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Abstract: A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based
method is proposed for the quantitative determination of the spatial distribution of metal nanoparti-
cles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns
and the data are used to define three-dimensional functions describing the spatial distribution of NPs.
The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of
Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS
analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be
performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requir-
ing the extraction/dissolution of metal NPs. The proposed approach is here tested using a model
sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving
high spatial resolution over cm2-sized samples and very high sensitivity. The developed method
is accordingly a useful analytical tool for applications requiring both the total mass and the spatial
distribution of metal NPs to be determined without damaging the sample surface (e.g., composite
functional materials and NPs, decorated catalysts or electrodic materials).

Keywords: laser ablation; ICP–MS; LA–ICP–MS; metal nanoparticles; metal deposition; calibration;
silver; supersonic cluster beam deposition; trace elements

1. Introduction

The deposition of metal nanoparticles (NPs) on the surface of solid supports is an
increasingly used strategy to produce functional materials for many applications including
catalysis [1–3], sensing devices [4–6] and electronics [7,8]. A wide variety of deposition tech-
niques, such as sputtering [9,10], pulsed laser deposition [11,12], photo-deposition [13,14],
electro-deposition [15,16], precipitation [17,18] and drop-casting [19,20] are described in
the literature. The variety of metal deposition strategies leads to a great difference in the
mass, size, geometry and spatial distribution of deposited NPs. Moreover, the experimental
conditions (pressure and temperature) and the nature of the substrate (its morphology and
wettability) have a noticeable effect on NP deposition.

Most of the above-mentioned strategies ideally lead to the homogeneous deposition
of metal NPs [21], but physical sputtering and laser-induced direct deposition can gen-
erate non-homogeneous NP distributions [22,23], especially over large-sized supports.
Variations in NPs’ spatial loading are often intentionally induced, as they can positively
affect optical and electronic properties of the composite material and, consequently, its
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performances for electrochemical and catalytic applications [23–25]. Analytical tools to
quantitatively determine the spatial distribution of NPs over a given substrate are accord-
ingly highly desirable.

These investigations are commonly based on qualitative morphological observations
by scanning electron microscopy (SEM). The latter has the advantage to be non-destructive,
but it is extremely time-consuming and requires an unpractical very high number of
images to be acquired when medium or large sized samples must be studied. Information
about the elemental distribution may be achieved by coupling an energy dispersive X-
ray spectrometer with SEM (SEM–EDS), but the analyzable sample size is again strongly
limited. In any case, EDS analysis is totally inappropriate to perform quantitative analyses
for two main reasons: (i) it is quite difficult to obtain reliable calibrations in the form signal
vs. absolute quantity; (ii) the poor detection limits of EDS (around 0.1%–0.5% wt.) makes
the detection of limited amounts of NPs very difficult, even if they are clearly visible in
SEM images [26]. Summing up, SEM-based analysis provides indications only on the local
NPs’ density over microscopic portions of highly loaded samples.

As opposite, extraction/dissolution and acid assisted digestions followed by quan-
tification by sensitive instrumental methods are commonly employed to gain useful in-
formation even for very low metal loadings [27,28]. Nevertheless, this approach is clearly
destructive and it provides no information about the NPs’ spatial distribution. Alter-
natively (but more rarely), mass sensitive piezoelectric devices, such as quartz crystal
microbalances, can be employed to monitor down to nanograms of loaded metal when
vacuum deposition techniques are used [29,30]. In this case, the integrity of the sample is
preserved, but information regarding the spatial distribution of metal NPs is still missing.

Laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) seems a
promising candidate to quantitatively investigate NPs’ spatial distribution. LA–ICP–MS
is an increasingly employed method for the direct analysis of trace elements in/on solid
materials and finds application in many research fields, e.g., biology [31], environmental
science [32], dendrochemistry [33], medicine [32], geoscience [34] and cultural heritage [35].
Recent advancements in the design of LA–ICP–MS instrumentation made possible the
achievement of very good spatial resolution and high sensitivity, enabling the detection
of trace elements over surfaces tens of square centimeters in size [36,37]. Besides these
beneficial analytical features, the micro-sized laser spot used for these measurements causes
very limited damage to the sample as only a negligible part of the surface is ablated. Owing
to its high performances, LA–ICP–MS also found application for both morphological
and quantitative analysis of NP deposited on various substrates [38,39]. Single particle
analysis [39] and the application of micro-dried droplets for quantitative analysis [38]
currently represent two major advancements in the field. Although LA–ICP–MS has
aroused great interest in the field of NPs, the quantitative determination of their spatial
distribution on planar substrates is still a challenge never faced using this technique.

In view of these considerations, we developed an LA–ICP–MS analytical protocol to
generate a quantitative distribution map of metal NPs deposited over planar substrates,
by selecting the proper sampling patterns and data elaboration. The proposed approach
is tested for the first time using a model sample consisting of silver NPs anisotropically
distributed over low-density polyethylene (LDPE) disks.

2. Materials and Methods
2.1. Samples Preparation and Characterization

A pulsed microplasma cluster source (PMCS) was used to perform a supersonic cluster
beam deposition (SCBD) of Ag NPs over LDPE disks (~2 cm diameter). The instrumental
system is schematically shown in Figure 1, and described in detail elsewhere [40–42].
Briefly, a PMCS consists of an anodic cavity where an Ag rotating rod cathode is inserted:
the introduction of triggered pulses of Ar gas (45 bar for 370 µs) and high voltages pulses
(900 V for 120 µs, with a 500 ms delay with respect to the end of the Ar pulse) leads to
the formation of a pulsed plasma (3 Hz) and, consequently, to the pulsed emission of Ag
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atoms which thermalize with the carrier gas and aggregate in the cavity, forming thus
small metal clusters. The carrier gas–cluster mixture expands out of the PMCS through a
series of three aerodynamic lenses into a low-pressure deposition chamber. Due to the high-
pressure difference between the cavity and the deposition chamber a highly collimated
supersonic beam (divergence < 1◦) of Ag clusters is generated. In these conditions, all Ag
NPs are implanted in the center of the target. The introduction of a partial pressure of
Ar in the deposition chamber allows partially deviated Ag NPs, inducing a more radially
spread deposition.
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Figure 1. Schematic representation of the employed pulsed microplasma cluster source–supersonic
cluster beam deposition (PMCS–SCBD) system used for Ag NP deposition on LDPE disks.

Two types of sample were prepared by varying the deposition time: “10 s” and “5 s”,
i.e., using deposition times of 10 s (30 pulses) and 5 s (15 pulses), respectively.

Samples analyzed right after metal deposition were named “10 s as-deposited” and “5 s
as-deposited”.

One “5 s” sample was treated with dichloro-methane vapors (293 K, 47.1 kPa) for 4 h
after Ag NPs deposition. This sample is labeled “5 s incorporated”.

The morphology of the polymeric disks and Ag NPs was studied using an environmen-
tal scanning electron microscope (ESEM FEG XL30, Philips, Eindhoven, The Netherlands)
at 20 kV under low vacuum conditions (1.4 torr of water vapor).

Transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) analysis
were performed by a ZEISS LIBRA 200FE microscope. A suitable specimen was prepared
by gently scratching the sample surface with a scalpel and collecting the resulting material
by simple adherence onto a holey-carbon supported film TEM grid.

The particle-size distribution of silver nanoparticles was determined by processing
SEM and TEM images using the software ImageJ (National Institutes of Health (NIH),
Bethesda, MD, USA).

2.2. LA-ICP-MS Analysis

An inductively coupled plasma–mass spectrometer (ICP–MS), model Thermo Scien-
tific ICAP Q, coupled with a fourth harmonic Nd: YAG 266 nm laser system, model New
Wave UP Series 266, was used for the laser ablation–ICP–MS (LA–ICP–MS) measurements.

A viscous film sample chamber was used for all the LA–ICP–MS measurements
(see [36,43] for details).

Ag-loaded polymeric disks were analyzed using both lines and grids of spots (the
sampling patterns will be discussed in the Results and Discussion section) employing
the operating parameters summarized in Table 1. The number of laser shots (20 within
10 s) was optimized to obtain the total removal of Ag NPs. Peaks resulting from each
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ablation spot were integrated. Such integral values were used to create a map of the metal
distribution over the surface of the sample.

Table 1. Operating laser and ICP–MS parameters used for all the LA–ICP–MS measurements.

Laser Parameters

Laser frequency (Hz) 2
Spot diameter (µm) 5 (round-shaped)

Laser fluence (J/cm2) 1.35
Dwell time for each spot (s) 10

Delay spot-by-spot (s) 5
Helium flux (L/min) 0.85

ICP–MS Parameters

RF power (kW) 1.55
Auxiliary gas flux (L/min) 0.8
Cooling gas flux (L/min) 14
Makeup gas flux (L/min) 0.9

Dwell time (ms) 10
m/z channel 107Ag

All data treatments were performed using Origin Pro, Version 2018 (OriginLab Cor-
poration, Northampton, MA, USA). In particular, a 3D spline was used to calculate the
Ag density surface function: considering that this is a strictly interpolating function, a
2-nearest neighbors averaging was performed to significantly reduce the spline oscillations.
The volume integral of the fitted surface was calculated using the same software.

A standard reference material of the National Institute of Standards and Technology
(NIST SRM 610, certified Ag concentration = 268 ± 29 mg/kg [44]) was used as drift
correction standard to correct any variation of ICP–MS sensitivity and laser fluence. A
1600 µm line was ablated using (i) a scan speed of 50 µm/s, (ii) a spot size of 20 µm, (iii) a
frequency of 20 Hz and (iv) a laser fluence of 3.6 J/cm2. Such analysis was performed prior
and after each grid of spots for sample analysis.

2.3. Ag Dissolution and ICP-MS Analysis

An ICP–MS, model Thermo Scientific ICAP Q, was used also for the mass spectromet-
ric measurements of Ag extraction solution. The operating parameters of ICP–MS for all
the measurements are the same as the ones reported in Table 1, except for the makeup gas
flux, which is replaced by the nebulizer gas flux (0.93 L/min).

The extraction solutions analyzed by ICP–MS were obtained only for “10 s” samples
as follows:

Extraction #1: After the first LA–ICP–MS analysis, a “10 s as-deposited” sample was
treated with 2 mL of ultrapure nitric acid (obtained by sub-boiling distillation [45]) under
sonication at room temperature for 2 h. The polymeric disk was removed from the extrac-
tion solution and rinsed with ultrapure water (produced by a Sartorius Arium mini-UV lab
water system). All rinsing solutions were added to the extraction solution and diluted with
ultrapure water prior the ICP–MS analysis.

Extraction #2: The polymeric sample resulting from extraction #1 (labeled “10 s extr.#1”),
after a second LA–ICP–MS analysis, was treated in 2 mL of ultrapure nitric acid under
sonication at 40 ◦C for 6 h. The LDPE disk after extraction #2 is labeled “10 s extr.#2” and it
was analyzed a third time by LA–ICP–MS.

Total Ag Extraction: A “10 s as-deposited” sample was treated with 2 mL of ultrapure
HNO3 at 180 ◦C for 20 min in an ETHOS One (Milestone MLS) microwave digestion system
equipped with home-made vessel-inside-vessel reactors (see more detail in [46,47]). This
double container strategy, instead of putting the disk directly inside a single polytetrafluo-
roethylene (PTFE) microwave vessel, was adopted to avoid any possible Ag loss caused by
AgCl precipitation [48]. After this extraction the LPDE disk was analyzed by LA–ICP–MS:
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no Ag signals were detected in the central region of the disk, confirming that Ag was
totally extracted.

3. Results
3.1. Characterization of Ag-Loaded Disks

LDPE disks loaded with sub-microgram amounts of Ag NPs were chosen as model
NP-loaded substrates for this study. Silver NPs were selected owing to their very wide
application in the construction of supported functional materials, e.g., antibacterial and
antifungal systems [49,50], sensing devices [51,52] and catalysts [53,54]. Ag nanoparticles
are additionally the metallic NPs industrially produced in the largest amount [55]. A
PMCS–SCBD was used to deposit Ag NPs because the radial anisotropic deposition may
be tuned by simply increasing the Ar partial pressure in the deposition chamber: a highly
focused deposition with Ag NPs deposited in less than 1 mm2 is achieved under high
vacuum, whereas an increasingly spread deposition is obtained when the Ar pressure is
raised as a result of the increasing number of collisions between Ar and the Ag NPs. A
partial pressure equal to 17.3 Pa was selected in the present study, together with a target
distance equal to 40 mm, as these parameters lead to NPs being deposited onto a surface
that is slightly lower than the target surface (see Experimental Section for further details).

Figure 2 reports the optical, SEM and HR–TEM characterization of the LDPE sup-
ported NPs deposited after a 10 s sputtering. Figure 2a (optical image) macroscopically
confirms the expected spatial distribution: the central zone of the disk is visibly darker,
suggesting that a much higher concentration of Ag is present there.
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The high density of Ag NPs in the center of the LDPE disk was also confirmed by SEM
analysis (see Figure 2b and, for the sake of comparison, see also a clean LDPE substrate in
Figure 2c). As shown in Figure 2d, metal NPs exhibit a broad size distribution in the range
10–120 nm. HR–TEM analysis is in good agreement with the size distribution determined
by SEM but it evidenced also the presence of NPs with a diameter lower than 10 nm (see
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Figure 2e,g). Finally, a good degree of crystallinity was observed by analyzing the electron
diffraction pattern (Figure 2f), in which it is possible to observe the (111), (200), (220), (311)
and (222) reflections of Ag.

This system is accordingly a very good model of an anisotropic distribution of metal
NPs with a noticeable trace concentration gradient over a substrate with macroscopic
dimensions.

3.2. Setup of the Calibration Protocol

A viscous film sample chamber [36] was used in this work to achieve high sensitivity,
needed to investigate even low amounts of Ag, and fast analysis time over a quite large
surface (disk area ~3 cm2). In addition, it was demonstrated in previous work that signal
intensities do not depend on the X,Y coordinates of the ablated point [36]; i.e., a uniform
sensitivity is expected over the entire sample surface. Multiple samples may be positioned
inside this chamber, allowing the use of a drift correction standard to correct the time-
dependent drift of sensitivity. We analyzed the target analyte (Ag) in NIST SRM 610 prior
and after each grid or line of spots, and a linear interpolation of the resulting signal with
time was used to correct variations in sensitivity, as reported in previous papers [56–58].

A very simple cross design laser ablation pattern was initially adopted to gain prelim-
inary insights about the Ag distribution on our model samples (see Figure 3a, 39 spots per
line with 500 µm spacing).
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and then divided by the laser spot size).
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The ICP–MS signals obtained with such an ablation pattern are depicted in Figure 3b,
while the integrated signals are used to build the bar plots reported in Figure 3c,d. Please
note that since instrumental signals are reported in counts-per-second (cps), the correspond-
ing integrals are correctly reported as counts (cts). It is clearly visible that the Ag surface
loading gradually decreases when moving away from the center of the disk. Nevertheless,
the material ablated in the peripheral part of the disk is sufficient to generate an appre-
ciable ICP–MS signal, meaning that the high sensitivity of LA–ICP–MS is fundamental to
accurately describe the regions of the sample surface where very low amounts of NPs are
expected. This model material is accordingly suited for the definition of the calibration
protocol, namely, how to relate the ablation signals to the mass concentration per unit
surface area.

We tackled this issue by applying two sequential processes. The first one relies on
the definition of a suitable three-dimensional function which is used to fit the LA–ICP–MS
integrals and thus to describe an Ag density 3D surface. The second part implies the
determination of the Ag deposited mass on the polymeric disk (Ag extraction followed
by ICP–MS analysis). The quantitative calibration is then obtained by linearly correlating
the volume integral with the amount of extracted Ag. This calibration is carried out on a
sacrificial sample but following quantifications can be performed by measuring the volume
integral values and applying the calibration function without requiring Ag dissolution or
other destructive techniques.

With respect to the development of a suitable fitting strategy, the integration of
the peaks resulting from the two lines of spots (see Figure 3c,d) shows that there is no
obvious analytical function that may describe NP distribution. We decided to use a 3D
spline interpolation function (available in standard data manipulation software), because
it is suitable to describe any NP distribution, making it the most general approach with
widespread application.

This first screening highlighted that a different and more dense sampling scheme was
needed to accurately describe the high Ag concentration gradient in the central zone of
the disk. Accordingly, a grid of 17 × 17 spots was used covering a 4 × 4 mm square in the
central zone of the disk (spaced every 250 µm) plus 92 spots placed in 8 radial branches
(500 µm spacing for horizontal and vertical lines, 707 µm spacing for diagonal lines). This
scheme is reported in Figure 4. It should be underlined that even using 381 spots, only a
negligible portion of the entire surface is ablated (about 0.24%).
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The spatial distribution of the Ag integrated signals of the “10 s as-deposited” sample,
together with the 3D spline reconstructed surface, are reported in Figure 5a,b, respectively,
and the volume integral of the surface in Figure 5b is reported in Table 2 (first row). The
calibration of the signal was achieved by determining the Ag mass by the extraction of silver,
followed by ICP–MS analysis. Mild conditions (see experimental section) were intentionally
employed to dissolve Ag only partially: such conditions provide two calibration points
from a single disk (see below). The analysis of the extraction solution revealed an Ag mass
equal to 0.57 µg.
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Table 2. Summary of the results obtained by LA–ICP–MS and ICP–MS analysis.

Sample Volume Integral of
Interpolated Surface (cts)

Volume Integral
Difference (cts)

Extracted Ag Mass
(µg)

10 s as-deposited 1.91 × 1011 0 0

10 s extr.#1 4.74 × 1010 1.43 × 1011 0.57 ± 0.010

10 s extr.#2 1.73 × 1010 3.02 × 1010 0.11 ± 0.004

A second LA–ICP–MS analysis of the disk (labeled as “10 s extr.#1”) was performed,
using the same pattern shown in Figure 4 (only 15 µm-shifted in both X and Y directions):
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the resulting data (see Figure 5c) were treated as shown for the pristine disk, thus obtaining
a 3D spline reconstructed surface (Figure 5d) and its volume integral (Table 2, 2nd row). The
volume integral of the fitted function is around four times lower than the one calculated for
“10 s as-deposited”, and the difference between these two volume integrals can be correlated
to the amount of extracted Ag. Thus, the calibration factor can be easily obtained as
the ratio between the difference of the volume integral values (1.43 × 1011 cts) and the
extracted Ag mass (0.57 µg), which yields 2.51 × 1011 cts/µg. This sensitivity is the result
of a one-point calibration.

An additional sequence of extraction/Ag determination/LA–ICP–MS analysis over
the “10 s extr.#1” sample was performed to check for the validity and the consistency of the
proposed calibration procedure. This second extraction was performed in slightly harsher
conditions in an attempt to dissolve a large portion of the residual Ag (see experimental
section for details). The mass of Ag resulting from this second extraction was equal to
0.11 µg, while the 3D spline surface and its volume integral are reported in Figure 5f and
Table 2 (3rd row), respectively.

The data reported in Table 2 were plotted to obtain the multipoint calibration curve re-
ported in Figure 6. This figure clearly shows that there is a very good direct proportionality
relationship between the volume integrals and the Ag mass on the surface.
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3.3. Validation of the Calibration Protocol

The calibration procedure devised in the previous section was validated by applying
the calibration reported in Figure 6 to another freshly prepared “10 s as-deposited” sample
and comparing the result to the Ag mass obtained by ICP–MS after complete Ag dissolution
(see experimental section for details). The very good agreement between these two datasets
(0.76 and 0.78 µg of Ag by LA–ICP–MS and solution analysis, respectively), indicates that
this calibration protocol produces reliable data. This validation procedure is the only option
as no standard reference material (SRM) for supported Ag NPs is available.

To further validate this protocol, two additional test samples were analyzed by LA–
ICP–MS: (i) a “5 s as-deposited” sample was obtained exactly as the “10 s as-deposited”,
sputtering Ag for 5 s only; (ii) a “5 s incorporated” was prepared as “5 s as-deposited” but
treating with dichloromethane vapors to induce a deeper penetration of Ag NPs into the
polymeric matrix (see experimental section for details). Both samples were analyzed using
the sampling pattern shown in Figure 4 and the described optimized data handling. Three-
dimensional spline surfaces and the results of the LA–ICP–MS quantifications are reported
in Figure 7 and Table 3, respectively. Considering that the PMCS–SCBD method (used for
Ag disks preparation) deposits the same amount of Ag in every pulse, the Ag loadings
for the 5 s samples (15 pulses) were expected to be half of the ones obtained for the 10 s
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samples (30 pulses). The data are accordingly highly consistent (see Table 3), if compared
to the 0.76 µg of Ag determined for the “10 s as-deposited” sample, further supporting the
adopted calibration procedure. Additionally, the total amount of Ag determined for the
“5 s incorporated” sample is comparable to the one determined for “5 s as-deposited”. In
other words, the deeper penetration of Ag NPs into the polymer did not compromise the
accuracy of the results achieved by LA–ICP–MS analysis.
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Table 3. Summary of Ag quantification performed only by LA–ICP–MS analysis on the “5 s” samples.

Sample Volume Integral of
Interpolated Surface (cts) Calculated Ag Mass (µg)

5s as-deposited 1.01 × 1011 0.40

5s incorporated 9.40 × 1010 0.37

Finally, it should be underlined that the consistency of all the data so far reported
allowed us to estimate the amount of Ag that the PMCS–SCBD method is able to produce,
corresponding to a deposition rate of 25.6 ng/pulse or 76.8 ng/s.
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3.4. Choice of the Ablation Pattern

The quantitative results so far presented were obtained with the ablation pattern
reported in Figure 4. This pattern was prudently dense in the central part of the surface
where the gradient in NP concentration was higher. To critically evaluate if it was actually
necessary to use such a huge number of ablation points (381), we calculated the results
that can be obtained by two subsequent halvings of the original dataset, i.e., using 190 and
95 points to build the 3D surface. The data reported in Table 4 show that, even with the
smallest dataset, the total amount of Ag was correctly determined. The reduction of the
dataset had strongly beneficial effects in terms of analysis time, since the latter was directly
proportional to the number of ablated spots.

Table 4. Ag quantification performed by LA–ICP–MS analysis by changing the number of ablated spots.

Sample Number of Ablated
Spots

Required Analysis
Time (min)

Volume Integral of
Interpolated Surface (cts)

Calculated Ag Mass
(µg)

10 s as-deposited-1 381 ~100 1.91 × 1011 0.76

10 s as-deposited-2 190 ~50 1.87 × 1011 0.75

10 s as-deposited-3 95 ~25 1.91 × 1011 0.76

However, the decrease in the sampling points may lead to a poorer description of the
Ag distribution, as may be noticed by spotting; e.g., the fine detail (at 23 and 26 mm) that
seemed to disappear as the sampling frequency decreased (see Figure 8).
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The distribution and the number of points to be used in the ablation pattern should be
evaluated case by case, as they strictly depend on the shape and on the smoothness of the
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distribution. The best ablation pattern also depends on the sought information, namely the
total metal loading vs. the highly or limitedly detailed description of the metal distribution.

4. Conclusions

An LA–ICP–MS-based approach for the quantitative estimation of the spatial distri-
bution of metal NPs deposited on solid supports was developed. We demonstrated that,
thanks to a proper sampling pattern and data elaboration, the determination of both the
total deposited mass and its spatial distribution can be achieved using a micro-destructive
analytical technique, as only 0.24% of the total surface is ablated. Trace and ultratrace
levels of NPs, down to the fg/µm2 level, may be determined by this analytical protocol, as
required when very low metal loadings are used, or areas interested by marginal deposition
are studied. The method also allows the determination of the absolute loading of any given
portion of the sample surface by simply calculating the volume integral of the 3D spline
limited by the surface of interest.

Although only the distribution of silver NPs on LDPE was determined in the present
work, the extension to any metal-loaded surface may be easily foreseen, as laser ablation
ensures an efficient vaporization of almost any material, whereas ICP–MS is a universal
trace detector for all the metallic elements. The use of the 3D spline interpolation further
contributes to the vast applicability of the procedure as this interpolating function does not
require any a priori knowledge about the NPs’ distribution. Nevertheless, a preliminary
investigation may help in defining a time efficient sampling pattern, whose geometry and
frequency should be set as a function of the shape and the smoothness of the anisotropic
distribution, respectively.

The potential applicability of the present approach is surely wide, as it may find
employment in all applications where anisotropically modified surfaces are investigated or
the homogeneity of NP deposition needs to be verified. Application to substrates other
than polymers seems at hand since surface NPs are easily removed by the laser beam
irrespective of the support, although a dedicated calibration procedure may be possibly
required. Possible applications thus include the characterization of supported catalysts,
nanostructured electrodes and, more generally, sensing devices. Finally, as reported in the
present work, the proposed protocol may also be used to assess the amount of deposited
NPs and the deposition profile generated by any kind of nanoparticle source.
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