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Supplementary Material: 3D FDTD Numerical Equations for Ag NP Modelling by 

Using Lorentz-Drude Fitting Terms  

In a practical FDTD simulation, the Maxwell’s equations are addressed by [1]:  

𝛻 × 𝐻 ⃑⃑⃑⃑ =  𝐽 ⃑⃑ +
𝜕𝐷 ⃑⃑⃑⃑ 

𝜕𝑡
                                                                                                             (1) 

 

𝛻 × 𝐸 ⃑⃑  ⃑ =  −
𝜕𝐵 ⃑⃑  ⃑

𝜕𝑡
                                                                                                                   

𝐷 ⃑⃑  ⃑(𝑡) =  𝜀(𝑡) ∗ 𝐸 ⃑⃑  ⃑(𝑡)            

                 𝐵 ⃑⃑ ⃑⃑  (𝑡) =  𝜇(𝑡) ∗ 𝐻 ⃑⃑⃑⃑ (𝑡)                                            (S1)                                

Where 𝜀(𝑡) is permittivity in F/m and 𝜇(𝑡) is permeability in H/m, D is electric flux density 

(also called dielectric displacement) in C/m2, B is magnetic flux density (also known as 

magnetic induction) in Wb/m2, H is the magnetic field intensity in A/m and E is electric 

field intensity in V/m. J is the material electric current density (A/m2) and can be obtained 

from material conductivity (𝜎 (1/Ω)) by  𝐽 ⃑⃑ = 𝜎 𝐸 ⃑⃑  ⃑. 

By expanding these vector equations into scalar Equations [2], the complete 3D Max-

well’s equations and constitutive relations are obtained in each axis. The final form of the 

update equations and constitutive relations for obtaining H field in only x-axis are: 
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The final form of the update equations and constitutive relations for 𝐷 in x-axis are: 
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Afterwards, the final form of the update equations and constitutive relations for E 

field in x-axis are: 

𝐸𝑥|𝑡+∆𝑡
𝑖,𝑗,𝑘

= (𝑚𝐸𝑥1|
𝑖,𝑗,𝑘)𝐷𝑥|𝑡+∆𝑡

𝑖,𝑗,𝑘  

𝑚𝐸𝑥1|
𝑖,𝑗,𝑘 =

1

𝜀𝑥𝑥|
𝑖,𝑗,𝑘

  
(A4) 

By using the same interoperation, the final form of the update equations and consti-

tutive relations for other axis (y and z) can also be achieved. Note that, in the above equa-

tions, the terms are defined in 3D matrices in which i, j and k indicates the grid cell location 

(in x, y and z vectors respectively) in a 3D Yee grid. “m” terms are constitutive relations. 

“σ” terms are including all conductivity and loss values in the grid. “I” terms are integra-

tion terms which are the summation of curl (C) terms. ∆t is the time step in second which 

is depended to the grid resolutions and calculated based on the Courant stability condi-

tion [3]: 
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                                                                                                                                                          (A5) 

Where 𝑐0 is the speed of the light in the medium in m/s. ∆𝑥, ∆𝑦  and ∆𝑧 are grid 

discretization (∆𝑑) in x, y and z vectors in meter which are calculated by: 
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∆𝑑 =
𝜆𝑚𝑖𝑛

𝑁𝜆 
                                                                                                                                                                   (A6) 

Where 𝑁𝜆 is grid resolution and 𝜆𝑚𝑖𝑛 is the shortest wavelength of the irradiated input 

spectrum obtaining by using the maximum refraction index inside the medium (𝜂𝑚𝑎𝑥) and 

highest frequency of the irradiated input spectrum (𝑓𝑐) as follows: 

𝜆𝑚𝑖𝑛 =
𝑐

𝑓𝑐𝜂𝑚𝑎𝑥 
                                                                                                                                                       (A7) 

While updating Maxwell’s equations, the input source radiation spectrum is added to the 

system. The incident electric field of the source radiation spectrum is only polarised in x-

y plane [1]; therefore, it is imported to grid as: 
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(A8) 

Where P terms are calculating from the polarization vector (P ⃑⃑⃑  = Px ⃑⃑ ⃑⃑ + Py ⃑⃑ ⃑⃑  ), 𝑘0 =
2𝜋

𝜆0
, is the 

radiation’s free space wavelength which is constant and 𝜂𝑖𝑛𝑐 is the refraction index of the 

incident source perimeter. The incident source magnetic field is achieved by using the 

Maxwell’s curl equation (𝛻 × 𝐸 ⃑⃑  ⃑ =  −𝜇
𝜕𝐻 ⃑⃑⃑⃑ 
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) and is defined as: 

𝐻𝑥
𝑠𝑟𝑐|𝑡

𝑖,𝑗,𝑘𝑠𝑟𝑐 = −𝑃𝑦√
𝜀𝑖𝑛𝑐

𝜇𝑖𝑛𝑐

𝑐𝑜𝑠 (𝜔𝑡 − 𝑘0𝜂𝑖𝑛𝑐𝑧) 

𝐻𝑦
𝑠𝑟𝑐|𝑡

𝑖,𝑗,𝑘𝑠𝑟𝑐 = 𝑃𝑥√
𝜀𝑖𝑛𝑐

𝜇𝑖𝑛𝑐

𝑐𝑜𝑠 (𝜔𝑡 − 𝑘0𝜂𝑖𝑛𝑐𝑧) 

(A9) 

In the updating process of Maxwell’s equations, the permittivity can be interpreted 

differently for various materials. Linear isotropic materials don’t show spatial and tem-

poral dispersion; therefore, their permittivity is defined as a constant number called die-

lectric constant. However, the optical response of real anisotropic materials; such as 

MNPs, clearly depends on frequency and wave vector; thus, their dispersive properties 

are described by complex dielectric function (𝜀𝑟̃(𝜔)). The measured dielectric function of 

Ag NPs was reported by Johnson and Christy [4] which can be mathematically fitted by 

Lorentz-Drude Model [5]: 

𝜀𝑟̃(𝜔) = 𝜀𝑟(∞) + ∑
𝑓𝑚𝜔𝑃

2
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2 +𝑗𝛤𝑚𝜔−𝜔2

𝑁
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(A10

) 

Where 𝜔 is frequency, N is the number of resonators, 𝑓𝑚 is the strength of the resonator 

“m”, 𝜔0,𝑚 is the natural frequency of the resonator “m” and 𝛤𝑚 is the damping rate of the 

of the resonator “m”. 𝜀𝑟(∞) is the offset value of permittivity of the host material in which 

the metal is solved. Table A.1 presents Lorentz-Drude parameters for Ag NPs. 

Table S1. Lorentz-Drude parameters for Ag NPs [5]. 

𝜔𝑃 =  9.01 𝑒𝑣                                        𝜀𝑟(∞) = 1 F/m 

𝜔0 = 0 𝑒𝑣  𝑓0 =  0.84 𝛤0 =  9.01 𝑒𝑣  
𝜔1 =  0.816 𝑒𝑣  𝑓1 =  0.065 𝛤1 =  0.053 𝑒𝑣  
𝜔2 =  4.481 𝑒𝑣  𝑓2 =  0.124 𝛤2 =  3.886 𝑒𝑣  
𝜔3 =  8.185 𝑒𝑣  𝑓3 =  0.011 𝛤3 = 0.065 𝑒𝑣  
𝜔4 =  9.083 𝑒𝑣  𝑓4 =  0.84  𝛤4 = 0.916 𝑒𝑣  
𝜔5 =  20.29 𝑒𝑣  𝑓5 = 5.646  𝛤5 =   2.419 𝑒𝑣  
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