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Abstract: During the past two decades, one–dimensional (1D) metal–oxide nanowire (NW)-based
molecular sensors have been witnessed as promising candidates to electrically detect volatile organic
compounds (VOCs) due to their high surface to volume ratio, single crystallinity, and well-defined
crystal orientations. Furthermore, these unique physical/chemical features allow the integrated
sensor electronics to work with a long-term stability, ultra-low power consumption, and miniature
device size, which promote the fast development of “trillion sensor electronics” for Internet of
things (IoT) applications. This review gives a comprehensive overview of the recent studies and
achievements in 1D metal–oxide nanowire synthesis, sensor device fabrication, sensing material
functionalization, and sensing mechanisms. In addition, some critical issues that impede the practical
application of the 1D metal–oxide nanowire-based sensor electronics, including selectivity, long-term
stability, and low power consumption, will be highlighted. Finally, we give a prospective account of
the remaining issues toward the laboratory-to-market transformation of the 1D nanostructure-based
sensor electronics.

Keywords: nanowire; oxide; gas sensor; device; 1D nanostructure; sensing mechanism

1. Introduction

For the upcoming “trillion sensor electronics” era, molecular sensor and electronic
recognition devices, which collect the enormous chemical information as big data from
various volatile organic molecules (VOCs), are gaining increasing interests in health
care [1–3], environment [1,4,5], security [6–9] and agriculture areas [3,4,10,11]. Among
various molecular sensors, chemiresistive sensors integrated with metal–oxide semi-
conductor (MOS) nanostructures are of particular interest due to their high sensitivity
and fast response [12–16]. Especially with the advancement of nanomaterial fabrication
technology, a large number of functional MOS nanostructures, such as nanodots [17,18],
nanowires [19–22], nanosheets [23–25], and hierarchical nanostructures [26–28], are syn-
thesized as building blocks for the fabrication of sensor electronics.

Among these nanostructured forms, 1D MOS nanowires offer an ideal platform
for nanoscale sensor integration due to their high surface to volume ratio, comparable
sized Debye length, high crystallinity, excellent surface chemical reaction, and low power
consumption [29–31]. Ever since the first report of using the 1D metal–oxide nanostructure
as the gas sensor by Comini, great progress has been achieved in the past two decades [32].
To date, hundreds of papers have been published on molecular sensors integration based
on 1D metal–oxide nanostructures (SnO2 [29], In2O3 [33], Fe2O3 [34], V2O5 [35], CeO2 [36],
ZnO [37], WO3 [38], NiO [39], CuO [40], NaNbO3 [41], Zn2SnO4 [42,43], CdIn2O4 [44], etc.),
and the numbers of publications related to nanowires and metal–oxide nanowire sensors
can be seen in Figure 1. Meanwhile, to fulfill multiple demands of molecule detection
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and monitoring, nanowire-based sensor devices with different structures, such as flat [45],
suspended [46], bridging [47], and vertical structure [48], have also been addressed. Despite
much effort being devoted to advancing the metal–oxide nanowire-based molecular sensor
electronics, molecular sensors based on 1D MOS nanowires have not yet been successfully
commercialized compared to the MOS film structures.
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The inherent limitations for the practical applications of the 1D MOS nanowire-based
molecular sensors can be summarized as follows:

(1) Lack of effective method for the large-scale synthesis of geometrically uniform
single-crystalline nanowires—as is known, the electrical [49], optical [50], thermal [51], and
chemical [52] properties of nanomaterials are strongly affected by their size and shape due
to the quantum confinement effect [53]. The electrical conduction becomes more sensitive
to the field-effect as the nanowire diameter decreases [54]. Until now, although highly
crystalline MOS nanowire with various diameters [55], compositions [28–40] and het-
erostructures [56,57] can be grown in vapor phase (physical vapor deposition (PVD) [58,59],
pulsed laser ablation deposition (PLD) [60,61] and chemical vapor deposition (CVD) [62,63],
etc.) and solution phase (hydrothermal [64,65] and solvothermal [66,67]), the large-scale
synthesis of geometry uniform (diameter) nanowires is still a big challenge [68].

(2) Poor reproducibility—it has been demonstrated that the nanowires present a
fantastic performance as they are integrated into single nanowire devices [69]. For such
a kind of device, lithography and sputtering techniques are frequently utilized to design
and deposit interdigitated electrodes on randomly distributed nanowires for the device
fabrication [70]. However, this process is only accessible for fundamental laboratory
research, and assembling scalable and controllable nanowires on arbitrary substrates
remain a major challenge toward performance reproducible sensor device fabrication [71].

(3) Poor environmental/thermal stability—to deeply exploit the data science from the
obtained sensor signal, the long-term stability of the sensor response is highly required
for time-series data collection [72]. However, performance degradation usually occurs in
the nanowire-based sensor electronics because the surrounding oxygen, water, and con-
taminates would react with the active nanowire surface as well as the nanowire–electrode
contact when the sensors are exposed to ambient air for molecular detection [47,73,74].

(4) Poor sensor selectivity—although the sensitivity of the single nanowire sensor
devices has been demonstrated to possess an exponential enhancement as compared with
those thin-film devices [75,76], it is still desired to significantly improve the selectivity
of nanowire-based sensor electronics. Therefore, further efforts are still encouraged to
promote MOS nanowire-based sensor electronics for the IoT applications.
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Here, in this review, we first give a comprehensive overview of the recent studies and
achievements in 1D MOS nanowire synthesis, sensor device fabrication, device function-
alization, and sensing mechanisms. Then, some critical issues that impede the practical
application of the 1D MOS nanowire-based sensor electronics, including selectivity, long-
term stability, and low power consumption, will be pointed out. Finally, we give an outlook
of the remaining issues towards the lab-to-market transfer of the 1D nanostructure-based
sensor electronics.

2. Metal–oxide Nanowires Growth

Nanowire-based electronics offers an excellent possibility for future systems beyond
the limitation of Moore’s law and provides a promising platform to explore the phys-
ical origin and intrinsic properties. In recent decades, significant efforts and progress
have been made, and many methods have been developed to synthesize 1D metal–
oxide nanowires, including PVD, CVD, PLD, thermal oxidization and solution-based
growth for single-crystalline nanowires, and template growth, electro-spun for polycrys-
talline/amorphous nanowires. Here, this section will mainly focus on the metal–oxide
nanowires growth mechanism.

2.1. Vapor–Liquid–Solid Growth (VLS Growth)

The vapor–liquid–solid (VLS) mechanism is widely employed to grow high-quality
nanowires [77–89]. In a typical VLS growth, as shown in Figure 2, a metallic catalyst
droplet is firstly formed via heating the pre-deposited metal catalyst thin film. Then, by
continuously feeding the vapor species to the metallic catalyst at an elevated temperature,
a liquid eutectic alloy is formed. Finally, once the alloy reaches super-saturation, nanowires
can be anisotropically grown from the nucleated seeds at the liquid–solid interface and the
length of nanowires can be controlled by the growth time.
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In 1998, the Lieber group firstly reported a laser ablation technique for gaining VLS
silicon nanowires [81]. Following this interesting work, various methods such as CVD,
PVD, PLD, electron beam evaporation, and molecular beam epitaxy (MBE) have been
developed to grow the metal–oxide nanowires ITO [90–92], NiO [93–95], ZnO [83,96],
SnO2 [97,98], TiO2 [99,100], In2O3 [101,102], MgO [103–105], etc. [106,107].

In recent years, the Yanagida Lab (The University of Tokyo) has made great efforts in
the VLS growth of metal–oxide nanowires [85,86,94,98,99,105,108–131]. They have pointed
out that materials flux is an important variable which has been underestimated in VLS
nanowires growth. For example, via precisely controlling the material flux within an order
of magnitude, the structure and composition of VLS growth ITO nanowires can be altered
from Rutile structure (Sn 100%, In 0%) to Fluorite structure (Sn 28%, In 72%) and Bixbyite
structure (Sn 21%, In 79%) [86]. Moreover, the proposed “material flux window” concept
from their group has been successfully applied for the synthesis of SnO2, In2O3, ITO, ZnO,
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NiO, MnO, CaO, Sm2O3, Eu2O3 and MgO nanowires [85]. Nevertheless, the VLS process of
metal–oxides growth generally requires relatively high temperatures (600–1000 ◦C), which
essentially limits their practical applications.

To solve this problem, Zhu et al. demonstrated a rational method to reduce the growth
temperature via using the concept of “materials flux window” [83]. As shown in Figure 3a,
it was found that a reduction in growth temperature can be successfully achieved via
precisely controlling the vapor flux which originates from the suppression of nucleation
at the vapor–solid interface. By optimizing an appropriate vapor flux for VLS nanowire,
this concept can be applied to reduce the growth temperature for various metal–oxides,
including ZnO (from 750 to 400 ◦C), SnO2 (from 750 to 400 ◦C), and MgO (from 800 to
350 ◦C), as shown in Figure 3b–d. In addition, it has shown a successful application of
this concept for the VLS growth SnO2 nanowire on tin-doped indium oxide (ITO) glass at
500 ◦C and ZnO nanowires on polyimide (PI) substrates at 350 ◦C.
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fabricated under the guidance of ‘materials flux window’. Reprinted from reference [83] with
permission from the American Chemical Society.

2.2. Vapor–Solid Growth (VS Growth)

In the absence of a metal catalyst, 1D material structures can also be directly formed
from the vapor phase into the solid phase, that is, the VS growth (Figure 4). In the view
of the current studies, VS growth mechanisms are generally concluded as three types:
(1) The anisotropic growth mechanism: nanowires can be synthesized via the preferential
reactivity and binding of gas reactants on a specific surface to minimize the total surface
energy [132–134]; (2) The defect-induced growth (or screw dislocations) mechanism: the
growth of crystal proceeds by adding atoms at the kink sites of a surface step [135–139];
(3) The self-catalytic growth mechanism: metal–oxide can be decomposed into metal and
oxygen by heating under vacuum condition, then the metal vapors are condensed and
forming liquid droplets on a lower temperature substrate, and such droplets are the ideal
catalysts for metal–oxide nanowire growth [140–151]. Similar to VLS growth, various
metal–oxide nanowires, such as Ga2O3, ZnO, MgO, In2O3, and SnO2 [140–153], have been
successfully synthesized via VS growth. Furthermore, by using surface-roughness-assisted
or seed-layer-assisted VS growth, nanowires can be also grown in a selective area [154–156].
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Compared with VLS growth, VS growth nanowires are suffering from insufficient
ability to control uniformity, which usually results in a tapered morphology of nanowires.
Recently, Anzai et al. reported a negative effect of VS growth on the tapered SnO2 nanowire
electrical performance [79]. By using spatially resolved single nanowire electrical measure-
ments, plane-view electron energy-loss spectroscopy and molecular dynamics simulations,
it has been observed that the VS growth will generate a large number of defects in the
oxides, thus making an unintentional doping in the nanowire structure. As shown in
Figure 5d, such an unintentionally doping effect will cause a seven orders increase in the
conductance, which entirely alters the intrinsic properties of nanowires. Furthermore, in
light of their latest results, oxygen deficiency is the critical factor of the unintentionally
doping effect in the VS growth [157]. Moreover, increasing oxygen partial pressure during
the VS growth is an alternative way to prevent this drawback.
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tional carrier doping occurs at the vapor–solid interface during VS growth; (b) single tapered VS+VLS
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of VS growth (93.0 kΩ) and VLS growth nanowire (2.04 TΩ); Reprinted from reference [79] with
permission from the American Chemical Society.
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2.3. Solution Phase Growth

The solution-phase growth, for example, the hydrothermal growth, is extensively
used for the synthesis of metal–oxide nanowires [64,65,158–160]. Compared with the
vapor phase growth (both VLS and VS), a much lower temperature is required for the
solution growth, which allows the nanowires to be directly integrated on the flexible
organic substrates for the modern wearable device. In addition, the morphology and
properties of the solution phase growth nanowires can be conveniently manipulated by
tuning the concentration of the composition, introducing additional composition, or adding
additives in the solvent.

In the case of ZnO nanowires, the concept of a “concentration window” in the con-
trol of ZnO nanowire morphology has been demonstrated by He et al., as shown in
Figure 6a [111]. Via carefully controlling the concentration of Zn ionic species within a
specific concentration range, a selective growth on the (0001) plane can be realized. Mean-
while, under the guidance of a “concentration window”, Sakai et al. achieved a significant
improvement in the growth rate of ZnO nanowires (up to 2000 nm/h) with the assistance
of ammonia, as shown in Figure 6b [161]. Moreover, Joo et al. pointed out that the axial
and the radial growth of ZnO nanowire can also be controlled by introducing and tuning
the amount of Cd (Cu, Mg, Ca) ions or Al (In, Ga) ions in the growth solution, respec-
tively [161]. Not only in the growth of ZnO nanowires, other anisotropic 1D nanowires
can also be controlled via tuning the concentration of additives. For example, Choi et al.
reported a straightforward process for synthesizing tungsten oxide nanostructure with
various morphologies [162]. By changing the composition of the solvent, the crystalline
phase of tungsten oxide, such as mono-clinic W18O49 nanowires (with ethanol), hexagonal
WO3 platelets (with water/ethanol ratio (1:9)), and monoclinic WO3 nanosheets (with
water) can be alternatively controlled. Currently, many kinds of nanowires, such as SnO2,
ZnO, TiO2, In2O3, MnO2, and WO3, have been successfully synthesized via solution-phase
growth with/without the assistance of the seed layer [160,163–173]. Owing to the low cost,
less hazardous, no metal catalysts, the effectively controllable morphology and properties,
the solution phase growth strategy has been successfully integrated into a well-developed
micro-electro-mechanical system (MEMS) [174–176].
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Figure 6. Face-selective control of hydrothermal zinc oxide nanowire: (a) schematic of a concentration
dependence on the crystal growth of hydrothermal ZnO nanowires as a crystal-plane dependence
on a critical nucleation concentration. Reprinted from reference [111] with permission from the
American Chemical Society; (b) Zn concentration dependence of ZnO nanowire morphology with
HMTA 15 mM with ammonia addition 500 mM. The Zn concentration range, where a nanowire can
be grown, is highlighted by a red color. Reprinted from reference [161] with permission from the
Nature Publishing Group.

2.4. Thermal Oxidation Growth

The thermal oxidation method is an easy way to massively grow metal–oxide nanowires
in situ [177]. For example, Sn and Ga oxide nanowires can be easily obtained as the
environment temperature increases over their melting points in the air or water vapor
surroundings [31,178]. Interestingly, Zn, W, Fe, Mo, and Cu oxide nanowires can be grown
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by the thermal oxidation method at an even lower temperature [179–187]. As shown in
Figure 7a–c, several possible mechanisms have been invoked to account for the thermal
oxidation growth: (1) Evaporation and condensation [179,188]; (2) Fast internal diffusion
along a tunnel centered on the core of a screw dislocation [180,189]; (3) Surface diffusion
along the sides of nanowires [181,190]. For example, α-Fe2O3 nanowires are spontaneously
grown due to the fact Fe ions tend to leave from the compressed regions at the Fe2O3/Fe3O4
interface and diffuse to the stress-free Fe2O3 surface layer, whereas CuO nanowires are
basically grown due to the continuous diffusion of Cu ions from the substrate to the tip of
nanowires through the internal grain boundary, as depicted in Figure 7d,e [181,189].

Chemosensors 2021, 1, x FOR PEER REVIEW 7 of 40 

 

shown in Figure 7 (a)–(c), several possible mechanisms have been invoked to account for 
the thermal oxidation growth: (1) Evaporation and condensation [179,188]; (2) Fast inter-
nal diffusion along a tunnel centered on the core of a screw dislocation [180,189]; (3) Sur-
face diffusion along the sides of nanowires [181,190]. For example, α-Fe2O3 nanowires are 
spontaneously grown due to the fact Fe ions tend to leave from the compressed regions 
at the Fe2O3/Fe3O4 interface and diffuse to the stress-free Fe2O3 surface layer, whereas CuO 
nanowires are basically grown due to the continuous diffusion of Cu ions from the sub-
strate to the tip of nanowires through the internal grain boundary, as depicted in Figure 7 
(d) and (e) [181,189]. 

 

Figure 7. The various mechanisms proposed for metal–oxide nanowire (NW) growth during the 
oxidation of metal: (a) evaporation and condensation; (b) internal diffusion along with the core of a 
screw dislocation; (c) surface diffusion along the sidewall of nanowires; (d) Fe2O3 nanowire growth 
following the surface diffusion mechanism. Reprinted with permission from Reference [181] Copy-
right 2012 Elsevier; (e) CuO nanowire growth follows the internal diffusion mechanism. Reprinted 
with permission from Reference [189] Copyright 2011 Elsevier; and (f) CuO nanowire device fabri-
cated by thermal oxidation method. Reprinted with permission from Reference [177] Copyright 
2012 Elsevier. 

Owing to the in situ growth behavior of nanowires, a novel and simple technology 
has been reported by Steinhauer et al. for the fabrication of CuO nanowire sensors [177]. 
Via heating the Cu layer loaded on the patterned electrodes in air, CuO nanowires were 
naturally grown from the electrodes. By increasing the growth time, nanowires on foreign 
electrodes were mutually attached, forming the nanowire–nanowire conductive junctions 
as a functional sensing channel. Due to its simplicity and lack of post-processing steps 
after nanowire synthesis, this technique has been extensively employed to integrate CuO 
nanowires in a sensing device [191–193].  

2.5. Template-Assisted Growth 
Metal–oxide nanowires can be achieved by merely depositing oxide materials into an 

organic template such as poly(methyl methacrylate) (PMMA) or an inorganic template 
such as anodic aluminum oxide (AAO). The diameter, density, and length of the nan-
owires can be conveniently controlled based on the template design, as shown in Figure 
8. Kolmakov et al. has shown a typical inorganic template-assisted growth method to syn-
thesize SnO2 nanowires [29]. By depositing Sn into nanoporous alumina and further etch-

Figure 7. The various mechanisms proposed for metal–oxide nanowire (NW) growth during the
oxidation of metal: (a) evaporation and condensation; (b) internal diffusion along with the core of a
screw dislocation; (c) surface diffusion along the sidewall of nanowires; (d) Fe2O3 nanowire growth
following the surface diffusion mechanism. Reprinted with permission from Reference [181] Copy-
right 2012 Elsevier; (e) CuO nanowire growth follows the internal diffusion mechanism. Reprinted
with permission from Reference [189] Copyright 2011 Elsevier; and (f) CuO nanowire device fab-
ricated by thermal oxidation method. Reprinted with permission from Reference [177] Copyright
2012 Elsevier.

Owing to the in situ growth behavior of nanowires, a novel and simple technology
has been reported by Steinhauer et al. for the fabrication of CuO nanowire sensors [177].
Via heating the Cu layer loaded on the patterned electrodes in air, CuO nanowires were
naturally grown from the electrodes. By increasing the growth time, nanowires on foreign
electrodes were mutually attached, forming the nanowire–nanowire conductive junctions
as a functional sensing channel. Due to its simplicity and lack of post-processing steps
after nanowire synthesis, this technique has been extensively employed to integrate CuO
nanowires in a sensing device [191–193].

2.5. Template-Assisted Growth

Metal–oxide nanowires can be achieved by merely depositing oxide materials into
an organic template such as poly(methyl methacrylate) (PMMA) or an inorganic template
such as anodic aluminum oxide (AAO). The diameter, density, and length of the nanowires
can be conveniently controlled based on the template design, as shown in Figure 8. Kol-
makov et al. has shown a typical inorganic template-assisted growth method to synthesize
SnO2 nanowires [29]. By depositing Sn into nanoporous alumina and further etching the
template by NaOH solution (or cracking by sonication), highly crystalline Sn nanowires
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are harvested. Then, via processing an air annealing on the metallic Sn nanowires, SnO2
nanowires are obtained.
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Ra et al. reported the use of an organic template for obtaining ZnO nanowires [194].
As depicted in Figure 9, a-carbon was first deposited on the SiO2/Si wafer as an etch-stop
layer. Then, the wafer was coated by a sacrificial layer via plasma-enhanced chemical vapor
deposition (PECVD). Then, the PECVD layer was patterned using conventional lithography
and etched by the CF4/Ar inductively coupled plasma (ICP) process. Then, an atomic layer
deposition (ALD) process was used to create a 70 nm ZnO layer over the pre-patterned
sacrificial layer. Then, by ICP etching with Cl2/Ar discharges, the ZnO layer was removed
except for the spacer part. Finally, ZnO nanowire arrays were obtained by removing the
sacrificial oxide layer. A similar fabrication process for CuO, NiO, and Cr2O3 nanowires
has also been recently reported [195]. Such patterning methods by using lithography
techniques can prevent the problems associated with the alignment of the nanowires.
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2.6. Electro-Spun Growth

Electro-spinning is one of the easiest, template-free, versatile, and cost-effective ap-
proaches to produce 1D nanostructures. Almost all the oxides and mixed oxides nanowires
can be fabricated using this method [196–210]. Figure 10 shows a typical example of
nanowires/nanofibers fabrication by electro-spun growth [201]. As shown in Figure 10a,
an appropriate ratio of dimethylformamide, poly(vinyl acetate) (PVA), titanium(IV) propox-
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ide, and acetic acid are mixed as the precursor solution. Then, the solution is loaded into a
syringe, which is connected to a high-voltage supply. Afterward, the precursor solution
was directly spun onto the Al2O3 substrate with pre-patterned Pt electrode arrays. Finally,
nanofibers are pressed under 120 ◦C to prevent sticking and further calcined in air at
450 ◦C, and thus TiO2 nanofibers sensors with the mat-like structure are obtained. Due to
the simple and inexpensive fabrication process, electrospinning has attracted increasing
attention in the commercial field.
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3. Metal–oxide Nanowire Devices Fabrication

To study the intrinsic properties of nanowires and use their functionality as a sensing
element, one necessary process is transferring nanowires from the growth substrate and
integrating them with contact electrodes on a platform. As shown in Figure 11, the current
nanowire-based device can be divided into two types: (a) individual nanowire device; and
(b) multiple nanowire devices.
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3.1. Individual Metal–Oxide Nanowire Device

Due to the fast development of modern electronics, individual metal–oxide nanowire
devices such as the field-effect transistor (FET) offer a great chance to explore the electrical,
chemical, and mechanical properties of the nanowire.

3.1.1. Device with Flat Structure

A “pick and place” is a common technique in fabricating individual nanowire devices.
First, one must “pick” metal–oxide nanowires from the growth substrate. The substrate
with nanowires should be immersed in a readily volatile solvent such as isopropanol,
ethanol, methanol, and even water. Then, the metal–oxide nanowires are transferred from
the growth substrate and dispersed into solvents under the ultrasonic wave. One must
then ‘place’ the nanowires. One drop of solvents containing dispersed nanowires should be
placed on the platform with pre-deposited electrode pads and dried by simple evaporation.
With the assistance of optical scope or SEM observation, the relative positions of nanowires
to the pre-deposited markers are recorded. Then, the platform should be covered with a
layer of photoresist by spin coating technique. By combining laser/electron-beam lithog-
raphy and sputtering deposition (or using focused ion beam technique), nanowires can
be connected with the electrode pads. Finally, the additional metal and photoresist can be
removed by a lift-off process in the organic solvent such as N-methyl-2-pyrrolidone (NMP),
dimethylformamide (DMF), and ethanol. The schematic image of the individual nanowire
device fabrication process can be seen in Figure 12. Other novel fabrication processes can
be seen in the latest review [211].
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Figure 12. A schematic diagram illustrating the fabrication processes of individual nanowire devices:
(a) substrate; (b) transferring nanowires onto the substrate; (c) photoresist coating (sacrificial layer);
(d) sacrificial layer patterning; (e) contact electrode deposition; (f) individual nanowire device after
lift-off process.

3.1.2. Device with Suspended Structure

Due to the sensor heating, the hot air near the sensor surface will form a layer which
is likely to support convective processes leading to the concentration gradients of reactive
analyte gases, termed as stagnant layer [212]. Such a layer can measure up to several tens
of nanometers, and it is comparable with the nanowire size, which will cause insufficient
exposure to the target molecules [213,214]. To prevent this problem, a suspended structure
has been developed to improve sensor performance. The suspended structure is a highly
favorable configuration because the nanowires are surrounded by the gas atmosphere. As
shown in Figure 13, the fabrication process of a suspended nanowire device is similar to
that of a flat nanowire device. However, it requires one more sacrificial layer (inorganic
MgO/organic PMMA) before the drop of nanowire solvent (Figure 13b). The overall
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enhancement in the performance of the nanodevice is benefited from the suspended struc-
ture. For example, Nima et al. fabricated a stable, reproducible ZnO nanowire humidity
sensor with a suspended structure [215]. It is observed that the suspended nanowire
device presented an exponential change (over five orders) of resistance in response to
relative humidity from 0% (dry air) to 60% at room temperature. This improvement is
strongly associated with a subthreshold carrier modulation in the nanowire core, the high
surface-to-volume ratio of the nanowire, and most importantly, complete exposure of the
nanowire surface to air. Owing to the gigantic enhancement in gas sensing response, the
development of metal–oxide nanowire gas sensors with the suspended structure has been
extensively studied [214,216–220].
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3.1.3. Device with Vertical Structure

Similar to the suspended nanowire device, sensors with a vertical structure have
also been considered a promising design for gas detection due to their 3D architecture.
Unfortunately, the conventional “pick and place” technique cannot obtain individual
nanowire devices with vertical structures due to the current limitation in nanotechnology.
To date, a few papers reported the individual nanowire sensor devices with a vertical struc-
ture [221,222]. Offermans et al. offered a potential way to achieve the individual nanowire
gas sensor with vertical structure [223,224]. As shown in Figure 14, vertical indium ar-
senide (InAs) nanowires are firstly grown on an InP(111)B wafer. Then, the nanowires
were patterned into arrays ranging in size from 30 µm × 30 µm to 100 µm × 100 µm via
combining the sacrificial resist layer and etching process. Finally, using the sacrificial resist
layer with sputtering deposition, air bridges were formed to make electrical connections.
In view of their device structure, it is possible to achieve a device with fewer nanowire
connections or even a single nanowire connection by shrinking the size of the patterned
array. Meanwhile, it was shown that this vertical structure of the sensor device presents
a very high sensitivity to 100 ppb of NO2 at room temperature. However, due to the
uncertainty and complexity of this process, it is impossible to massively fabricate such a
device with individual vertical nanowires. To the best of our knowledge, to date, there
has been no report using individual metal–oxide nanowires with vertical structure as the
gas sensor.
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3.2. Metal–Oxide Multiple Nanowire Device

Due to the requirement of precise alignment between the single nanowire and pre-
deposited patterned electrodes, the overall fabrication process of the individual nanowire
device is complicated, time-consuming, and expensive [225–229]. Furthermore, high
accuracy and stable electrical measurement systems are needed to obtain the electrical
sensing signals of the single nanowire sensor devices [75]. To simplify the fabrication
process and electrical signal measurement, multiple nanowire devices become the most
widely accepted device design in practical sensor device applications.

3.2.1. Device with Flat Structure

A mat-like nanowire structure is similar to the single nanowire device with a flat
structure, while the fabrication process is much easier than that of the single nanowire
device. In a typical mat-like structure, the device can be loaded easily via two steps.
As shown in Figure 15, nanowires can be firstly transferred from the growth substrate
onto a platform, and then the contact electrodes are deposited by utilizing a mask with
sputtering. Alternatively, the electrodes can be firstly pre-deposited on the platform, and
finally nanowires are transferred on the surface of electrodes. Both of the two methods
are simple, costless, and unnecessary pre/post-process. Due to its convenience in terms
of fabrication process, various metal–oxide nanowire gas sensors, including SnO2, ZnO,
WO3, TiO2, NiO, CuO [230–235], are successfully obtained by this method. Moreover, this
technique is in favor of flexible sensor electronics integration.

3.2.2. Device with Bridging Structure

Due to the easy fabrication, in situ controllable nanowire growth position, and
3D architecture, bridging structure is another promising design for nanowire gas sen-
sors [43,177,191–193,236–267]. In the typical fabrication process of the device with a
bridging structure, bottom electrodes should be firstly deposited on the substrate, then a
seed/catalyst layer will be deposited on the top of the bottom electrodes. Finally, nanowire
will be grown in situ only on the seed/catalyst layer, as shown in Figure 16. With the
increase in the growth time, nanowires will incline and contact other nanowires, forming
nanowire–nanowire junctions, which can be utilized as a sensing channel for gas detection.
Such on-chip growth nanowire sensors can prevent nanowire–electrode contact issues
encountered by the flat nanowire sensor devices, and these kind of sensors show a more
stable physical and electrical performance than the sensors fabricated by spinning, drop-
ping, or spray coating technique. Park et al. firstly reported a comparison study of NO2
sensing between air-bridged nanowire sensors and conventional nanoparticle sensors [251].
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Owing to a higher exposed area to the surroundings, the bridging structure shows a faster
response and recovery rates as compared with that of nanoparticle sensors. Meanwhile,
Kim et al., Jung et al., and Hung et al. systematically studied the effect of nanowire junc-
tion density on the device sensing performance [245,253,260]. Through the controlling of
nanowire growth time, the number of nanowire–nanowire junctions within the bridging
sensor structures can be quantitatively manipulated. Furthermore, it was found that the
bridged structures with a high density of junctions show a high sensing performance to
NO2. However, the response and recovery time of the bridging nanowire device with a
high density of junctions are slower than that of the low-density nanowire device, because
a long time is needed for the molecules’ diffusion in the high density of nanowire network.
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3.2.3. Device with Vertical Structure

Recently, the nanowire array sensors with the vertical structure are promising due to
their porosity structure and reliable electrical performance [268–270]. To obtain a vertical
nanowire sensor, three steps are typically needed, as shown in Figure 17. First, nanowires
are grown vertically on the substrate through solution–phase/vapor–phase methods. Then,
the nanowires are covered by spin coating a layer of organic photoresist. By precisely
controlling the thickness of photoresist on a nanowire array via etching process, the tips
of nanowires will be exposed. Afterwards, a metal contact layer is deposited onto the
photoresist and connected with all the tips of the nanowires. Finally, a vertical structure
of the sensor device can be achieved by removing the unnecessary photoresist. Cao et al.
has demonstrated the integration of a vertical WO3 nanowire sensor with high sensitivity
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to NO2 [268]. It is shown that the vertical device exhibited the capability to detect NO2
concentrations down to the 50 ppb level, which shows a promising future in the field of low
concentration gas detection. In addition, Chen et al. has proposed a sensor array composed
of vertical device structures with different noble metal decorations (Pd, Pt, and Au) for
selective gases detection [48]. Several different types of sensors are fabricated via altering
the selection of decorating materials.
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4. Current Progress in Performance Tailoring of Metal–Oxide Nanowire-Based
Gas Sensors

Although metal–oxide nanowires have already shown great potential as gas sens-
ing materials, further efforts are still encouraged to enhance the sensing performance
of nanowire-based sensor electronics, such as gas species discrimination from mixtures,
low concentration, and room temperature detection. To achieve such goals, introducing
additives on the nanowire surface has been proved to be an easy and effective approach.

4.1. Nanoparticles Decoration (NPs Decoration)

The loading of noble metal/oxide nanoparticles with a nanometer size onto a metal–
oxide nanowire surface has been widely employed for functionalizing the nanowire-based
sensors due to their low cost and simplicity in the fabrication process. Here, we intro-
duce one common method (not least) to load nanoparticles on nanowires. For noble
metal nanoparticle decoration as an example, a noble metal (M) precursor solution was
firstly prepared by dissolving appropriated HMClx·H2O into H2O (ethanol, etc.). Then,
by simply immersing nanowires in the above solution for a proper time and calcined at
high temperature, M-loaded nanowires can be obtained. This method can also be used
for metal–oxide nanoparticle decoration, despite using different precursors. Currently,
there are two coexisting mechanisms to understand the sensing performance of decorated
nanowires: (1) chemical sensitization (spillover effect): noble metal nanoparticles can
promote the dissociation of molecules and oxygen on nanowire surface, leading to an
efficient chemical reaction. Moreover, owing to the noble metal-induced lower energy
barrier for gas adsorption and desorption, the response and recovery rates can be accel-
erated [271]; (2) electronic sensitization: the interface between oxidized noble metals (or
oxide nanoparticles) and nanowires usually form a thicker electron depletion layer with
a narrow channel. During exposure to the target molecules, the concentration of charge
carriers can be efficiently modulated [272]. To date, researchers have made significant
progress in fabricating nanoparticles decorated nanowire sensors. Through optimizing
the decorated material selection/combination, the size of nanoparticles, and the surface
coverage of nanowires, it is accessible to realize the fabrication of functionalized nanowire
sensors with high sensitivity, high selectivity, and low working temperature. A detailed
overview of the sensing performance of noble metal-decorated metal–oxide nanowire gas
sensors is summarized in Table 1.
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As for sensitivity, Kolmakov et al. firstly reported the use of noble metal (Pd) function-
alized with metal–oxide nanowire (SnO2) device for the sensitivity enhancement [273]. As
shown in Figure 18 d, due to (1) oxygen dissociation on Pd nanoparticles by spillover effect,
and (2) the diffusion of weakly adsorbed oxygen on nanowire surface to Pd nanoparticles, it
is found that the Pd nanoparticles decoration can dramatically enhance the device sensing
performance to O2 and H2. Motivated by this encouraging result, to date, tremendous
efforts via noble metal/oxide nanoparticles decoration are being intensively investigated
for enhancing device sensitivity [87,273–277].
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Nanoparticle decoration is also an alternative way to dramatically improve the selec-
tivity of the nanowire-based sensors [174,272,274–286]. For example, Kim et al. reported a
ZnO nanowire sensor with high sensitivity and selectivity toward H2 via Pd nanoparticle
decoration [274]. Due to the synergistic effect of chemical sensitization of Pd nanoparticles
and metallization effect of ZnO, the sensing response to H2, O2, NO2, C6H6, and C7H8
are increased by 3214.1, 1.6, 7.8, 17.2, and 166.9%, respectively. Moreover, compared with
pristine nanowire, the Pd-decorated ZnO nanowire shows a capability to detect 0.1 ppm H2
with a wide temperature range from 150 to 350 ◦C. Byoun et al. reported a TeO2 nanowires
gas sensor by surface decoration with oxide nanoparticles [280]. Due to the formation of
p–n heterojunctions between p-type TeO2 nanowire and n-type ZnO nanoparticles, the
TeO2 nanowires become more resistant and suitable for sensing oxidizing gas, especially
since it shows an excellent NO2 selectivity in comparison with interfering gases such as
SO2, CO, and C2H5OH.

Furthermore, surface decoration with noble metal/oxide nanoparticles has been re-
garded as an effective way in lowering down the sensor operation temperature [280,287–295].
For example, as reported by Liang et al., due to the spillover effect and the change in deple-
tion layer caused by Au nanoparticles, the Au decorated VO2 nanowires sensor exhibits an
excellent sensing performance to NO2 at 0.5–5 ppm at room temperature [285]. Lupan et al.
have reported that Au nanoparticle decoration on ZnO nanowire surface can realize the H2
room temperature detection [289], Choi et al. found that Pd nanoparticles decoration on
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ZnO nanowires enables the CO sensing at room temperature [287] and Hong et al. have
reported the Cu2O nanoparticles-decorated ZnO nanowire sensor could realize the room
temperature sensing of NO [296].

In addition, the effects of decorated nanoparticle size and density have also been
intensively investigated [192,271,282,296,297]. For example, Lee et al. have studied the
size effect of Au nanoparticles on the CuO nanowire sensor [192]. As the diameter of Au
nanoparticles decreases, the sensing responses of the nanowire sensor present an increase
to NO2 and CO, and a maximum performance appears when 60 nm of Au nanoparticles
are decorated on the CuO nanowire surface. Meanwhile, they have pointed out that the
size of nanoparticles should be carefully optimized to prevent sufficient surface coverage,
since excessive surface coverage would cause the steric hindrance on the nanowire surface,
which is harmful to gas sensing.

Table 1. A detailed overview of sensing performance of noble metal-decorated metal–oxide nanowire gas sensors.

NWs NPs Target Gas Toper
(◦C)

LOD
(ppm) Response Response

Time(s) Ref.

SnO2

Ag NH3 450 0.05 300 @ 100 ppm 45 [298]
Au NO2 200 0.1 2 @ 0.1 ppm N/A [299]

Au/ZnO-branching NO2 300 2 13 @ 10 ppm 118 [300]
Au/ZnO-shell CO 300 0.0026 26.6 @ 0.1 ppm 75 [301]

Pd H2 300 1 55.72 @ 100 ppm 22 [302]
Pd NO2 300 0.1 505 @ 0.1 ppm 20 [271]
Pd H2 300 1 16.95 @ 1 ppm N/A [88]
Pd H2 150 10 4.5 @ 100 ppm N/A [303]
Pt NO2 300 0.1 700 @ 0.1 ppm 10 [271]
Pt H2 25 N/A 1.87 @ 1000 ppm 0.33 [288]
Pt Ethanol 300 0.1 6.5 @ 100 ppm N/A [304]
Pt Benzene 350 0.1 18 @ 100 ppm N/A [304]
Pt Acetone 300 0.1 5.8 @ 100 ppm N/A [304]
Pt H2 350 0.1 4 @ 100 ppm N/A [304]
Pt Toluene 300 0.1 58 @ 100 ppm N/A [304]

ZnO

Pd Ethanol 260 - 5 @ 500 ppm 6 [305]
Ag Ethanol 450 5 228.1 @ 100 ppm 40–80 [306]
Au NO2 150 1 31.4 @ 1 ppm 29 [284]
Au NO2 25(UV) 1 2.6 @ 1 ppm 39.5 [292]
Au H2 25 <1 ppm 40 @ 100 ppm N/A [289]
Au Acetone 172 15 50.5 @ 100 ppm 1 [307]
Au H2 25 20 32.9 @ 1000 ppm N/A [282]

Au/Fe2O3 NO2 400 150 247 @ 250 ppm N/A [308]
Au/Pd NO2 100 1 94.2 @ 1 ppm 35 [309]

Pd Benzene 25(UV) 0.0067 2.2 @ 50 ppm N/A [310]
Pd H2 350 1 87 @ 100 ppm N/A [274]
Pd H2S 300 10 20 @ 500 ppm 720 [311]

Pd/BN H2 200 0.1 12.3 @ 50 ppm 240 [307]
Pt H2S 260 0.0011 65 @ 0.3 ppm 40 [312]
Pt Toluene 25(UV) 0.0003 2.86 @ 50 ppm N/A [310]

WO3

Au n-butanol 250 5 147 @ 100 ppm 16.5 [313]
Au Acetone 250 5 72 @ 200 ppm 17.5 [313]

Pd/Au Acetone 300 200 152.4 @ 200 ppm 96 [314]
Pd/Au n-butanol 200 5 93 @ 50 ppm 12 [315]

Rh Acetone 300 0.2 75 @ 5 ppm 11 [316]
Ru Acetone 350 0.05 78 @ 5 ppm 11.7 [202]

W18O49 Ag/Pt Trimethylamine 240 0.071 22 @ 2 ppm 15 [277]

In2O3

Ag Ethanol 25 0.5 1900 @ 100 ppm N/A [317]
Au CO 25 0.5 2200 @ 100 ppm N/A [317]
Pt H2 25 0.5 1400 @ 100 ppm N/A [317]
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Table 1. Cont.

NWs NPs Target Gas Toper
(◦C)

LOD
(ppm) Response Response

Time(s) Ref.

CuO

Au NO2 300 1 2.2 @ 50 ppm N/A [192]
Au CO 350 1 1.25 @ 50 ppm N/A [192]
Pt Ethanol 200 1000 3.8 @ 1000 ppm 480 [318]
Pd H2 200 1000 4.5 @ 1000 ppm 600 [318]
Pd H2S 100 1.9 @ 100 ppm N/A [319]

PdO Pt H2 25 10 1.2 @ 100 ppm 166 [290]

VO2 Au NO2 25 0.5 3.22 @ 5 ppm N/A [285]

NWs: nanowires; NPs: nanoparticles; Toper: operation temperature of sensor; LOD: limit of detection); Response: Rg/Ra (Oxidizing gas) or
Ra/Rg (Reducing gas).

4.2. Branched Nanowire

In addition to surface decoration, branched nanowires (nanowire hierarchical nanos-
tructures) offer a high specific surface area for gas diffusion and adsorption, which are
beneficial for molecular sensing. Khoang et al. reported a controllable and scalable route
for preparing n-type ZnO branched n-type SnO2 nanowire hierarchical nanostructures
via a combination of thermal evaporation method (SnO2 nanowires) and hydrothermal
method (ZnO nanowires). As shown in Figure 19, compared with pure SnO2 nanowires, the
branched nanowires sensor shows three–five-fold sensitivity enhancement to 25–500 ppm
ethanol. Kaur et al. demonstrated an n-type ZnO branched p-type NiO nanowire hierarchi-
cal structures for sensing performance enhancement [233]. In such a kind of sensor, the
surface of NiO nanowires is fully covered by ZnO nanowires, leading to a response mode
transformation from the p-type to n-type. In addition, the lowest detection limits of these
sensors to ethanol and acetone can be down to 7 and 11 ppm, respectively.

Moreover, to further improve the device sensing performance, Choi et al. attempted
to decorate Au nanoparticles on the ZnO branched SnO2 nanowire surface [300]. It was
indicated that the sensing response of the ZnO-branched SnO2 nanowire sensor is dramati-
cally enhanced after Au nanoparticle decoration due to the spillover effect of noble metal.
Meanwhile, the sensor shows an excellent selectivity toward NO2. Similar results have
also been reported recently by Bang et al. [320]. They realized the low temperature and
selective NO2 sensing via using synergistic effects of Pt decoration and Bi2O3 branching.
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(g) 2 h growth; and (h) 4 h growth. Reprinted from reference [321] with permission from the American Chemical Society.
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4.3. Core–Shell Structure (C–S Structure)

Core–shell (C–S) metal–oxide nanowire sensors have also been extensively studied due
to their ability to detect an extremely low concentration of chemical species and mitigate
the poor selectivity [322,323]. The C–S structure is similar to the nanoparticle-decorated
structure but with a continuous layer and higher stability [271]. Such a shell layer can serve
as a catalytic layer to promote the molecular oxidizing [324], narrow the conduction core
part of nanowire [325], facilitate the adsorption of gas molecules to increase the sensing
activity [326], and work as a main conductive channel for sensing [327]. Currently, various
C–S nanowires with a combination like n–n (n-type core/n-type shell) [323,327–330], n-p
(n-type core/p-type shell) [256,331], and p-n (p-type core/n-type shell) [252,324,332] have
been employed as gas sensors. According to recent C–S nanowire gas sensors, the shell
layer selection and its deposition thickness are crucially important to tailor the performance
of the nanowire-based gas sensors [332,333].

Park et al. firstly demonstrated an exciting model to understand the sensitivity
enhancement in SnO2-ZnO C–S nanofibers [328]. As the deposition shell thickness is
comparably shorter than or equivalent to the Debye length of the shell materials, the
conducting channel can be fully depleted during the exposure to target molecules. As
a result, the conductance variation is favorably considerable compared with that of the
non-C–S structure. Katoch et al. also reported a similar result via systematically studying
the impact of shell thickness on the sensing performance of core/shell structures [330]. By
gradually changing the thickness of ZnO on SnO2 nanofibers, it was observed that the
nanofiber sensor device has the highest sensing response towards CO when 20 nm of ZnO
shell is loaded on the SnO2 nanofiber surface. Such thickness is identically close to the
Debye length of ZnO.

As shown in Figure 20a–c, by controlling the ALD growth time of the shell layer,
Choi et al. proposed a dual functional sensing mechanism in the SnO2/ZnO C–S
nanowires [327]. First, as the shell layer is thinner than its Debye length, the shell layer will
experience a large resistance modulation during the sensor exposure to reducing gas. As a
result, a substantial portion of electron transport occurs through the inner core nanowire,
which would weaken its sensing performance. Second, as the shell layer is slightly larger
than its Debye length, electrical transport will be mostly confined within the shell layer,
leading to a high modulation/response in sensing performance.
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room temperature detection of CO [341]. As shown in Figure 21(c) and 21(d), due to the 
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Figure 20. (a) Nanowire with SnO2 core and ZnO shell structure; (b) EDS of core–shell nanowire; (c) shell thickness-
dependent sensing performance towards CO, benzene, toluene, and NO2. Reprinted from reference [327] with permission
from the American Chemical Society. (d,e) Schematics of the hydrogen-sensing mechanism for In2O3 nanowires and
In2O3/ZnO C–S nanowires sensors. Reprinted from reference [334] Copyright 2011 Elsevier.
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Singh et al. have discussed carrier transport based on In2O3 nanowires and In2O3/ZnO
core–shell nanowires network devices [334]. Due to the large resistance of the polycrys-
talline ZnO shell, carriers mainly flow through the single crystalline In2O3 core. To achieve
electron transportation from nanowire to nanowire, only one potential barrier (core–core,
C/C) has to be overcome in the In2O3 nanowires device (Figure 20d), while the elec-
trons are essentially to overcome three potential barriers (core to shell (C/S), shell to shell
(S/S), and shell to core (S/C)) in the core–shell nanowire devices (Figure 20e). Owing
to the modulation of potential barriers, significant enhancements in sensor response for
the reducing gases have been achieved. This mechanism also can be used to explain the
sensing performance enhancement in other p/n and n/p types of core/shell nanowire
sensors [256,325,329,331,335].

4.4. Impurities Doping

Introducing dopants have a significant impact on the electrical and chemical properties
of semiconductor metal–oxides [336–338]. Experimental studies have proved that small
amounts of impurity additives (< 0.1 at% or lower) can significantly alter the electronic and
chemical properties of metal–oxide nanowires due to the modulation of the Fermi level
and introducing additional adsorption sites [339]. For example, Zhang et al. have studied
the oxygen vacancies doping effect in In2O3 nanowires for NH3 sensing [340]. According
to their report, via varying the concentration of oxygen vacancies in In2O3 nanowires, the
Fermi level (EF) of the In2O3 nanowires can be controlled close to the conduction band and
above the energy level of NH3 (ENH3) in a heavily doped condition, or the Fermi level (EF)
can be below ENH3 in a relatively low doping concentration. As shown in Figure 18a, when
the EF of nanowires is higher than ENH3, electrons should transfer from the nanowire to
the adsorbed NH3 and result in a reduction in the nanowire carrier concentration. When
the EF of nanowires is lower than ENH3, electrons should migrate from adsorbed NH3
to the nanowire and result in an enhanced conductance, as shown in Figure 21a,b. This
work indicates that the density of dopants can determine the signal and amplitude of
the nanowire sensor response. Moreover, Singh et al. have reported an approach to tune
the Fermi level of In2O3 nanowires via Zn doping and achieving the room temperature
detection of CO [341]. As shown in Figure 21c,d, due to the small chemical potential
gradient between the adsorbed CO molecule and Fermi level of undoped In2O3 nanowires,
there is less electron transfer (to reach equilibrium) and the nanowire-based sensor shows
a poor sensitivity to CO at room temperature. In contrast, as shown in Figure 21e,f, a
big difference of the chemical potential between the Fermi level of nanowire and CO
molecule is presented after In2O3 nanowires are doped with Zn, as a result, the Zn doped
In2O3 nanowire sensor device offers a fast (response time 20s and recovery time 10s) and
large transfer of electrons (1–5 ppm CO detection). However, due to the difficulties in
introducing impurities into single-crystalline nanowires, impurities doping is less popular
than nanoparticles decoration, branched structures, and core–shell structures for achieving
high-performance device.
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oxide case, when a sensor is exposed to the atmosphere, oxygen can be adsorbed on the 
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Figure 21. (a) I−V curves of heavily doped In2O3 nanowires device before and after exposure to 1% NH3. Inset shows the
energy band diagrams of heavily doped In2O3 and NH3 molecules; (b) I−V curves of lightly doped In2O3 nanowires device
before and after exposure to 1% NH3. Inset shows the energy band diagrams of lightly doped In2O3 and NH3 molecules.
Reprinted from reference [340] with permission from the American Institute of Physics (AIP) Publishing; (c) sensing
response of Undoped In2O3 nanowires (d) Energy band diagrams of undoped In2O3 and CO molecules; (e) sensing the
response of Zn-doped In2O3 nanowires; (f) energy band diagrams of Zn-doped In2O3 and CO molecules. Reprinted from
reference [341] Copyright 2010 Elsevier.

5. Gas Sensing Mechanism

Today, nanowire chemiresistors are being widely investigated due to their convenience
in data analysis, high accuracy, low cost, and their ability to dynamically monitor the
channel resistance/conductance variation during the exposure to the target molecules.
Generally, the sensing mechanism of chemiresistors can be divided into three types.

5.1. Ohmic-Contacted Sensing

In a traditional chemiresistor sensor, Ohmic contact is highly preferred to study the
intrinsic properties of nanowires. Generally, the classical D–L model is responsible for
the sensitivity of nanowire gas sensors, where D represents nanowire diameter (D), and L
represents the depth of the surface depletion layer (L) [342,343]. Considering the n-type
oxide case, when a sensor is exposed to the atmosphere, oxygen can be adsorbed on
the surface of metal–oxide nanowire and becomes negatively charged by the following
equations [22]:

O2(gas)↔ O2(ads) (1)
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O2(ads) + e− ↔ O2
− (ads) (<100 ◦C) (2)

O2
−(ads) + e− ↔ 2O− (ads) (100–300 ◦C) (3)

O−(ads) + e− ↔ O2− (ads) (>300 ◦C) (4)

Such oxygen-charged behavior would extract electrons and create a shell-like surface
depletion layer on the nanowire surface (Figure 22a), which can effectively modulate
channel conductivity. Moreover, due to the adsorbed oxygen ions (O− and O2−), highly
active towards reducing gas, high temperatures (>100 ◦C) are usually required to generate
oxygen ions and enhance chemical reaction. For example, when the sensor is exposed to the
gases (such as toluene, ethanol, CO, NH3, H2, methanol, shown in Equations (5)–(7) [22]),
the charged oxygen (O−) can react with these gases, and release electrons back to the
nanowire bulk. As a result, the thickness of the depletion layer is shrunk, leading to
an increase in conductance (Figure 22b). In contrast, when the sensor is exposed to the
oxidizing gases (such as NO2, O3, Equations (8) and (9) [22]), these gases can extract more
electrons from the nanowire surface. Then, the depletion layer thickness increases and
results in a reduction in nanowire conductance (Figure 22c):

CO(ads) + O−(ads)→CO2(gas)+ e− (5)

CH3CH2OH(ads) + 6O−(ads)→2CO2(gas)+ 3H2O(gas)+ 6e− (6)

H2(ads) + O−(ads)→H2O(gas)+ e− (7)

e− + NO2(ads)↔ NO2
−(ads) (8)

2e− + O3(ads)↔ O2
−(ads)+ O−(ads) (9)
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Due to its convenience in data analysis, tremendous works have used the Ohmic con-
tacted device as a platform for fundamental studies to improve the device sensing performance.

5.2. Schottky-Contacted Sensing

Recently, the Schottky-contacted nanowire sensors have attracted considerable at-
tention due to the higher sensitivity, faster sensing response, shorter recovery time, and
lower cost as compared with the conventional Ohmic-contacted nanowire sensors. In a
typical Schottky-contacted sensor (Figure 23a), the overall resistance/conductance of the
device is dominated by the Schottky barrier height (SBH), and its value is susceptible to
external stimulus. Wei et al. firstly reported a Schottky-contacted nanowire sensor for gas
molecules detection [344]. The device contains one Pt/ZnO junction (Schottky contact)
and one Pt–Ga/ZnO junction (Ohmic contact). By comparing the sensing performance of
the Schottky-contacted device and the conventional Ohmic-contacted device, it is shown
that the Schottky-contacted sensor device presents 1085 times and 8776 times sensitivity



Chemosensors 2021, 9, 41 22 of 41

improvement to oxidizing gas (O2) and reducing gas (CO), respectively. Furthermore,
the Schottky contacted sensor device exhibited a faster response and shorter reset time,
improved by a factor of 7. This new sensing concept has been extensively applied to
other metal–oxide nanowire systems such as the well-known SnO2 [345] and In2O3 [346]
nanowire-based sensors. Here, the author recommends the latest comprehensive review of
Schottky-contacted nanowire sensors presented by Meng et al. [21].
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ported in their work, SnO2 nanowires are in situ grown at the pre-deposited electrode on-
chip without using any arduous and individual lithography process. Due to self-connec-
tion with other nanowires, multiple nanowire–nanowire junctions are naturally formed 
as sensing channels. Consistent gas sensing characteristics can be seen due to the averag-
ing effect of multi nanowire connections, and high sensitivity to NO2 is obtained (Rg/Ra = 
230). Inspired by their encouraging work, other metal–oxide nanowires (ZnO, TiO2, and 
CuO) have also been applied to fabricate bridging structure sensors to combine the merits 
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Figure 23. A schematic diagram of Schottky-contacted sensors: (a) structure of a Schottky-contacted
sensor; and (b) change of Schottky barrier height and depletion region under the external stimulation.

5.3. Nanowire–Nanowire Junctions Sensing

In the case of an n-type nanowire–nanowire junction sensor, as shown in Figure 24a,
both the thickness of the electron depletion layer and the potential barrier height of the
nanowire–nanowire interface dominates the overall conductance of the device. Further-
more, if the electron depletion layer is smaller than the nanowire diameter, the potential
barrier heights of nanowire–nanowire junctions will play a crucial role in the gas sensing
performance of nanowire sensors. Similar to the Schottky-contacted nanowire devices, the
nanowire–nanowire barrier height can be decreased/increased when devices are exposed
to a reducing/oxidizing atmosphere.
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Many works have been performed using the interfacial sensing concept, not only
for the simplicity in device fabrication but also for higher sensitivity. Most importantly,
this concept also shows strong integration capability onto a sensing platform due to the
development of nanowire devices with bridging structures [246]. Park et al. firstly reported
a metal–oxide nanowire sensor with a bridging structure for NO2 detection [251]. As
reported in their work, SnO2 nanowires are in situ grown at the pre-deposited electrode on-
chip without using any arduous and individual lithography process. Due to self-connection
with other nanowires, multiple nanowire–nanowire junctions are naturally formed as
sensing channels. Consistent gas sensing characteristics can be seen due to the averaging
effect of multi nanowire connections, and high sensitivity to NO2 is obtained (Rg/Ra = 230).
Inspired by their encouraging work, other metal–oxide nanowires (ZnO, TiO2, and CuO)
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have also been applied to fabricate bridging structure sensors to combine the merits of in
situ growth and nanowire–nanowire junctions sensing [177,191,250,263,347].

6. Critical Issues for Metal–Oxide Nanowire-Based Gas Sensor Devices

Despite all the extraordinary achievements of 1D nanowire-based sensors, some
critical problems are still encouraged to be studied and investigated further to advance the
nanowire sensor from the lab to the market. Here, we mainly discuss four critical issues:
reproducibility, selectivity, stability, and energy consumption.

6.1. Reproducibility of Devices

Integrating a nanowire with contact electrodes on a platform allows us to study
the intrinsic properties of the nanowire. However, a tiny variation in the size or shape
of nanostructures will powerfully alter their physical and chemical properties. Thus,
the nanowire-based electronics would inevitably suffer from poor reproducibility. To
prevent the reproducibility issue, one easy method is to use a multiple nanowire sensor to
eliminate the individual differences among nanowires. Currently, a commercially available
fabrication process for the thin film sensor is used for the mat-like nanowire network sensor
fabrication. Zhang et al. have compared the difference in electrical properties between
single and multiple nanowire sensors [75]. It was found that all the multiple nanowire
devices possess similar and consistent characteristics such as conductance, threshold gate
voltage, and sensitivity to gas species. The fabrication of multiple nanowire gas sensors
with the bridging structure is also an alternative approach to obtain molecular sensors
with high uniformity [247]. The fabrication process in detail was described in Section 3.2.2.
Unfortunately, those sensors did not really face/solve the reproducibility issues in the
single nanowire devices. In fact, there is no difference between using multiple nanowire
devices and conventional nanoparticle devices for gas sensing despite the porous structure.

6.2. Selectivity of Device

Another critical issue is the selectivity of the sensor device. Metal–oxide nanowire
sensors generally have high sensitivity to the gas analytes, but they are also suffering
from poor selectivity. To enhance the selectivity of sensors, a widely accepted method is
introducing recognition elements on the sensing materials, for example, impurity elements
doping, nanoparticle surface decorating, core/shell heterostructure construction. In ad-
dition, operational temperature modulation and nanowire architecture altering are also
served as effective methods to improve the selectivity of the metal–oxide nanowire-based
molecular sensors toward the target gas molecules. However, the results are usually far
from prospects due to the low operational stability.

In addition, an alternative way to selectively detect the target gas molecules is to use
the sensor array, because sensor arrays combined by a number of non-selective sensors
which can acquire more information on a specific analyte than an individual sensor [348].
Subsequently, molecule information can be extracted from sensor arrays by appropriate
pattern recognition techniques, such as principal component analysis (PCA) and back-
propagation artificial neural network (BP-ANN) [349]. However, according to the research
from Chen et al., multi-component sensing combined with PCA cannot work well if the
reactions have no big difference between a specific target species and different metal–oxide
surfaces [350]. Thus, enhancing the overall sensing performance of functional materials is
the priority rather than data extraction and process. Unfortunately, this is usually not an
easy task.

6.3. Long-Term Stability of the Device

Stability, including chemical stability and physical stability, is the essential key to
open the gate for sensor practical applications. Sysoev et al. firstly pointed out that using
the nanowire network sensor can obtain long-term stable sensing performance compared
with the conventional nanoparticle sensors because nanowires can prevent nanostructure
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aggregation [351]. However, although numerous efforts are devoted to improving the
long-term stability of metal–oxide nanowire sensors, the influence of humidity, poisoning,
and new contact issues still exist to prevent such a kind of sensors from the practical
applications [47]. Steinhauer et al. reported that the sensing performance of CuO nanowire-
based gas sensors is strongly weakened with the increase in surrounding H2O [47]. This is
because the formation of the surface hydroxyl groups induced by H2O adsorption prevents
the oxygen chemisorption from the surface active sites. Meanwhile, Nakamura et al. have
noticed that a ppm-level CO2 in the air can react substantially with ZnO nanowire surfaces
even at room temperature [74]. Such a reaction will form an electrically insulating zinc
carbonate thin layer, which can critically determine the electrical stability of hydrothermally
grown single-crystalline ZnO nanowires. In addition, Zeng et al. reported a contact issue in
the conventional metal–oxide nanowire device [73]. Titanium has been most widely used
to contact typical metal–oxide (e.g., SnO2, ZnO) by counting the energy level matching
and good adhesion to the substrate, while the Ti contact can be oxidized easily, which
causes an increase in contact resistance and further degradation in sensor performance
after long-time operations under high temperature. Up to now, only a few papers have
mentioned how to achieve long-term stability for metal–oxide nanowire sensors, and it is
still remains a crucial challenge for commercialization.

6.4. Energy Consumption

An external heater is usually needed to elevate the temperature of metal–oxide gas sen-
sors for effective gas sensing, which inevitably increases the power consumption and sensor
size. There are currently two methods to solve this problem: (1) developing room temper-
ature sensing materials; (2) using the self-Joule-heat technique. As for low-temperature
sensors, tremendous progress has been made to reduce the operating temperature of the
metal–oxide nanowire sensors, such as surface modification, additives doping, UV/visible-
light irradiation. For example, Lupan et al. reported that the Pd-modified ZnO nanowires
sensor could achieve room temperature sensing for H2. However, it appears to have other
annoying troubles such as lower sensing response, longer response time, and slow recovery
rate [352]. Self-Joule-heating is a nearly ideal strategy for operating nanowire gas sensors
at ultralow power consumption, without additional heaters. Currently, it has been reported
that conducting self-Joule-heat for nanowire sensors and remarkably decrease power con-
sumption. Prades et al. have reported that the energy consumption of individual SnO2
nanowire sensor devices can be down to 20 µJ/s as self-Joule-heat is performed [218]. In
addition, the power consumption of the nanowire sensor device could be further decreased
via the pulsed self-heating technique [353]. However, recent studies on the self-Joule-heat
technique only focused on controlling the spatial thermal properties of nanowires rather
than tailoring the sensing performance of these sensors.

7. Prospective towards Metal–Oxide Nanowire Gas Sensor Electronics

As for the reproducibility of nanowire devices, we should carefully consider how
to synthesize nanowires with high uniformity. Template-assisted nanowire growth is
considered an alternative approach to achieve a highly ordered nanowire array. However,
the complexity of template fabrication, low density of nanowires, and the extensive dis-
tribution of nanowire diameter have limited the wide application of such method [354].
Recently, Zhao et al. reported a two-step method to fabricate ZnO nanowires with uni-
formly shaped structures, as shown in Figure 25 [355]. Firstly, ZnO nanowires of random
size are etched by NH4

+ as the seed layer, and then, a very similar diameter (average
about 17 nm with σ 1.3 nm, shown in Figure 25c) of ZnO nanowires are grown in the
second step, which significantly increases the reproducibility of metal–oxide nanowire.
This unique finding paves the way for the fabrication of nanowires-integrated nanodevices
with reliable performance.
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metal–organic frameworks, and mesostructured oxides with a metal–oxide nanowire [356–
358]. Canlas et al. reported a novel method to fabricate molecules imprinted oxide catalyst, 
and the fabrication process is shown in Figure 26 [359]. Using this structure, the nanocav-
ities can preferentially react with nitrobenzene rather than nitroxylene in the photoreduc-
tion model and react with benzyl alcohol rather than 2,4,6-trimethylbenzyl alcohol in the 
photo-oxidation model. This technique can be applied to the metal–oxide nanowire sensor 
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Figure 25. (a) SEM image of two-step growth ZnO nanowire; (b) SEM image of conventional
single-step growth ZnO nanowire; (c) comparison of ZnO nanowire diameter distribution grown
by single-step and two-step method; (d) the mechanism of the synthesis of monodispersed sized
ZnO nanowires from randomly sized seeds. Reprinted from reference [355] with permission from
the American Chemical Society.

Poor selectivity is a perpetually perplexing problem that limits the wide application
of the MOS gas sensor, including the metal–oxide nanowire-based sensors. Inspired
by the catalytical chemistry, it is worth considering combining porous materials such
as zeolites, metal–organic frameworks, and mesostructured oxides with a metal–oxide
nanowire [356–358]. Canlas et al. reported a novel method to fabricate molecules imprinted
oxide catalyst, and the fabrication process is shown in Figure 26 [359]. Using this structure,
the nanocavities can preferentially react with nitrobenzene rather than nitroxylene in the
photoreduction model and react with benzyl alcohol rather than 2,4,6-trimethylbenzyl
alcohol in the photo-oxidation model. This technique can be applied to the metal–oxide
nanowire sensor to gigantically improve selectivity due to their preferential interactions
with specific VOC molecules, even with a chemically similar structure.
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Solving the degradation issues, including nanowire degradation, contact degradation,
and electrode degradation, is the only way to achieve long-term stability in nanowire
devices. As shown in Figure 27a, Nakamura et al. demonstrated a strategy for achieving
the atmospheric electrical stability of ZnO nanowires [74]. Via using a thermal annealing
treatment in vacuum/air, the insulating layer induced by the unstable –OH layer on
as fabricated ZnO nanowire surface is efficiently eliminated. Such a simple and low-
cost method can enhance nanowire atmospheric stability for at least 40 days with stable
electrical properties. Meanwhile, Zeng et al. offered a way to overcome the degradation
in conventional sensor contact, as shown in Figure 27b [73]. It is found that the nanowire
device can obtain good stability for at least over 2000 hours by replacing the easily oxidized
contact metal (Ti) with heavily doped metal–oxide (antimony doped tin oxide). Moreover,
Yan et al. reported an unusual annealing process on oxide thin films for highly thermal
and chemical stability shown in Figure 27c [360,361]. It was indicated that Al-doped ZnO
(AZO) nano-thin films could efficiently suppress the inevitable crystal defect formation
in the as-fabricated thin film via sequential annealing process under air and Zn vapor
atmosphere, resulting in a stable electrical resistivity (~10−4 Ω·cm) in air, even at high
temperature (up to 500 ◦C). This thermally stable thin film can be utilized as electrodes for
gas sensors, which obtain stable performance over 250 hours compared to the conventional
Ti/Pt contact sensor. Meanwhile, the sequential annealed AZO nano-thin films also show
highly chemical stability in buffer solution (pH: 3~11) compared with non-annealed AZO
nano-thin films and ZnO thin films. These proposed strategies can successfully suppress
the electrical performance degradation of the nanowire devices and have a great potential
to be applied to various oxide nanostructures, which would give a foundation for the
designing and fabrication of oxide nanomaterial-based IoT sensors with long-term stability.
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With regard to the low power consumption, Meng et al. recently reported an excel-
lent thermal management approach in metal–oxide nanowire sensors via a pulsed self-
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ductivity of the device was reduced due to the prohibition of heat dissipation from nan-
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Figure 27. (a) Atmospherically stable ZnO nanowires via using the annealing process. Reprinted
from reference [74] with permission from the American Chemical Society; (b) gas sensor with long-
term stability via using heavily doped oxide as the contact. ATO, Sb-doped SnO2. Reprinted from
reference [73] with permission from the American Chemical Society; (c) Al-doped ZnO thin film with
thermal stability via using sequential annealing. Reprinted from reference [360] with permission
from the American Chemical Society.
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With regard to the low power consumption, Meng et al. recently reported an excellent
thermal management approach in metal–oxide nanowire sensors via a pulsed self-Joule-
heating technique, as shown in Figure 28 [220]. It was found that the thermal conductivity
of the device was reduced due to the prohibition of heat dissipation from nanowire to
surroundings, and its thermal relaxation times can be decreased down to a microsecond
range, while several tens of seconds are needed for conventional MEMS gas sensors.
This method enables the reduction in energy consumption down to ∼102 pJ/s and the
enhancement of sensitivity for electrical sensing of NO2 (100 ppb). This proposed thermal
management concept of nanowires in both spatial and time domains offers a strategy for
exploring novel functionalities of nanowire-based sensors with high performance.
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