investigations. Further
species of interest are for example in the group of legionella, salmonella or Vancomycin-
resistant enterococci.

Due to the increasing demand for rapid, culture-independent molecular detection
methods, a plethora of multiplex PCR detection systems for E. coli and total coliform
bacteria have been developed during the last decade [49,50]. Recently, Krapft et al. revealed
a clear correlation between viable cell counts and real-time quantitative PCR (qPCR)
data [51]. Nevertheless, only intercalating dyes allow differentiation between viable and
dead bacteria cells. Therefore, coupling of PMA with quantitative amplification methods,
such as qPCR or quantitative loop-mediated isothermal amplification (qLAMP), was
recently highlighted [52–54]. Salam et al. combined PMA with quantitative PCR (PMA-
qPCR assay) for the detection and quantification of viable E. faecalis [55]. Duarte-Guevare
et al. presented a microfluidic device for viable qPCR and qLAMP, with a limit of detection
of 1.1 × 103 colony forming unit (CFU)/mL for E. coli [53]. The approach presented herein
allowed the detection of 10 viable E. coli cells per PCR run.

5. Conclusions

We report on the development of a model system for the sensitive, specific and
reliable detection of living E. coli cells. By combining a direct, viability and nested PCR,
a rapid, precise analysis of viable bacteria is realizable omitting time-consuming sample
preparation steps. The subsequent specification of the targets was realized by on-chip
DNA hybridization on innovative spoon-shaped substrates, enabling an easy visual signal
readout. Due to a growing interest in user friendly and robust agriculture diagnostic tools
for rapid and reliable identification of viable cells, we developed a solid assay design for
the indicator organism E. coli. This detection system displays a robust foundation and can
easily be adapted to additional targets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/chemosensors9120357/s1, Figure S1: Analytical agarose gel showing the investigation of different
parameters for optimizing nested PCR conditions; Figure S2: Spot layout for the capture probes.

https://www.mdpi.com/article/10.3390/chemosensors9120357/s1
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