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Abstract: Electrospun nanofibrous mats consisting of chitosan (CS) and polyvinylpyrrolidone (PVP)
were constructed. Tuning of solution and process parameters was performed and resulted in an
electrospun system containing a 6:4 ratio of PVP:CS. This is a significant increase in the proportion
of spun CS on the previously reported highest ratio PVP:CS blend. SEM analysis showed that the
nanofibrous mats with 4 wt% CS/6 wt% PVP (sample E) comprised homogenous, uniform fibres
with an average diameter of 0.569 µm. XPS analysis showed that the surface of the samples consisted
of PVP. Raman and FTIR analysis revealed intermolecular interactions (via H-bonding) between
PVP and CS. In FTIR spectra, the contribution of chitosan to CS/PVP complexes was shown by
the downshift of the C=O band and by the linear increase in intensity of C-O stretching in CS. XPS
analysis showed a smaller shift at the binding energy 531 eV, which relates to the amide of the
acetylated functional groups. The obtained results demonstrate a sensitivity of Raman and FTIR tests
to the presence of chitosan in PVP:CS blend. The chemotherapy drug 5-Fu was incorporated into the
constructs and cell viability studies were performed. WST-8 viability assay showed that exposure
of A549 human alveolar basal epithelial cells to 10 mg/mL 5-Fu loaded fibres was most effective at
killing cells over 24 h. On the other hand, the constructs with loading of 1 mg/mL of drug were not
efficient at killing A549 human alveolar basal epithelial cells. This study showed that CS/PVP/5-Fu
constructs have potential in chemotherapeutic drug delivery systems.
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1. Introduction

With advances in nanotechnology, substantial research is focused on the properties
of nanoscale materials. Electrospinning is a technique which is widely used to manufac-
ture nanofibers. Nanofibrous scaffolds have several applications ranging from filtration
to biomedical applications. Electrospun fibres and scaffolds are finding their place as
emerging devices in the delivery of cancer therapeutics [1,2]. The efficiency of electrospun
fibres can be attributed to their large surface area to volume ratio characteristics and their
3-dimensional open porous system, the properties of which allow for high levels of drug
loading and enhanced drug diffusion over time [3–5].

Chitosan (CS) is a widely studied natural polysaccharide because of its inherent
non-toxicity, biocompatibility and biodegradability, and thus has been used in numerous
biomedical applications including drug delivery [6]. While electrospinning of CS is com-
monly reported, it is notoriously difficult to electrospin and process in its pristine form. A
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common strategy used to overcome the challenges associated with chitosan is blending
with a second polymer. The second polymer acts as an attenuating factor to limit the
hydrogen bonds between chitosan chains, thus making the electrospinning of the polymer
mixture possible [7,8].

Polyvinylpyrrolidone (PVP) is an FDA-approved, synthetic, water-soluble polymer,
commonly used to make electrospun fibres [9]. There have been several reports investi-
gating the combination of chitosan and PVP for various applications [10,11]. Due to the
difficulties involved with the spinning of chitosan, it is important that a common solvent is
used for both chitosan and PVP.

The compatibility and miscibility of blends of chitosan/PVP has been previously
examined and conclusions were made that chitosan and PVP were immiscible in various
concentrations of aqueous acetic acid. Viscometry methods showed that the interactions
between chitosan and PVP were too small for miscibility predictions due to both polymers’
high affinity for solution [12].

Another study used an elevated-temperature electrospinning technique to form nanofi-
bres of chitosan and PVP. A combination of “top-down” electrospinning and “bottom-up”
molecular self-assembly was developed for preparing chitosan nanoparticles. Chitosan
and PVP were spun together at 50 ± 2 ◦C. Characterization techniques were used to show
that chitosan and PVP were mixed on a molecular scale. IR spectra showed that second-
order hydrogen bonding and electrostatic interactions played a large role in promoting
homogeneity [13].

It has been shown that toxic solvents can be eliminated from electrospun chitosan
systems by careful tuning of the solution parameters through the use of hydrolysing tech-
niques to reduce the molecular weight of chitosan [14]. The concentration of acetic acid was
reduced from 90% to 70% in comparison to other previous research [15,16] while the molec-
ular weight of electrospun chitosan was increased. Tuning the electrospinning solution
parameters is critical to achieving a robust process and consistent electrospun fibres.

Chitosan has also been used to deliver and release the chemotherapy drug 5-Fluorouracil
(5-Fu) to targeted carcinoma cells both in vitro and in vivo [17]. In one study, 5-Fu was elec-
trospun with chitosan and polycaprolactone to analyse drug release [18]. Tests here showed
that nanofibres containing more CS had a more efficient, prolonged drug release compared
to other mat compositions. Another study showed the effect electrospun CS/PVA/5-Fu
mats had on skin cancer cells [19]. Here, a controlled release mechanism was observed
over 24 h. The drug-loaded constructs were shown to decrease cell viability up to ≥50%
over 24 h. The researchers highlighted the potential for this system in drug delivery to
target Basal Cell Carcinoma (BCC) skin cancer.

To date, there has not been a systematic investigation into the room-temperature
electrospinning of high-ratio Chitosan/PVP blends for the development of an anti-cancer
drug delivery vehicle. The aim of this research is to create an ambient temperature electro-
spinning protocol for the polymer system and to examine the effect electrospinning has on
the chitosan and PVP blends. With this, the electrospun constructs will be examined for
their potential use in releasing 5-fluorouracil to target human lung carcinoma cells in vitro.

2. Materials and Methods
2.1. Materials

Low-molecular weight chitosan (mol wt 50,000–190,000) (75–85% deacetylated), tri-
fluoracetic acid, TFA (99%) and glacial acetic acid (≥99.85%) was purchased from Sigma
Aldrich. High-molecular weight PVP (mol wt 1,300,000) was purchased from VWR. Ham’s
F-12 medium, penicillin-streptomycin solution and trypsin (pure from beef pancreas) were
purchased from Fisher Scientific. Phosphate buffer saline (ultra-pure grade), Fetal Bovine
Serum (Ireland Origin) and WST-8 Cell Proliferation Assay Kit were purchased from VWR.
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2.2. Preliminary Analysis/Solubility Testing

Initial tests were performed to examine the solubility of chitosan. Electrospinning of
chitosan was unachievable using pure TFA. Glacial acetic acid was then introduced to the
system in a 9:1 ratio which saw the production of fibres (see Table S1). The parameters
that were altered were chitosan concentration, solvent and solvent concentration. Low-,
medium- and high-molecular weight chitosan was investigated for its processability. The
use of hydrolysed chitosan was also investigated. Briefly, 1 g of low molecular weight
chitosan was added to 12.5 g of sodium hydroxide and 25 mL of water. This was heated
to 95 ◦C for 48 h. After this, the chitosan was filtered off. The collected chitosan was
subsequently washed with water, neutralized with acetic acid, rinsed again with water and
then finally dried for 16 h at 16 ◦C. A range of solutions of different hydrolysed chitosan
concentrations was made up in 90% acetic acid.

2.3. Chitosan-PVP Solutions

To create chitosan-PVP solutions, 6 wt% PVP was dissolved in TFA:acetic acid in a
9:1 ratio. This was stirred at room temperature for 3 h. Several solutions were made using
6 wt% PVP and chitosan in 9:1 TFA:glacial acetic acid. The concentrations of chitosan in
solution were as follows: 0%, 1%, 2%, 3%, 4%. These solutions were stirred for 8 h at room
temperature to ensure full homogeneity. The samples were labelled from A through to E,
with A containing 0% CS 6% PVP, B containing 1% CS 6% PVP, C containing 2% CS 6%
PVP, D containing 3% CS 6% PVP and E containing 4% CS 6% PVP (Table S1).

Chitosan-PVP-5-Fu Solutions

New 4 wt% CS/6 wt% PVP solutions were developed using the solvent system as
above. 5-Fu was added to make three separate solutions in total. These were 1 mg/mL,
5 mg/mL and 10 mg/mL of drug in each CS/PVP solution.

2.4. Electrospinning Procedure

Each sample was loaded into a 5 mL syringe. This was then attached to the SprayBase®

pump system. Luer Lock tubing was connected to the end of the syringe. The other end of
the tubing was connected to an 18-gauge needle, which was held in place on the SprayBase®

electrospinning system. The voltage was set at 15 kV, while the tip-collector gap was set at
15 cm. A flow rate of 0.1 mL h−1 was used to collect the electrospun fibres. The fibres were
collected for three hours on aluminium foil on a flat plate collector. The fibres were then
dried at 123 ◦C for 18 h in an oven.

2.5. Characterization

Each CS/PVP sample was removed from their aluminium foil and stored in air-tight
tubes. Zeiss Gemini Ultra was used to perform Scanning Electron Microscopy (SEM) on
each sample. ImageJ software was used to perform fibre diameter measurements, where
30 random fibres of each sample were measured. XPS analyses were performed on a
ThermoFisher Scientific Instruments (East Grinstead, UK) K-Alpha+ spectrometer. XPS
spectra were acquired using a monochromated Al Kα X-ray source (hν = 1486.6 eV). An
X-ray spot of ~400 µm radius was employed. Survey spectra were acquired employing a
Pass Energy of 200 eV. High resolution, core level spectra for all elements were acquired
with a Pass Energy of 50 eV. All high-resolution spectra were charge referenced against
the C1s peak at 285 eV to correct for charging effects during acquisition. Quantitative
surface chemical analyses were calculated from the high resolution, core level spectra
following the removal of a non-linear (Shirley) background. The manufacturers Avantage
software (Thermo Fisher Scientific, Waltham, MA, USA) was used which incorporates the
appropriate sensitivity factors and corrects for the electron energy analyser transmission
function. Raman measurements were carried out in backscattering geometry using a
Renishaw 1000 micro-Raman system with motorized positional stage and Leica microscope.
A He-Ne laser at wavelengths of 633 nm at a power of <10 mW (at the laser output) was
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used as the excitation source. The power was kept low to prevent the sample overheating.
To reduce power further, laser filters were used with 50% of transmittance from the original
laser power. The laser spot was focused on the sample surface (deposited onto cleaned
Silicon wafer) using 50× magnification objectives with a long focus working distance.
Since the angle of the scattering light cone with this objective is smaller than one obtained
with short focus working distance objectives, the registered spectra even at a long time of
signal accumulation (400 s) were relatively weak. Additionally, to register any spectrum
reliably, it was necessary to focus the laser light on a single fibre and this resulted in low
spectral intensity. Finally, Shimadzu IRAfinnity-1S was used to perform Fourier Transform
Infrared Spectroscopy (FTIR) analyses using MIRacle 10 Single Reflection Attenuated Total
Reflection (ATR) Accessory. The instrument was set at 100 runs to collect spectra in the
region of 900–3900 cm−1 and 900–1900 cm−1.

2.6. Cell Culture

A549 cells were cultured with Ham’s F-12 medium containing 10% fetal bovine serum
and 1% penicillin: streptomycin at 37 ◦C with an atmosphere of 95% air and 5% CO2. Cells
in the logarithmic stage of growth were used for analysis.

Cell Viability Assay

Cell viability was determined using a Water-Soluble Tetrazolium-8 (WST-8) assay.
Cells were seeded in a 96-well flat-bottomed plate at a density of 8 × 104 cells/mL with
100 µL per well. They were then incubated for 24 h and following this, exposed to electro-
spun constructs for an additional 24 h. After treatment, all media was removed from the
cells. 100 µL of fresh media was added to the wells along with 10 µL of the WST-8 reagent.
The plate was then incubated for two hours at 37 ◦C in a 5% CO2 incubator. The plate was
read at 465 nm using a microtiter plate reader. At least three replicates were performed for
each test.

3. Results and Discussion
3.1. Electrospinning of Chitosan/PVP

Both solution and process parameters play a vital role in achieving the electrospinning
of any polymer. Blend electrospinning is a common way of combining two polymers
with desirable characteristics and a facile way of incorporating therapeutics into the resul-
tant systems.

Prior to the preparation of blends, an initial investigation of set system parameters was
performed. Electrospinning of PVP alone at a concentration of 6% with process parameters
of 15 kV voltage, 15 cm tip collector gap and a flow rate of 0.1 mL/h resulted in PVP
fibres which were homogenous with good morphology. Chitosan was then systematically
introduced into the blend and each Chitosan/PVP blend was electrospun keeping the
initial process parameters consistent (Table S1).

3.1.1. Tuning of Chitosan/PVP Blend Solution Parameters

A series of blends of PVP and chitosan were electrospun in a solvent system of TFA
and Acetic Acid in the ratio of 9:1. The polymer concentrations were as follows: (A) 0%
chitosan 6% PVP, (B) 1% chitosan 6% PVP, (C) 2% chitosan 6% PVP, (D) 3% chitosan 6% PVP
and (E) 4% chitosan 6% PVP. While fibre formation could be achieved based on these PVP
and chitosan concentrations, instrument parameters were next investigated and refined
accordingly to produce a stable ejection of fibres from the electrospinner (Table S2).

3.1.2. Investigation of the Electrospinning Process Parameters on Fibres

Good-quality fibres were produced by setting the voltage to 15 kV, tip-collector gap
to 15 cm and flow rate to 0.1 mL/h−1, which resulted in a steady/stable jet ejection being
emitted from the Taylor Cone located at the needle tip. PVP concentration could not be
raised above 6%, while the chitosan concentration could not be raised above 4% since fibres
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were not formed when concentrations were raised above these values. It was necessary to
use low molecular weight chitosan (mol. wt. 50,000–190,000) to eliminate the possibility
of the solution becoming gel-like. The solvent system best suited was deemed to be TFA
and acetic acid in a 9:1 ratio. It was necessary to set voltage at 15 kV; any higher distorted
the Taylor Cone and any lower removed the Tylor Cone completely. The tip-collector gap
was set at 15 cm while the flow rate was set at 0.1 mL/h−1. This is a very slow flow rate
which is important for the formation of chitosan/PVP fibres. A faster flow rate, as seen
above, produces droplets from the Taylor Cone. It is also worth noting that the effect of
temperature and humidity was initially studied and there were no significant changes to
the spinnability of the polymers in our room-temperature setup.

3.2. Characterization of Electrospun Blends

Characterization of the CS/PVP fibres resulting from the electrospun blends was
carried out by SEM, XPS, Raman and FTIR spectroscopy.

3.2.1. SEM Analysis

Each fibrous scaffold (A, B, C, D and E) was sputter-coated and analysed using scan-
ning electron microscopy. Images were obtained for magnifications at 5 K (see Figure 1).
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Figure 1. SEM images under 5K magnification for samples (A): mean fibre diameter ± stan-
dard deviation (µM) = 0.426 ± 0.115 (B): mean fibre diameter ± standard deviation (SD)
(µM) = 0.659 ± 0.437 (C): mean fibre diameter ± SD (µM) = 0.795 ± 0.416 (D): mean fibre diam-
eter ± SD (µM) = 0.531 ± 0.205 (E): mean fibre diameter ± SD (µM) = 0.569 ± 0.219, n = 30 and (F)
summary of average diameter and morphology of each sample.

The mean fibre diameter for sample A (6% PVP, 0% chitosan) was found to be 0.426 µm
(SD of 0.115) after taking measurements of 30 random fibres. The mean fibre diameter is
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low since there is only PVP present. In theory, it is expected that the lowest concentration
of polymer would produce the smallest diameter fibres, as is the case here. As shown by
Yuya et al. [20], electrospinning of PVP with various concentrations leads to different fibre
diameters. The article describes electrospinning PVP at 8%, 10% and 12% PVP, resulting in
an average fibre diameter of 0.7, 0.9 and 1.2 µm, respectively. The mean diameter here of
0.426 µm, for sample A (6% PVP), may correlate with their analysis, which may mean that
PVP alone is present in this sample. The highest concentration of polymer often suggests
the highest average fibre diameter [21], however this is not the case here. The previous
literature has suggested a non-linear relationship between solution concentration and fibre
diameter [22]. This may be due to a lack of beading and heterogeneities present in samples
D and E, thus presenting a narrower and smoother fibre.

3.2.2. XPS Analysis

XPS analysis gave a thorough indication of the surface composition of the fibrous
composites along with the atomic percentage composition and electron configuration of
the specified electrons within the atom. Each scaffold presented mainly C 1s, N 1s and O
1s characteristics (see Table 1). With regard to C 1s, N 1s and O 1s, there were no major
chemical shifts that indicate the presence of CS on the surface of the materials. There are a
couple of reasons why it was difficult to establish the presence of CS. CS is used in a smaller
minority in the blend compared to PVP, with the highest being 4% CS, compared to that of
6% PVP. Additionally, in terms of the molecular weights used, PVP had a molecular weight
of 1,300,000. This is a factor of 6.84 to 26 times higher in comparison to that of chitosan (mol
wt 50,000–190,000). It may be possible that the surface of the fibrous composites is deficient
in CS. Additionally, in terms of the XPS analysis, the ketone functional group (C=O) in PVP
may be masking the polysaccharide backbone oxygen in chitosan. In addition, N-C=O
groups in PVP may be masking the non-protonated amine or amide contained within
chitosan, which one would expect to see at approximately 399.3 eV [23].

Table 1. XPS analysis showing the elemental composition of samples A–E.

Element
Sample (%)

A B C D E

C 1s 67.75 72.02 71.60 71.33 71.98
N 1s 6.17 9.44 9.28 8.55 8.31
O 1s 19.99 15.41 16.38 17.86 17.91
F 1s 0 2.22 2.11 0 0

Samples B and C contained 2.22% and 2.11%, respectively, of F 1s (see Figure 2). The
reason for this was due to residual of TFA molecules on the fibres. As the concentration
of chitosan increases from 1% through to 4%, there were no significant chemical shifts
regarding the C-C or C=O bonds (see Figure 2). This means it is difficult to highlight the
presence of chitosan within the sample.
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Figure 2. (a) The C 1s spectra of samples: A, B, C, D and E, (b) the N 1s spectra of samples A, B, C, D
and E, (c) the O 1s spectra of samples A, B, C, D and E and (d) F 1s of samples A.B and C.

At approximately 531 eV, it is possible to see the presence of N-C=O groups within
only sample A and E, which are 0% CS and 4% CS, respectively. These relate to the amide
carbonyl group found within PVP. There were no significant chemical shifts regarding the
C=O and N-C=O groups as the concentration of chitosan increased from 0% to 4%. Previous
literature stated that the oxygen of the polysaccharide backbone in chitosan should be
located at approximately 532.7 eV [23]. Additionally, a smaller shift was seen at 531 eV,
which relates to the amide of the acetylated functional groups. While XPS proved beneficial
in analysing the surface composition of each fibrous scaffold, it was difficult to pinpoint
the exact location of chitosan.

3.2.3. Raman Analysis

Raman spectra registered in the region 300–1750 cm−1 of samples A–E with different
CS content are shown in Figure 3a. The spectra were baselined, normalised to the intensity
of the band at ~1670 cm−1 and then shifted along the Y-axis for convenience of presentation.
From first glance, all spectra shown in Figure 3a demonstrate vibrational bands typical for
PVP fibres (compare with the spectrum labelled as 0%) with the following major bands
assignment: ring C-C vibration at 753 cm−1, C-C vibrations at 850 cm−1, C-C ring breathing
at 934 cm−1, C-C- backbone at 1023 cm−1, CH deformation at 1372 cm−1, CH2 scissoring
at 1495 cm−1 and amide carbonyl (C=O) stretching vibrations at ~1670 cm−1 [24–27].
Similar band positions were observed earlier in different papers devoted to Raman study
of complex PVP fibres [28,29].
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beside each of the curves. (b) The dependence of C=O band position, obtained after band fitting, vs.
CS content. Peak at 520 cm−1 in (a) marked by asterisk is attributed to Si wafer.

However, more detailed analysis revealed that the position of the C=O band is down-
shifted gradually with the increase in CS content and approaching the shift of 13 cm−1 for
sample E (40% CS and 60% PVP) (see Figure 3b). This shift is due to the hydrogen bonding
(H-bonding) between PVP and CS molecules. Similar shifts in Raman spectrum of different
polymer blends and complexes were demonstrated in the literature [29–32]. In particular,
the significant downshift of carbonyl band was attributed by Hao et al. [31] to H-bonding
in complex Gantrez/PVP. The authors provided a detailed explanation why these polymers
can form the H-bonding in complex while it does not exist in their pure states. In addition
to that, Suknuntha et al. [33] performed a molecular modelling simulation to identify the
interacting molecular groups in CS/PVP blends and concluded that the most favourable
site for H-bonding formation is with the oxygen atom of C=O group of PVP. The H-bonding
with C=O groups in PVP can be formed by the –OH and –NH2 groups from chitosan. In
addition to H-bonding, CS and PVP may also interact with each other through electrostatic
interactions between the negatively charged PVP oxygen atom (N+ = C-O-) and the ioniz-
able amino group of CS [13,34]. Further support for the effect of CS presence on CS/PVP
fibre composite was obtained from considering the range of spectra of 2730–3100 cm−1

representing the CH and CH2 stretching vibrations bands [26,28,35], see Figure 4a,b. This
spectral range fitting with three vibrational bands is shown in Figure 4a for sample A (0%
CS), while it is shown in Figure 4b for sample E (4% CS in CS/PVP fibre composite). This
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spectral range has been investigated in various works [32,35–43] for extracting different
characteristics of complex blends and macromolecules, including the order/disorder of
acyl chain, the degree of acetylation (DA) and degree of deacetylation (DD).
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In our case, we suggest using the ratio of high-frequency bands to demonstrate the
contribution of the presence of CS to the vibrational band at ~2930 cm−1 with respect to
the band at 2981 cm−1. It was noted that CS/PVP composites show a complex region
of CH and CH2 stretching vibrations with contribution from both type of molecules [36].
Therefore, the ratio of intensities I2930/I2981 was chosen to characterise the influence of
the addition of CS on Raman spectra of CS/PVP composite. This is in accordance with
the literature; the CH stretching bands of stronger intensity appears in CS at ~2885 and
at ~2930 cm−1 [35,37,38], while in PVP fibres, the most intense bands, depending on
molecular weight and state of PVP, are located in the range 2822–2830, 2875–2890, and
2940–2980 cm−1 [24,29]. Pure PVP of high molecular weight (K30) shows the most intense
CH stretching bands in the Raman spectrum at 2880, 2930 and 2980 cm−1 [25]. We believe
that the ratio of peak intensities (I2930/I2981) or integrated intensities (A2930/A2980) can
be considered as a measure of the CS content in the CS/PVP fibre composite, based on
the fact that the contribution to the intensity of band at ~2830 cm−1 will be provided by
both types of molecules, while the band at 2981 cm−1 is mainly due to the contribution
of PVP molecules. Figure 5a,b show the dependence of intensity ratios (A2930/A2981) and
(I2930/I2981) vs. CS content. It can be seen that these ratios increase in linear range with the
increase in CS content from above 1% CS. Figure 5c shows the dependence of the position
of the peaks, obtained during the fitting and support that the fitting of these complex bands
was performed reliably.
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In addition to the changes observed in Raman spectra of PVP/CS fibre composites at
the increase in CS content, relatively small shifts in the peak position of some other bands
were also observed. In particular, the band of pyrrolidone group shifted from 1424 cm−1 in
sample A (at 0% CS) to 1427 cm−1 in sample E (at 4% CS); the CH bending band seen at
1371 cm−1 in sample A (0%CS/6%PVP) shifted to 1374 cm−1 in sample E (4%CS/6% PVP).

Therefore, we can conclude that despite initial analysis showing that a small per-
centage presence of CS in PVP does not affect the Raman spectra significantly, a more
detailed analysis of band position and deconvolution of some complex bands can result
in reliable information on CS content in CS/PVP composite fibres. One of the differences
in larger contribution from CS molecules to the higher-frequency range of Raman spectra
(2730–3100 cm−1) could be because the intensities of Raman bands for CS in this region
are much stronger in comparison with the low-frequency region. This follows from our
measurements and correlates with previous studies [37,38].
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3.2.4. FTIR Spectroscopy

Due to the presence of environmental moisture when using our ATR-FTIR setup, the
measured IR spectra in the regions from 1300 cm−1 to 2000 cm−1 and around 3000–3900 cm−1

are modulated by the narrow rotational bands of water (see examples shown in Figure 6a).
Therefore, we mainly focus our discussion on the region 900–1300 cm−1, where some
vibrational bands typical for CS may present [12,39–43]. Before moving to this discussion,
it is worth noting that the carbonyl band (C=O), which can be seen clearly in Figure 6a, is
gradually downshifted from its original position at 1661 cm−1 in sample A to 1557 cm−1 for
sample E. This confirms the influence of intermolecular interactions (namely H-bonding) on
the position of C=O band and was previously described in a number of papers [13,29,43,44]
devoted to FTIR investigation of polymer fibre composites and blends. As was reported in
earlier studies of different research groups [29,45,46], the H-bonding in complex polymers
is considered to be strong if the carbonyl band position is located below 1661 cm−1. This
is also in agreement with the Raman data described above; however, the downshift of
C=O band in FTIR spectra of the investigated CS/PVP fibre composites is not as dramatic.
One of the reasons for this difference may lie in the fact that during micro-Raman spec-
troscopy investigations, a laser beam (of 1–2 µm in diameter) was focused on one fibre, and,
therefore, only a small area of the sample surface was tested, whereas in case of ATR-FTIR
measurements, the signal from a much larger surface and depth of sample was collected
and averaged.

In general, the bands at 1000–1200 cm−1 are attributed to the saccharide structure of
chitosan and seen in particular at 1154, 1073 and 1032 cm−1 [40] in pure CS. FTIR spectra,
truncated in the region of 900–1370 cm−1, for all investigated CS/PVP composites, are
shown in Figure 6b. From this figure it is clear that even at 1% CS, some additional bands
to that, demonstrated in the IR spectrum of 0% CS, appear in the region 1000–1100 cm−1,
as well as some noticeable changes in peak positions and relative intensity of vibrational
bands in the region 1100–1200 cm−1. In particular, C-C stretching is located at 1131 cm−1,
while skeletal vibrations involving the C-O stretching typical for CS saccharide structure
are observed at 1030 and 1076 cm−1 [39–42]. The behaviour of these bands, as well as
the band at 1175 cm−1 was analysed versus CS content after fitting the spectra in the
range 900–1300 cm−1 using Renishaw Wire 3.2 software (see examples in Figure 7a,b). The
results extracted from the spectral fitting are summarized in Figure 8a–d. In particular,
the dependence of the absorbance peak intensity vs. CS content is shown for C-O band
at 1030 cm−1 in Figure 8a, while the integrated intensity of the band at 1076 cm−1 vs. CS
content is shown in Figure 8b. Both graphs demonstrate a linear increase in band intensity
when the CS content is increased. In addition to that, the band at around ~1130 cm−1

shows the downshift from its original position at 1137 cm−1 for 0% of CS to 1130 cm−1 for
sample E (4% CS/6%PVP). Only a slight increase in the intensity of this band is seen from
Figure 8c.
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In addition, the band at 1178 cm−1 demonstrates a slight downshift to 1175 cm−1

and a significant increase in integrated intensity vs. CS content (Figure 8c). In accordance
with FTIR bands assignment, the vibrational bands in this region may belong to CH2 twist
in PVP molecules [24] and to the antisymmetric stretching of C-O-C bridge [40,43], to
C-C stretching vibration [41] and to some combinational bands [35] in chitosan. At the
same time, it can be also seen from Figure 7a,b that the vibrational band at ~1200 cm−1,
which exists in the original spectrum for sample A (0%CS/6%PVP composite), does not
demonstrate a significant change in the peak position or the peak intensity at higher CS
content. This band can be used as a reference for estimating the ratio of peak intensities in
order to prove the increase in intensity for band at 1175 cm−1. The graph of dependence
of the integrated intensities ratio of band A1175 to typical PVP band at 1200 cm−1 (i.e.,
A1175/A1200) vs. CS content was plotted in Figure 8d. As can be seen from Figure 8d, this
ratio also demonstrates a reasonable linear dependence with increasing CS content and
confirms that the band fitting procedure was reliable.

Therefore, based on FTIR spectral analysis, we can not only get the confirmation on
the presence of CS in CS/PVP fibre composites but also a quantitative estimation of the
CS content using reference linear dependence of the intensity of C-O bands at 1030 and
1076 cm−1. FTIR investigation also provides a solid support to the conclusion drawn in the
previous Section based on Raman data.

It should be noted here that in the FTIR spectra of the PVP and CS electrospun
fibres, the intensities of high-frequency bands are much lower than the intensities of low-
frequency vibrational bands which is opposite to the case in the Raman spectra discussed
in Section 3.2.3 (see also [24,30,35,37]).

3.3. Drug Incorporation

5-fluorouracil is an anti-cancer drug commonly used for the treatment of cancer
relating to the human colon, stomach, oesophagus, etc. It was chosen as a model therapeutic
to load into the CS:PVP system due to its hydrophilicity and the hydrophilicity of the
polymers. This should help the miscibility of the blend and thus loading capacity in the
fibres. 5-Fu at different concentrations was added to the 4:6 CS:PVP blend and electrospun
using instrumentation parameters of; 15 kV, 15 cm tip-collector gap, 0.2 mL/h−1 and
an 18-gauge needle. The 4:6 CS:PVP blend was chosen here as it contained the highest
concentration of CS. This is critical for improving the biocompatibility and drug loading
properties of the composite.

Cell Viability Study

A549 human lung epithelial adenocarcinoma cells were chosen as a model cell line
to analyse the cytotoxicity of electrospun constructs containing CS/PVP, along with 5-Fu
loaded CS/PVP constructs (1, 5 and 10 mg/mL). A WST-8 assay was chosen for cell viability
analysis. Following exposure of the cells to electrospun constructs for 24 h, there was no
statistical difference between cells alone and the CS/PVP construct, as seen in Figure 9,
meaning that the CS/PVP construct did not have a toxic effect on the cells. Research has
shown that CS containing nanofibres have “remedying effects” when exposed to normal
cells which have been previously exposed to 5-Fu [47]. Additionally, studies have shown
that CS containing electrospun nanofibres were non-toxic to cells [48] in agreement to the
results we have obtained. Research has also detailed the non-toxic effect of CS within a
polymer matrix (PVA and PLA in this case) towards MCF-7 breast cancer cell lines [49].
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Figure 9. Cell viability measured using a WST-8 assay after 24 h exposure to constructs (37 °C, 5% 
CO2). Absorbance was measured at 485 nm; high absorbance indicates high cell viability. Groups 
containing 1, 5 and 10 mg/mL all contained 5-Fu. Here, * denotes statistical significance between 
control groups and experimental groups containing 5-Fu. # denotes statistical significance between 
concentrations of 5-Fu in the CS/PVP groups. Two sample t-test, p < 0.05, n = 3. 
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creased (strong negative correlation (no significant) by Pearson’s correlation test; r = −0.86, 
p = 0.06), we can ascertain that the cell death is due to drug release alone. There was also 
a statistical difference between the 1 and 10 mg/mL 5-Fu containing groups—1 mg/mL 5-
Fu was not a high enough concentration to kill cells efficiently. Generally, over 24 h, 5-Fu 
is released by an initial burst followed by a slower release phase [50]. The release mecha-
nism of 5-Fu from nanofibres is generally through a Fickian diffusion mechanism [18,19]. 
Release is related to the diffusion or permeation of the drug through nanofibre mat ma-
trices [18,49]. It has been shown that the inclusion of CS and PVP in a 5-Fu delivery system 
can increase drug exposure time in comparison to 5-Fu only [51] as well as greatly inhib-
iting tumour growth [51–54]. 

Further analysis of the 24 h WST-8 assay shows that the cell viability decreased from 
96.93% to; 56% (1 mg/mL), 52.35% (5 mg/mL) and 31.48% (10 mg/mL), as seen in Figure 
10. There is a strong negative correlation between drug concentration and cell viability, as 
identified by Pearson’s correlation test [55], but it is not statistically significant owing to 
the small number of x-variables (r = −0.84, p = 0.07). Overall, 10 mg/mL drug concentration 
was most efficient at killing cells. It has been reported that CS containing 5-Fu composites 
decrease cell viability of cancer cells up to ≥50% over 24 h [19]. Other analysis has shown 
that it may take up to 48 h to efficiently kill ≥50% of liver cancer cells (HepG2) in electro-
spun CS/5-Fu delivery vehicles [56]. A 30% viability due to 5-Fu release at 24 h, as seen in 
our study, concurs with other published studies; 5-Fu release from chitosan grafted 
poly(N-vinylcaprolactam) to PC3, KB and MCF7 cancer cell lines showed similar toxicity 
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Figure 9. Cell viability measured using a WST-8 assay after 24 h exposure to constructs (37 ◦C, 5%
CO2). Absorbance was measured at 485 nm; high absorbance indicates high cell viability. Groups
containing 1, 5 and 10 mg/mL all contained 5-Fu. Here, * denotes statistical significance between
control groups and experimental groups containing 5-Fu. # denotes statistical significance between
concentrations of 5-Fu in the CS/PVP groups. Two sample t-test, p < 0.05, n = 3.

Statistically, there was a difference between the control groups (cells alone and CS/PVP
construct) and both the 5 and 10 mg/mL 5-Fu containing group, which means at both
of these concentrations, the drug was efficient at killing cells (Figure 9). The construct
containing 1 mg/mL drug also showed increased cell death compared to controls, but
this was not statistically significant—1 mg/mL 5-Fu was not a high enough concentration
to kill cells efficiently. Due to the statistical difference in cell death between drug loaded
and non-drug loaded groups, and the increase in cell death as the drug concentration
is increased (strong negative correlation (no significant) by Pearson’s correlation test;
r = −0.86, p = 0.06), we can ascertain that the cell death is due to drug release alone. There
was also a statistical difference between the 1 and 10 mg/mL 5-Fu containing groups—
1 mg/mL 5-Fu was not a high enough concentration to kill cells efficiently. Generally,
over 24 h, 5-Fu is released by an initial burst followed by a slower release phase [50].
The release mechanism of 5-Fu from nanofibres is generally through a Fickian diffusion
mechanism [18,19]. Release is related to the diffusion or permeation of the drug through
nanofibre mat matrices [18,49]. It has been shown that the inclusion of CS and PVP in a
5-Fu delivery system can increase drug exposure time in comparison to 5-Fu only [51] as
well as greatly inhibiting tumour growth [51–54].

Further analysis of the 24 h WST-8 assay shows that the cell viability decreased
from 96.93% to; 56% (1 mg/mL), 52.35% (5 mg/mL) and 31.48% (10 mg/mL), as seen
in Figure 10. There is a strong negative correlation between drug concentration and cell
viability, as identified by Pearson’s correlation test [55], but it is not statistically significant
owing to the small number of x-variables (r = −0.84, p = 0.07). Overall, 10 mg/mL drug
concentration was most efficient at killing cells. It has been reported that CS containing
5-Fu composites decrease cell viability of cancer cells up to ≥50% over 24 h [19]. Other
analysis has shown that it may take up to 48 h to efficiently kill ≥50% of liver cancer
cells (HepG2) in electrospun CS/5-Fu delivery vehicles [56]. A 30% viability due to 5-Fu
release at 24 h, as seen in our study, concurs with other published studies; 5-Fu release
from chitosan grafted poly(N-vinylcaprolactam) to PC3, KB and MCF7 cancer cell lines
showed similar toxicity levels at 24 h for a 1 mg/mL loaded chitosan sample [54]. The
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viability of MCF7 breast cancer cells exposed to electrospun chitosan composites containing
5-Fu showed 60% viability after 24 h, but viability decreased further over time and was
dependent on the composite materials and processing parameters [50].
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The inclusion of a higher CS content in a polymeric blend has been shown to improve
drug loading and release properties. This is because of interactions between CS and 5-
Fu [18]. Following the above fibre production protocol that we developed, we achieved
fibres containing a high ratio of CS to PVP (4:6) which shows good potential for use in a
drug delivery system. Moving forward, a concentration between 5 and 10 mg/mL 5-Fu will
be chosen to exploit the cytotoxic properties of the material for cancer research. The biggest
limitation to the work is in converting our in vitro results to the in vivo scenario. To move
forward, our electrospun constructs will be made using our chosen ‘tuned’ parameters
to the relevant anatomical size and re-assessed for drug release and cell viability in a
scaled-up culture system. An in vivo study investigating 5-Fu release from electrospun
PLLA mats used tumour-bearing mice; drug loaded electrospun mats were surgically
implanted onto the tumour site and the tumour size assessed daily. The drug loaded
mats showed increased tumour suppression and necrosis and increased survival time in
treatment groups compared to control groups and results correlated with the preceding
in vitro work performed [3]. Therefore, it is encouraging that our in vitro work outlined
here will translate to a clinical application as we advance our research.

Note, that the additional information on drug release profile and degradation rate
study is provided in the Supplementary Materials Section.

4. Conclusions

Overall, sample E, containing 4% chitosan and 6% PVP, proved to be the best perform-
ing fibres and presented characteristics of unaltered chitosan and PVP. This sample was
achieved under the following electrospinning protocol; voltage set at 15 kV, tip-collector
gap set at 15 cm with a flow rate of 0.1 mL h−1. The content of chitosan incorporated in the
fibres is very significant. This concentration of chitosan is higher than anything that has
been reported in the previous literature when forming a blend with another polymer [13,57].
Chitosan and PVP presented un-altered features post-electrospinning.

The SEM results show that the morphological structure of sample E fully homogenous
with no heterogeneities (i.e., beads) observed within the investigated structure. XPS showed
that the surface composition of the materials contained PVP. However, intermolecular
interactions (via H-bonding) between PVP and CS molecules analysed in Raman and FTIR
data indicate the presence of CS within the samples. In terms of cell viability studies,
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constructs containing 10 mg/mL of the drug were the most efficient at killing cells over
24 h. The constructs containing 1 mg/mL of the drug were not efficient at killing cells. The
study concludes that chitosan-based electrospun constructs have potential in the use of
drug delivery systems. Further research would be performed to optimise drug delivery of
chitosan/PVP/5-Fu constructs to human lung cancer cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9040070/s1, Figure S1. 5-Fu released (µg/mL) from samples 1 mg/mL, 5 mg/mL
and 10 mg/mL at 3, 24- and 48-h time points; Figure S2. Cumulative release of 5-Fu (µg/mL) from
samples 1 mg/mL, 5 mg/mL and 10 mg/mL 5-Fu after 3, 24 and 48 h; Figure S3. Cumulative drug
release (µg/mL) vs % cell viability at each concentration (0, 1, 5, 10 mg/mL); Table S1. Concentrations
of PVP and CS in specific solvent systems along with the electrospinning results obtained; Table S2.
instrumentation parameters that have been tested to produce robust electrospun fibres.
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